首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A luteotropic role for prostaglandins (PGs) during the luteal phase of the menstrual cycle of rhesus monkeys was suggested by the observation that intraluteal infusion of a PG synthesis inhibitor caused premature luteolysis. This study was designed to identify PGs that promote luteal function in primates. First, the effects of various PGs on progesterone (P) production by macaque luteal cells were examined in vitro. Collagenase-dispersed luteal cells from midluteal phase of the menstrual cycle (Day 6-7 after the estimated surge of LH, n = 3) were incubated with 0-5,000 ng/ml PGE2, PGD, 6 beta PGI1 (a stable analogue of PGI2), PGA2, or PGF2 alpha alone or with hCG (100 ng/ml). PGE2, PGD2, and 6 beta PGI1 alone stimulated (p less than 0.05) P production to a similar extent (2- to 3-fold over basal) as hCG alone, whereas PGA2 and PGF2 alpha alone had no effect on P production. Stimulation (p less than 0.05) of P synthesis by PGE2, PGD2, and 6 beta PGI1 in combination with hCG was similar to that of hCG alone. Whereas PGA2 inhibited gonadotropin-induced P production (p less than 0.05), that in the presence of PGF2 alpha plus hCG tended (p = 0.05) to remain elevated. Second, the effects of various PGs on P production during chronic infusion into the CL were studied in vivo. Saline with or without 0.1% BSA (n = 12), PGE2 (300 ng/h; n = 4), PGD2 (300 ng/h; n = 4), 6 beta PGI1 (500 ng/h; n = 3), PGA2 (300 ng/h; n = 4), or PGF2 alpha (10 ng/h; n = 8) was infused via osmotic minipump beginning at midluteal phase (Days 5-8 after the estimated LH surge) until menses. In addition, the same dose of PGE, PGD, PGI, or PGA was infused in combination with PGF2 alpha (n = 3-4/group) for 7 days. P levels over 5 days preceding treatment were not different among groups. In 5 of 8 monkeys receiving PGF2 alpha alone, P declined to less than 0.5 ng/ml within 72 h after initiation of infusion and was lower (p less than 0.05) than controls. The length of the luteal phase in PGF2 alpha-infused monkeys was shortened (12.3 +/- 0.9 days; mean +/- SEM, n = 8; p less than 0.05) compared to controls (15.8 +/- 0.5). Intraluteal infusion of PGE, PGD, PGI, or PGA alone did not affect patterns of circulating P or luteal phase length.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
Prostaglandins (PGs) are known to have effects on hepatic glucose metabolism. Some actions of PGs in intact liver systems may not involve PG effects directly at the level of the hepatocyte. To define the ability of structurally distinct prostaglandins to affect hepatocyte metabolism directly, the regulation of glycogenolysis was studied in hepatocytes isolated from male Sprague-Dawley rats. PGF and PGB2 inhibited glucagon-stimulated glycogenolysis in the hepatocyte system. Pinane thromboxane A2 (PTA2) and PGD2 had no effect on glucagon-stimulated glycogenolysis. Consistent with their inhibition of glucagon-stimulated glycogenolysis, PGF2 and PGF2 alpha inhibited glucagon-stimulated hepatocyte cyclic AMP accumulation. These actions of PGB2 and PGF2 alpha are identical with those previously reported for PGE2. Additionally, PGE2, PGF2 alpha and PGB2 inhibited glucagon-stimulated adenylate cyclase activity in purified hepatic plasma membranes. In contrast, PGF2 alpha, PGD2 and PTA2 were all without affect on basal rates of hepatocyte glycogenolysis or hepatocyte cyclic AMP content. PGE2 also inhibited glycogenolysis stimulated by the alpha-adrenergic agonist phenylephrine. Exogenous arachidonic acid was not able to reproduce the affects of PGE2 or PGF2 alpha on hepatocyte glycogenolysis, consistent with an extra-hepatocyte source of the prostaglandins in the intact liver. Thus PGE2 and PGF2 alpha act specifically to inhibit glucagon-stimulated adenylate cyclase activity. No prostaglandin tested was found to stimulate glycogenolysis. PGE2 and PGF2 alpha may represent intra-hepatic modulators of hepatocyte glucose metabolism.  相似文献   

3.
Slices of human full-term placentas, obtained by elective cesarean section, were incubated in the absence or presence of prostaglandins (PGs) and the cyclic AMP phosphodiesterase (cAMP PDE) activity was measured. PGE1 and PGI2 were shown to stimulate cAMP PDE activity. The effect of PGE1 is related to an increase in the Vmax of the low Km activity without alteration of this apparent Km. Several findings suggest that the cAMP PDE is activated by its own substrate; PGE1 and PGI2, promote an increase of cAMP formation which is observed before the cAMP PDE activation. Dibutyryl cAMP or theophylline also activate cAMP PDE. In contrast, PGF2 alpha does not influence either adenylate cyclase or AMP PDE. In addition, we found that the ability of the placenta to degrade cAMP, increases after parturition. PG levels are higher in the foeto-placental unit during labor, and a causal relationship between these two phenomena is possible. Our data supporting the concept of hormonal control of cAMP PDE is consistent with the hypothesis that an accelerated cAMP metabolism in placenta contributes to the maintenance of a constant equilibrium of the cyclic nucleotide levels in the foeto-placental unit.  相似文献   

4.
We examined the involvement of cyclooxygenase (COX)-1 and COX-2 on mechanical scratching-induced prostaglandins (PGs) production in the skin of mice. The dorsal regions of mice were scratched using a stainless brush. COXs expressions in the skin were analyzed using real-time PCR and Western blotting. The effect of acetylsalicylic acid (ASA) on the ability of PGs production were determined based on skin PGs level induced by arachidonic acid (AA) application. Mechanical scratching increased PGD2, PGE2, PGI2 and PGF(2 alpha). COX-1 was constitutively expressed and COX-2 expression was enhanced by scratching. Intravenous administration of ASA inhibited PGs biosynthesis in the normal skin. PGs levels of the skin 6h after ASA administration (ASA 6 h) were almost equal to those of the skin 10 min after ASA administration (ASA 10 min). In the scratched skin, AA-induced PGE2 and PGI2 of ASA 6 h were significantly higher than those of ASA 10 min. The skin PGD2 and PGF(2 alpha) of ASA 10 min were almost same to those of ASA 6 h. In the normal skin of COX-1-deficient mice, skin PGD2 level was lower than that of wild-type mice, although PGE2, PGI2 and PGF(2 alpha) levels were almost equal to those of wild type. In the scratched skin of COX-1-deficient mice, PGD2, PGE2, PGI2 and PGF(2 alpha) levels were lower than those of wild-type mice. These results suggested that cutaneous PGD2 could be mainly produced by COX-1, and PGE2 and PGI2 could be produced by COX-1 and COX-2, respectively, in mice.  相似文献   

5.
To determine the influence of prostaglandins on cAMP metabolism in renal papillary collecting tubule (RPCT) cells, intracellular cAMP levels were measured after incubating cells with prostaglandins (PGs) alone or in combination with arginine vasopressin (AVP). PGE1, PGE2 and PGI2, but not PGD2 or PGF2 alpha, increased intracellular cAMP concentrations. At maximal concentrations (10(-5) M) the effects of PGE2 plus PGI2 (or PGE1), but not of PGI2 plus PGE1, were additive suggesting that at least two different PG receptors may be present in RPCT cell populations. Bradykinin treatment of RPCT cells caused an accumulation of intracellular cAMP which was blocked by aspirin and was quantitatively similar to that observed with 10(-5) M PGE2. PGs, when tested at concentrations (e.g. 10(-9) M) which had no independent effect on intracellular cAMP levels, did not inhibit the AVP-induced accumulation of intracellular cAMP in RPCT cells. These results indicate that PGs do not block AVP-induced accumulation of intracellular cAMP in RPCT cells at concentrations of PGs which have been shown to inhibit the hydroosmotic effect of AVP on perfused collecting tubule segments. However, at higher concentrations of PGs (e.g. 10(-5) M), the effects of AVP plus PGE1, PGE2, PGI2 or bradykinin on intracellular cAMP levels were not additive. Thus, under certain conditions, there is an interaction between PGs and AVP at the level of cAMP metabolism in RPCT cells.  相似文献   

6.
Prostaglandins as reducing agents: a model of adenylate cyclase activation?   总被引:1,自引:0,他引:1  
It has been suggested that adenylate cyclase activation involves reduction of a disulfide linkage. Prostaglandin E1 (PGE1), prostaglandin E2 (PGE2), prostaglandin I2 (PGI2) and prostaglandin F2 alpha (PGF2 alpha) were tested for their ability to act as reducing agents with either cytochrome c, or the disulfide 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB), the latter with a catalytic amount of ferric chloride. PGE1, PGE2, and PGI2 significantly reduced cytochrome c while PGF2 alpha did not. PGE1, PGE2 and PGI2 reduced DTNB while PGF2 alpha did not. The results are consistent with the postulate that prostaglandins which are effective in activating adenylate cyclase can act as reducing agents and might be involved in reductive activation of adenylate cyclase.  相似文献   

7.
The biosynthetic potential of prostaglandins (PGs) was measured in ovarian follicles and corpus luteum of sheep ovary. The total prostaglandins formed under non-enzymatic conditions were much lower in comparison to that formed using native GSTs. When the GSTs of ovarian follicles were employed, the major prostaglandin formed was PGE2 (81.22%) followed by PGD2 (16.9%) and PGF2 alpha (1.87%). In case of corpus luteum, prostaglandin formed was PGF2 alpha (59.01%). Since PGF2 alpha was demonstrated to be the luteolytic factor, the present study indicates the formation of luteolytic factor in the ovarian tissue itself.  相似文献   

8.
Isolated pancreatic islets of the rat were either prelabeled with [3H]arachidonic acid, or were incubated over the short term with the concomitant addition of radiolabeled arachidonic acid and a stimulatory concentration of glucose (17mM) for prostaglandin (PG) analysis. In prelabeled islets, radiolabel in 6-keto-PGF1 alpha, PGE2, and 15-keto-13,14-dihydro-PGF2 alpha increased in response to a 5 min glucose (17mM) challenge. In islets not prelabeled with arachidonic acid, label incorporation in 6-keto-PGF1 alpha increased, whereas label in PGE2 decreased during a 5 min glucose stimulation; after 30-45 min of glucose stimulation labeled PGE levels increased compared to control (2.8mM glucose) levels. Enhanced labelling of PGF2 alpha was not detected in glucose-stimulated islets prelabeled or not. Isotope dilution with endogenous arachidonic acid probably occurs early in the stimulus response in islets not prelabeled. D-Galactose (17mM) or 2-deoxyglucose (17mM) did not alter PG production. Indomethacin inhibited islet PG turnover and potentiated glucose-stimulated insulin release. Islets also converted the endoperoxide [3H]PGH2 to 6-keto-PGF1 alpha, PGF2 alpha, PGE2 and PGD2, in a time-dependent manner and in proportions similar to arachidonic acid-derived PGs. In dispersed islet cells, the calcium ionophore ionomycin, but not glucose, enhanced the production of labeled PGs from arachidonic acid. Insulin release paralleled PG production in dispersed cells, however, indomethacin did not inhibit ionomycin-stimulated insulin release, suggesting that PG synthesis was not required for secretion. In confirmation of islet PGI2 turnover indicated by 6-keto-PGF1 alpha production, islet cell PGI2-like products inhibited platelet aggregation induced by ADP. These results suggest that biosynthesis of specific PGs early in the glucose secretion response may play a modulatory role in islet hormone secretion, and that different pools of cellular arachidonic acid may contribute to PG biosynthesis in the microenvironment of the islet.  相似文献   

9.
Recent data suggest that prostaglandins (PGs) are involved in the regulation of basophil activation. The aim of this study was to characterize the basophil PG-binding sites by means of radioreceptor assays using 3H-labeled PGs. Scatchard analysis for pure (greater than 95%) chronic myeloid leukemia (CML) basophils revealed two classes of PGE1-binding sites differing in their affinity for the natural ligand (Bmax1 = 217 +/- 65 fmol/10(8) cells; Kd1 = 0.5 +/- 0.2 nM; Bmax2 = 2462 +/- 381 fmol/10(8) cells; Kd2 = 47 +/- 20 nM; IC50 = PGE1 less than PGI2 less than PGD2 less than PGE2 less than PGF2 alpha) as well as two classes of PGI2 (iloprost)-binding sites (Bmax1 = 324 +/- 145 fmol/10(8) cells; Kd1 = 0.5 +/- 0.3 nM; Bmax2 = 2541 +/- 381; Kd2 = 27 +/- 6 nM; IC50 = PGI2 less than PGE1 less than PGD2 less than PGE2 less than PGF2 alpha. In addition, CML basophils exhibited a single class of PGD2-binding sites (Bmax = 378 +/- 98 fmol/10(8) cells; Kd = 13 +/- 4 nM; IC50: PGD2 less than PGI2 less than PGE1 less than PGE2 less than PGF2 alpha). In contrast, we were unable to detect specific saturable PGE2-binding sites. Primary and immortalized (KU812) CML basophils revealed an identical pattern of PG receptor expression. Basophils (KU812) expressed significantly (p less than 0.001) lower number of PGE1 (PGI2)-binding sites (Bmax1: 9% (20%) of control; Bmax2: 36% (50%) of control) when cultured with recombinant interleukin 3 (rhIL-3), a basophil-activating cytokine, whereas rhIL-2 had no effect on PG receptor expression. Functional significance of binding of PGs to basophils was provided by the demonstration of a dose-dependent increase in cellular cAMP upon agonist activation, with PGE1 (ED50 = 1.7 +/- 1.1 nM) and PGI2 (ED50 = 2.8 +/- 2.3 nM) being the most potent compounds. These findings suggest that human basophils express specific receptors for PGE1, PGI2 as well as for PGD2.  相似文献   

10.
Prostaglandins inhibit the proliferation of the murine P815 mastocytoma. The mechanism of this antitumour activity remains undefined. In several cell systems, the action of PGs is inhibited at the cell surface receptor by pertussis toxin likely through regulatory G proteins involved in the inhibition of adenyl cyclase or activation of phospholipase C. We therefore determined the effect of prostaglandins on the biochemical consequences of activation of these pathways; i.e. concentrations of cyclic AMP (cAMP) and cytosolic free Ca+2 concentrations [( Ca/2]i) respectively. PGD2 (6 ug/mL), PGE1 (10 ug/mL) and PGB1 (50 ug/mL) maximally inhibited (3H)-thymidine incorporation to DNA. PGF2 alpha did not affect DNA synthesis. PGE1 (10 ug/mL) induced a three fold increase in cAMP concentrations. In contrast, the other prostaglandins did not alter cAMP concentrations. Maximal growth inhibitory doses of PGD2, PGE1 and PGB1 decrease [Ca+2]i, as measured by the fluorescence of Indo-1, from 320 +/- 5 nM to 172 +/- 20 nM, 161 +/- 12 nM, and 151 +/- 18 nM respectively. PGF2 alpha did not alter [Ca+2]i. Therefore, in contrast to the effects on cAMP, the decrease in [Ca+2]i was concordant with the inhibition of DNA synthesis. This suggests that PGs may inhibit proliferation through decreasing [Ca+2]i in the P815 mastocytoma.  相似文献   

11.
Testicular interstitial cells were utilized to study the effects of prostaglandins (PG) on in vitro testosterone production and to examine the role of cyclic adenosine-3',5'-monophosphate (cAMP) in this process. Testosterone production was assessed after 3 hour incubations while cAMP accumulation was examined after a 0.5 hour incubation period. Testosterone and cAMP were measured by radioimmunoassay. None of the PGs tested (PGA, PGA2, PGB1, PGE1, PGE2, PGF1alpha PGF2alpha) altered basal testosterone production when present in incubates at concentrations of 1.3 X 10(-8) M to 1.3 X 10(-4). However, at concentrations of 1.3 X 10(-4) M all of these PGs were capable of decreasing Luteinizing Hormone (LH; 100ng)-induced testosterone production. The inhibition of LH-induced testosterone production by the B, E and F series PGs was less pronounced than that for the A series. PGA1 and PGA2 exhibited 80% and 95% inhibition, respectively, at 1.3 X 10(4) M. The inhibitory action of 4 X 10(5) M PGA1 or PGA2 was evident within 30 minutes. Preincubation of interstitial cells with indomethacin (10(-5) or 10(-6) M) for 30 minutes did not alter subsequent basal or LH (100ng)-induced testosterone production. Accumulation of cAMP was stimulated by LH (10 microgram) or by PGs (1.3 X 10(-4) M PGA1, PGA2, PGB1, PGE1 or PGF2alpha). The PG-induced cAMP accumulation thus occurred at concentrations where LH-stimulated testosterone production was inhibited. Furthermore, PGA1 and PGA2 (1.3 X 10(-4) M) inhibited testosterone production induced by either 3-isobutyl-1-methyl xanthine (MIX; 10(-4) M or 10(-3) M) or dibutyryl cAMP (dbcAMP; 10(-4) M or 10(-3) M). These results indicate that PGs can block testosterone production by a direct effect on testicular interstitial cells and suggest that PGs exert their inhibitory action distal to stimulation of cAMP formation. PGs do not appear to play a role in the mechanism of LH action.  相似文献   

12.
Several prostaglandins inhibit the cAMP response to glucagon and beta-adrenergic stimulation in hepatocytes. To probe the mechanism of this inhibition, we have examined in primary hepatocyte cultures how pretreatment with pertussis toxin (islet-activating protein) influences the ability of the cells to respond to hormones and prostaglandins. Pertussis toxin augmented the effects of glucagon, epinephrine and isoproterenol, and also markedly enhanced the cAMP response to prostaglandin E1 (PGE1). Furthermore, whereas PGE1, PGE2, PGI2 and PGF2 alpha attenuated the cAMP responses to glucagon in control cultures, this inhibition was abolished in cells pretreated with pertussis toxin. A more detailed comparison was made of the effects of PGE1 and PGF2 alpha. In cells not treated with pertussis toxin, both these prostaglandins at high concentrations reduced the cAMP response to glucagon and isoproterenol by approximately 50%, but dose-effect curves showed that PGE1 was about 100-fold more potent as an inhibitor than PGF2 alpha. Pertussis toxin abolished the inhibitory effects of PGE1 and PGF2 alpha with almost identical time and dose requirements. The results obtained with PGE1, PGE2, PGI2 and PGF2 alpha suggest that prostaglandins of different series attenuate hormone-activable adenylate cyclase in hepatocytes through a common mechanism, dependent on the inhibitory GTP-binding protein.  相似文献   

13.
Ginea pig ear epidermal cells (keratinocytes) were established in primary cultures using trypsin, and treated in their proliferative phase of growth with prostaglandins E1, D1, F1 alpha, E2, D2, or F2 alpha. This phase is induced by the addition of retinoic acid during cell plating. Intracellular content of cAMP and cGMP was measured by radioimmunoassay at various times after treatment. Maximum stimulation of cAMP levels was observed with PGD2, smaller increases with PGE2 and relatively transient rises with PGF2 alpha which were of low significance, but confirm earlier data. Similar results were observed with PGD1, PGE1, and PGF1 alpha with smaller increases. The effects of D and E PGs were biphasic. Significant increases in cGMP were immediately observed with PGD2 and PGE2. With PGF2 alpha, maximum cGMP levels were noted after some delay. All PGs tested showed some effect in elevating cyclic nucleotides in keratinocytes. The most striking result was the increase in cAMP on PGD2 treatment.  相似文献   

14.
Effects of prostaglandins (PGs) on accumulation of cyclic AMP (cAMP) in the presence of a phosphodiesterase inhibitor were investigated in cells isolated from avian limb buds at various stages of development. Cells were responsive to PGE2 at the earliest stage investigated (stage 20-21) which was well in advance of specific cytodifferentiation of limb tissues. At three later stages (24-25; 26-28; 30-32), the responsiveness of cells isolated from the developing skeletal anlagen of the limb progressively increased coincident with the differentiation and maturation of the cartilage phenotype. Cells isolated from stage 26-28 cartilage rods were responsive also to prostacyclin (PGI2); however, the response produced was only about 50% of the response to an equivalent concentration of PGE2. Cells were not responsive to either PGF2 alpha or 6-keto PGF1 alpha, at concentrations of 30-33 micrograms/ml demonstrating a degree of specificity for PGE2 and PGI2. In the absence of the phosphodiesterase inhibitor, PGE2 increased cAMP accumulation two-fold over the controls and produced a concentration-dependent response between 0.3-30 micrograms/ml. The results demonstrate that PGs are capable of modulating cAMP levels of undifferentiated limb mesenchymal cells as well as embryonic cartilage cells and suggest a role for these compounds in limb chondrogenesis.  相似文献   

15.
Two experiments were performed to determine whether arginine vasotocin (AVT) stimulates synthesis of prostaglandins (PGs) in reptilian oviducts. Homogenized oviducal tissue from female Sceloporus jarrovi in early and late pregnancy were cultured with radiolabeled (14C) prostaglandin precursor, arachidonic acid (AA). In late pregnancy, oviducts exposed to AVT exhibited a greater conversion of AA to PGF2 alpha than did controls, whereas in early pregnancy there was no difference. The conversion of AA to other prostaglandins (PGA2, PGD2, PGE2, PGI2) was not influenced by AVT. The second experiment examined whether endogenous in vitro synthesis of PGF and PGE2 from intact, pregnant oviducts was stimulated by AVT (50 ng/ml; 100 ng/ml). Both doses of AVT induced a similar, significant rise in PGF concentrations within 30 min whereas no significant increase was noted in PGE2 concentrations until 90 min after treatment. Indomethacin pretreatment blocked synthesis of both PGF and PGE2 for 30 min following AVT treatment. These data indicate that AVT induces a highly specific rise in the synthesis of PGF from the oviduct of female S. jarrovi in late pregnancy. Furthermore, the prostaglandin-stimulating effect of AVT in reptiles appears homologous with the effect of oxytocin in mammals and AVT in birds. We hypothesize that this interaction is an evolutionarily conserved relationship found in all amniote vertebrates.  相似文献   

16.
Human corpora lutea of defined ages were excised at operation, cut into pieces and incubated in the presence of HCG, PGF2 alpha and PGE2 alone or in combination. Following incubation cAMP formation in tissue and medium was determined. HCG-stimulated tissue cAMP content was most pronounced at a corpus luteum age of 7-10 days after ovulation. This stimulation was antagonized by PGF2 alpha in corpora lutea older than 6 days. PGE2 stimulated cAMP formation per se and this effect was more pronounced when HCG and PGE2 were combined. A possible role for PGF2 alpha as a luteolytic substance in the human is suggested.  相似文献   

17.
We have developed a method for measuring prostaglandins (PGs) in rat gastric mucosa by high-performance liquid chromatography (HPLC). The levels of PGD2 and 6-keto-PGF1 alpha, a degradation product of PGI2, were five times higher than those of PGE2 and PGF2 alpha. Oral administration of indomethacin (6 mg/kg body weight) completely abolished the synthesis of all detectable PGs uniformly. These results suggest that endogenous PGs, especially PGD2 and I2, play some roles in the function of the gastric mucosa.  相似文献   

18.
Treatment of intact human platelets with the tumour-promoting phorbol ester, phorbol 12-myristate 13-acetate (PMA), specifically inhibited PGD2-induced cyclic AMP formation without affecting the regulation of cyclic AMP metabolism by PGI2, PGE1, 6-keto-PGE1, adenosine or adrenaline. This action of PMA was: (i) concentration-dependent; (ii) not mediated by evoked formation or release of endogenous regulators of adenylate cyclase activity (thromboxane A2 or ADP); (iii) mimicked by 1,2-dioctanoylglycerol (DiC8) but not by 4 alpha-phorbol 12,13-didecanoate (which does not activate protein kinase C); (iv) attenuated by Staurosporine. These results indicate that activation of protein kinase C in platelets may provide a regulatory mechanism to abrogate the effects of the endogenous adenylate cyclase stimulant PGD2 without compromising the effects of exogenous stimulants of adenylate cyclase (PGI2, 6-keto-PGE1, adenosine).  相似文献   

19.
The effect of prostaglandins (PG) on free cytosolic calcium concentrations [( Ca2+]i) and cAMP levels was studied in the osteosarcoma cell line UMR-106. PGF2 alpha and PGE2, but not 6-keto-PGF1 alpha, induced an increase in [Ca2+]i which was mainly due to Ca2+ release from intracellular stores. The EC50 for PGF2 alpha was approximately 7 nM, whereas that for PGE2 was approximately 1.8 microM. Maximal doses of PGF2 alpha increased [Ca2+]i to higher levels than PGE2. Both active PGs also stimulated phosphatidylinositol turnover in UMR-106 cells. The effects of the two PGs were independent of each other and appear to involve separate receptors for each PG. PGE2 was a very potent stimulator of cAMP production and increased cAMP by approximately 80-fold with an EC50 of 0.073 microM. PGF2 alpha was a very poor stimulator of cAMP production; 25 microM PGF2 alpha increased cAMP by 5-fold. The increase in cellular cAMP levels activated a plasma membrane Ca2+ channel which resulted in a secondary, slow increase in [Ca2+]i. High concentrations of both PGs (10-50 microM) inhibited this channel independent of their effect on cAMP levels. Pretreatment of the cells with the phorbol ester 12-O-tetradecanoylphorbol-13-acetate inhibited the PG-mediated increase in phosphatidylinositol turnover and the increase in [Ca2+]i. However, pretreatment with 12-O-tetradecanoyl-13-acetate had no effect on the PGE2-mediated increase in cAMP. The latter finding, together with the dose responses for PGE2-mediated increases in [Ca2+]i and cAMP levels, suggests the presence of two subclasses of PGE2 receptors: one coupled to adenylate cyclase and the other to phospholipase C. With respect to osteoblast function, the cAMP signaling system is antiproliferative, whereas the Ca2+ messenger system, although having no proliferative effect by itself, tempers cAMP's antiproliferative effect.  相似文献   

20.
Rank order of agonist potency for activation of adenylate cyclase by the naturally occurring prostanoids PGE2, PGF2 alpha, PGD2, the stable PGI2 analogue iloprost, and the TXA2 mimetic U 46619, provides evidence for the existence of a distinct PGE-receptor on guinea-pig duodenal enterocytes. The PGE-receptor is likely to be of the EP2-subtype since the specific EP2-agonist 11-deoxy-PGE1 stimulated adenylate cyclase activity with a 20-fold higher potency than the EP1-agonist 17-phenyltrinor-PGE2 and the EP3-agonists MB 28767 and GR 63799. In addition, sulprostone (acting on both EP1- and EP3-receptors) was ineffective. Since the specific EP1-antagonist SC 19220 did not inhibit PGE2-stimulated adenylate cyclase activity, the involvement of EP1-receptors could be further excluded. The synthetic prostaglandin E-analogues misoprostol and nocloprost stimulated adenylate cyclase almost identically, though they were about 10-fold less potent than the natural PGE2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号