首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Changes in chicken embryo thymus after partial decerebration (including the hypophysis) and after hypophyseal or thymic allograft were investigated. Chicken embryos were partially decerebrated at 36–40 h of incubation and on day 12 received a hypophysis or a thymus allograft from 18-day-old donor embryos. The thymuses of normal, sham-operated and partially decerebrate embryos were collected on day 12 and 18. The thymuses of the grafted embryos were collected on day 18. The samples were examined with histological method and tested for the anti-PCNA and anti-CD3 immune-reactions. After partial decerebration, the thymic cortical and medullary compartments diminished markedly in size. Anti-PCNA and anti-CD3 revealed a reduced immunereaction, verified also by statistical analysis. In hypophyseal or grafted embryos, the thymic morphological compartments improved, the anti-PCNA and anti-CD3 immune-reactions recovered much better after the thymic graft, probably due to the thymic growth factors and also by an emigration of thymocytes from the same grafted thymus.Key words: hypophysectomy, hypophyseal and thymic allograft, chicken embryonal thymus, PCNA, CD3 markers.  相似文献   

2.
Changes in chicken embryo thymus after partial decerebration (including the hypophysis) and hypophyseal allograft were investigated. Chicken embryos were partially decerebrated at 36-40 hr of incubation and on day 12 received a hypophyseal allograft from 18-day-old donor embryos. The embryonic thymuses were collected on day 18 and examined with histological methods, tested for the anti-thymostimulin-like immune-reaction, and for histoenzymatic activities and compared with normal and sham-operated embryos at the same age. After partial decerebration, the thymic cortical and medullary compartments diminished markedly in size. Anti-thymostimulin, succinic dehydrogenase and ATPase enzymatic activities tested, yielded negative reactions. In partially decerebrated hypophyseal allografted embryos, the same thymic compartments improved and anti-thymostimulin-like immune-reaction and enzymatic activities partially recovered. These findings confirmed the key role of hypophysis in thymic ontogenic development and provided new information in metabolic enzymatic pathways and synthesis of a thymostimulin-like substance in the thymus.  相似文献   

3.
Parvalbumins are high-affinity Ca(2+)-binding proteins characterized by an EF-hand structure. Muscles of lower vertebrates contain up to five isoparvalbumins whereas higher vertebrates were believed to contain only one isoform per species. Recently Brewer et al. [Brewer, J.M., Wunderlich, J.K., & Ragland, W. (1990) Biochimie 72, 653-660] purified and sequenced a protein that they named avian thymic hormone, from chicken thymus. This protein, promoting immunological maturation of bone marrow cells in culture, was identified as a parvalbumin. The amino acid composition of this thymic parvalbumin was, however, considerably different from those of chicken muscle parvalbumin [Strehler, E.E., Eppenberger, H.M., & Heizman, C.W. (1977) FEBS Lett. 75, 127-133], suggesting the existence of two tissue-specific parvalbumins in chicken. We purified parvalbumin from chicken muscle, determined its complete amino acid sequence by tandem mass spectrometry, and showed that this protein is rather homologous to muscle parvalbumins from other species but different in 45 positions from the thymic parvalbumin. We discuss the possibility that a parvalbumin gene family might exist in higher vertebrates, expressed in a tissue-specific and developmentally regulated manner.  相似文献   

4.
The restorative effect of thymosin fraction 5 (TF5) on the thymus of gamma-irradiated mice was examined. Four different mouse strains were used in this study since earlier work determined that the degree of response to TF5 is strain dependent. The responsiveness to comitogenic effect of interleukin 1 (IL-1) was used to measure the rate of recovery of immunocompetent cells in the thymus, since only more mature PNA-, Lyt-1+-2- medullary cells respond to this monokine. Contrary to several earlier reports that radioresistant cells repopulating the thymus within the first 10 days after irradiation are mature, corticosteroid resistant, immunocompetent cells, the thymic cells from irradiated mice in all strains used had greatly reduced responses to IL-1. Daily intraperitoneal injections of TF5 increased significantly the responses of thymic cells to IL-1 in 10- to 13-weeks-old C57Bl/KsJ, C57Bl/6, C3H/HeJ, and DBA/1 mice. Older mice, 5 months or more in age, of DBA/1 strain did not respond to treatment with TF5. However, C3H/HeJ mice of the same age were highly responsive. In conclusion, (1) cells repopulating the thymus within 12 days after irradiation contain lower than normal fraction of mature IL-1 responsive cells, (2) thymic hormones increase the rate of recovery of immunocompetent cells in the thymus, and (3) the effect of thymic hormones is strain and age dependent.  相似文献   

5.
The patterns of development of T cells from the very early stem cells that settle in the embryonic thymus have been studied. For this purpose, mouse embryonic thymuses (14 days) depleted of thymocytes were reconstituted with hemopoietic stem cells from fetal liver (FL) and yolk sac (YS) and T-cell development was followed in vitro in organ culture. It was found that cells derived from FL and YS of 10- to 14-day-old embryos were capable of reconstituting depleted thymic explants and exhibiting membrane markers in a pattern similar to that of thymocytes developing in intact thymic explants. Furthermore, these cells responded to concanavalin A in proliferative and cytotoxic assays as measured by limiting-dilution analysis. Thus, lymphohemopoietic stem cells emerging in the embryo prior to thymus lymphoid development are capable of differentiation in the thymus microenvironment into T cells, identified by phenotypic markers and functions that are characteristic of cells developing in the intact embryonic thymus.  相似文献   

6.
The pulse technique, using high specific activity 3H-TdR to selectively kill cells in cell cycle, was applied to the thymic anlagen of chick embryos. With optimal specific and total 3H-TdR activities and pulse times of 2–4 hr the subsequent lymphoid development in organ culture of the thymic anlagen of 10-day-old chick embryos could be almost completely inhibited. The most important effect of the 3H-TdR was on the lymphoid precursor cells of the anlagen. The thymic epithelium appeared more resistant to 3H-TdR and allowed a lymphoid development of pulsed anlagen grafted to the chorioallantoic membrane of chick embryos when new lymphoid precursor cells were provided. The lymphoid precursor cells of the thymic anlagen of 10-day-old chick embryos therefore appeared to be in cell cycle with short generation time. The thymic anlagen of 8-, 9- and 10-day-old but not 7-day-old embryos showed a lymphoid development in organ culture. They did not differ with respect to the sensitivity to hot pulses of 3H-TdR. Thus no evidence of a lag in the onset of lymphoid precursor cell proliferation during the development of the early embryonic chick thymus was noted.  相似文献   

7.
The thymus plays a crucial role in the development of T lymphocytes by providing an inductive microenvironment in which committed progenitors undergo proliferation, T-cell receptor gene rearrangements and thymocyte differentiate into mature T cells. The thymus microenvironment forms a complex network of interaction that comprises non lymphoid cells (e.g., thymic epithelial cells, TEC), cytokines, chemokines, extracellular matrix elements (ECM), matrix metalloproteinases and other soluble proteins. The thymic epithelial meshwork is the major component of the thymic microenvironment, both morphologically and phenotypically limiting heterogeneous regions in thymic lobules and fulfilling an important role during specific stages of T-cell maturation. The process starts when bone marrow-derived lymphocyte precursors arrive at the outer cortical region of the thymic gland and begin to mature into functional T lymphocytes that will finally exit the thymus and populate the peripheral lymphoid organs. During their journey inside the thymus, thymocytes must interact with stromal cells (and their soluble products) and extracellular matrix proteins to receive appropriate signals for survival, proliferation and differentiation. The crucial components of the thymus microenvironment, and their complex interactions during the T-cell maturation process are summarized here with the objective of contributing to a better understanding of the function of the thymus, as well as assisting in the search for new therapeutic approaches to improve the immune response in various pathological conditions.Key words: thymus, T-cell maturation, thymic microenvironment, thymocyte differantiation, chemokines, extracellular matrix, thymic nurse cells, metalloproteinases  相似文献   

8.
The embryonic germ layer derivation of thymic lymphocytes in the leopard frog (Rana pipiens) was invesigated. The ectoderm and mesoderm—but not the endoderm—from the developing gill bud was reciprocally and orthotopically transplanted between diploid and triploid chromosomally marked 72-hr old embryos. The lymphocytes which subsequently developed in the thymus were of host ploidy. Thus, the head mesenchyme adjacent to the thymic anlagen does not appear to be the source of the stem cells from which thymocytes differentiate. Rather, the stem cells can he localized in the endoderm of the pharyngeal pouch which initially gives rise to the thymic epithelium. These findings suggest either the endodermal origin of thymocytes or the very early migration of stem cells into the thymus anlagen prior to any thymus histogenesis.  相似文献   

9.
10.
Growth hormone (GH) and other neuroendocrine mediators have been implicated previously in T cell development. We therefore examined thymic development in DW/J dwarf mice. DW/J mice lack acidophilic anterior pituitary cells and consequently are totally deficient in the production of GH, as well as other neuroendocrine hormones. DW/J dwarf mice had greatly hypoplastic thymi that continued to decrease in size as the mice aged. Characterization of the different T cell subpopulations within the thymi of dwarf mice indicated a deficiency in CD4+/CD8+ double-positive thymocytes. This deficiency of progenitor cells became more complete as the mice aged culminating in the total disappearance of this subpopulation in some dwarf mice > 3 mo of age. Analysis of the lymph nodes indicated that a population of double-positive (CD4/CD8) T cells appeared in some mice concurrent with the disappearance of double-positive cells in the thymus suggesting that these thymocytes may have migrated to the periphery. However, peripheral T cells from dwarf mice did exhibit Ag-specific responses indicating that these mice have functional T cells. Treatment of the mice with recombinant human GH, which binds both murine growth hormone receptors and murine prolactin receptors, or ovine GH, which binds murine growth hormone receptors but not murine prolactin receptors, resulted in an increase in thymic size and the reappearance of the CD4+/CD8+ double-positive cells within the thymus. Additionally, after GH treatment, the double-positive cells disappeared from the lymph nodes. The thymi of mice treated with GH failed to attain normal size but did develop a normal distribution of T cell progenitors. Thus, GH exerts significant thymopoietic effects in vivo. Neuroendocrine hormones may be important for normal T cell differentiation to occur within the murine thymus.  相似文献   

11.
The thymus exhibits a pattern of aging oriented toward a physiological involution. The structural changes start with a steady decrease of thymocytes, whereas no major variations occur in the number of thymic epithelial cells (TEC). The data concerning the role of hormones and neuropeptides in thymic involution are equivocal. We recently demonstrated the presence of somatostatin (SS) and three different SS receptor (SSR) subtypes in the human thymus. TEC selectively expressed SSR subtype 1 (sst(1)) and sst(2A). In the present study we investigated whether SSR number is age related in the thymus. Binding of the sst(2)-preferring ligand (125)I-Tyr(3)-octreotide was evaluated in a large series of normal human thymuses of different age by SSR autoradiography and ligand binding on tissue homogenates. The score at autoradiography and the number of SSR at membrane homogenate binding (B(max)) were inversely correlated with the thymus age (r = -0.84, P < 0.001; r = -0.82, P < 0.001, respectively). The autoradiographic score was positively correlated with the B(max) values (r = 0.74, P < 0.001). Because the TEC number in the age range considered remains unchanged, the decrease of octreotide binding sites might be due to a reduction of sst(2A) receptor number on TEC. The age-related expression of a receptor involved mainly in controlling secretive processes is in line with the evidence that the major changes occurring in TEC with aging are related to their capabilities in producing thymic hormones. In conclusion, SS and SSR might play a role in the involution of the human thymus. These findings underline the links between the neuroendocrine and immune systems and support the concept that neuropeptides participate in development of cellular immunity in humans.  相似文献   

12.
The thymic stroma plays a critical role in the generation of T lymphocytes by direct cell-to-cell contacts as well as by secreting growth factors or hormones. The thymic epithelial cells, responsible for thymic hormone secretion, include morphologically and antigenically distinct subpopulations that may exert different roles in thymocyte maturation. The recent development of thymic epithelial cell lines provided an interesting model for studying thymic epithelial influences on T cell differentiation. Treating mouse thymocytes by supernatants from one of TEC line (IT-76M1), we observed an induction of thymocyte proliferation and an increase in the percentages of CD4-/CD8- thymocytes. This proliferation was largely inhibited when thymocytes were incubated with IT-76M1 supernatants together with an anti-thymulin monoclonal antibody, but could be enhanced by pretreating growing epithelial cells by triiodothyronine. We suggest that among the target cells for thymulin within the thymus, some putative precursors of early phenotype might be included.  相似文献   

13.
The hypothalamic peptide growth hormone-releasing factor (GRF) regulates the secretion and production of growth hormone from the anterior pituitary (M. C. Gelato and G. R. Merriam, Annu. Rev. Physiol. 48:569-591). To study GRF gene regulation, transgenic mice were generated that harbor the human GRF promoter fused to the coding sequences from the simian virus 40 early region. These mice had normal hypothalamic functions but unexpectedly suffered from severe thymic hyperplasia. Immunohistochemical analysis revealed that large T antigen was expressed in the thymic epithelial cells. These cells have endocrine properties and are known to produce thymic hormones [corrected]. The thymic hyperplasia was the apparent consequence of inappropriate production of T-cell maturation factors by epithelial cells and could involve increased self renewal of apparently normal T stem cells in the thymus.  相似文献   

14.
Summary The epithelial framework of the human thymus has been studied in parallel by immunohistochemical methods at the light- and electron-microscopic levels. Different monoclonal antibodies were used, reacting with components of the major histocompatibility complex, keratins, thymic hormones and other as yet antigenically undefined substances, which show specific immunoreactivities with human thymus epithelial cells.The electron-microscopic immunocytochemical observations clearly confirm microtopographical differences of epithelial cells not only between the thymic cortex and medulla, but also within the cortex itself. At least four subtypes of epithelial cells could be distinguished: 1) the cortical surface epithelium; 2) the main cortical epithelial cells and thymic nurse cells; 3) the medullary epithelial cells; and 4) the epithelial cells of Hassall's corpuscles.The various epithelial cell types of the thymus display several common features like tonofilaments, desmosomes and some surface antigens as demonstrated by anti-KiM3. In other respects, however, they differ from each other. The cortical subtype of thymic epithelial cells including the thymic nurse cells shows a distinct pattern of surface antigens reacting positively with antibodies against HLA-DR (anti-HLA-DR) and anti-21A62E. Electron-microscopic immunocytochemistry with these antibodies clearly reveals a surface labeling and a narrow contact to cortical thymocytes particularly in the peripheral cortical regions. An alternative staining pattern is realized by antibodies to some antigens associated with other subtypes of thymic epithelial cells. Medullary epithelial cells as well as the cortical surface epithelium react likewise positively with antibodies to special surface antigens (anti-Ep-1), to special epitopes of cytokeratin (anti-IV/82), and to thymic hormones (anti-FTS). The functional significance of distinct microenvironments within the thymus provided by different epithelial cells is discussed in view of the maturation of T-precursor cells.Glossary of Abbreviations Anti-X anti-X antibody - APUD-cells amine precursor uptake and decarboxylation (gastro-intestinal endocrine cells) - DAB diamino-benzidine - DMSO dimethyl sulfoxide - FTS facteur thymique sérique - HLA-A, B, C human leucocyte antigen, A, B, C-region related - HLA-DR human leucocyte antigen, D-region related - IDC interdigitating cell - MHC major histocompatibility gene complex - PBS phosphate-buffered saline - TNC thymic nurse cell This investigation was supported by grants from the Deutsche Forschungsgemeinschaft, and its Sonderforschungsbereich 111Fellow of the Alexander von Humbold-Stiftung, Institute of Pathology, University of Würzburg, Federal Republic of GermanyThe authors appreciate the contribution of human thymus tissue from Professor Alexander Bernhard, Abteilung kardiovasculäre Chirurgie der Universität Kiel; the gift of monoclonal antibodies from Dr. M.J.D. Anderson, Dr. M. Dardenne and Dr. H.J. Radzun; and the excellent technical assistence of Mrs. O.M. Bracker, Mrs. H. Hansen, Mrs. R. Köpke, Mrs. M. v. Kolszynski, Mrs. J. Quitzau, Mrs. H. Siebke, and Mrs. H. Waluk  相似文献   

15.
Thyroid-thymus interactions during development and aging   总被引:2,自引:0,他引:2  
A good body of experimental and clinical evidences suggests that bidirectional interactions do exist between the neuroendocrine system and the thymus activity. In particular, thymic endocrine activity seems to be strongly influenced by neuroendocrine signals. In this context, studies performed in hyper- and hypothyroid subjects and in the low triiodothyronine (T3) syndrome, which affects premature infants, have clearly shown that thyroid hormones and in particular T3 physiologically modulate thymic peptide secretion. In vitro experiments, with thymic whole-organ cultures, have demonstrated that thyroid hormones exert their action on the epithelial cells of the thymus deputed to synthesize and secrete thymic peptides and that such an effect does not seem to depend on the known permissive action of thyroid hormones.  相似文献   

16.
Adhesion and migration of mouse fetal liver (FL) cells to the thymus were investigated using cells from green fluorescent protein transgenic (GFP+) mice. FL cells from GFP+ embryos at 12 gestational days (E12) of mice were incubated with 2'-deoxyguanosine-treated fetal thymus lobe (from E14) by thymic repopulation (hanging drop) culture methods. GFP+ cells were observed in the thymus lobe at the end of the repopulation culture period. A large part of the infiltrated cells expressed CD44 until day 2 of culture on a permeable membrane, then lost the expression. CD25 expression was observed from day 1 to day 4. Around day 8, GFP+ cells became both CD4+ and CD8+. The results support the early observation of the sequential expression of CD44, CD25, and CD4/8 during the early stages of thymocyte development. When anti-CD44 mAb was added at the beginning of the repopulation culture period, GFP+ FL cells adhered to the surface of the thymus lobe but did not migrate into the thymus. Pretreatment of the thymus with hyaluronidase or hyaluronate produced results similar to the results of anti-CD44 treatment. On the other hand, the addition of anti-integrin alpha4 mAb inhibited adhesion to the thymus, and almost no GFP+ cells were seen on the surface of the thymus lobe. The data suggest that integrin alpha4 and CD44 play different roles, i.e., integrin alpha4 is required for the adhesion of FL cells to the thymus lobe and CD44 is required for the migration of the cells into the thymus.  相似文献   

17.
The influence of adrenals and gonads on the intrathymic production and the circulating level of thymulin was evaluated in young adult mice. Adrenalectomy (Adx) and gonadectomy (Cx) induce a temporary decrease of thymulin serum level. One simultaneously notes, as a compensatory phenomenon, an increase in the thymic content of the hormone-producing cells. The decrease of serum thymulin levels after Adx and Cx is at least partially due to the appearance of low m.w. thymulin-inhibitory molecules. The fact that thymectomy prevents the appearance of these inhibitors suggests that the effects of Adx and Cx could be explained by a negative control by sex hormones of the synthesis or activity of thymulin inhibitors produced or controlled by the thymus. Specific hormone replacement therapy of castrated/adrenalectomized animals normalized thymulin serum level and thymic content. Such correction was also spontaneously observed after 4 mo, suggesting that other mechanisms (e.g., an influence of the hypothalamus-hypophysis axis) might be involved in the endocrine control of thymic hormone secretion.  相似文献   

18.
Reciprocal interaction between bone marrow derived lymphoid precursor cells and the thymic environment leads, through a series of developmental events, to the generation of a diverse repertoire of functional T-cells. During thymopoiesis fetal liver or bone marrow derived precursors enter the thymus and develop into mature T-cells in response to cues derived from the environment. The thymic micro-environment provides signals to the lymphoid cells as a result of cell-cell interactions, locally produced cytokines, chemokines and hormones. Developing thymocytes, in turn, influence the thymic stroma to form a supportive micro-environment. Stage-specific signals provide an exquisite balance between cellular proliferation, differentiation, cell survival and death. The result of this intricate signaling concert is the production of the requisite numbers of well educated self-restricted T-cells. Mature T-cells are exported to the peripheral lymphoid organs, where, upon encountering antigen, naive T-cells further mature into effector cells that provide cytolytic or T helper functions. While there are extra-thymic locations for T-cell development, majority of T-cells in peripheral lymphoid organs are thymus derived. In mice and humans, T-cells develop throughout life although the efficacy declines significantly with age. It is not clear if this is a direct consequence of deterioration of the thymic environment by involution, a paucity of bone marrow derived precursors, or both. However, new data clearly shows that the involuted adult thymus retains the ability to generate new T-cells. Recent advances have revealed many components of an exquisitely balanced signaling cascades that regulate cell fate, cellular proliferation and cell death in the thymus. This article describes fundamental features of developing thymocytes and the thymic micro-environment as they relate to the signaling pathways.  相似文献   

19.
Thymus development is a complicated process that includes highly dynamic morphological changes and reciprocal tissue interactions between endoderm-derived epithelial cells of the anterior foregut and neural crest-derived mesenchymal cells. We generated and characterized a Tbx1-AmCyan1 reporter transgenic mouse to visualize thymus precursor cells during early embryonic development. In transgenic embryos, AmCyan1 fluorescence was specifically detected in the endoderm of the developing 3rd and 4th pharyngeal pouches and later in thymus epithelium until E14.5. Cells expressing AmCyan1 that were isolated based on AmCyan1 fluorescence expressed endodermal, thymic, and parathyroid markers, but they did not express neural crest or endothelial markers; these findings indicated that this transgenic mouse strain could be used to collect thymic or parathyroid precursor cells or both. We also showed that in nude mice, which exhibit defects in thymus development, the thymus precursors were clearly labeled with AmCyan1. In summary, these AmCyan1-fluorescent transgenic mice are useful for investigating early thymus development.  相似文献   

20.
We have previously shown that the generation of an NK1.1+TCRalphabeta+ (NK-T) cell population is severely impaired in an alymphoplasia mutant (aly/aly) mouse strain and the defect resides in the thymic environment. In the present study, to elucidate the thymic stromal component(s) that affects the development of NK-T cells, radiation bone marrow chimeras were established with the aly/aly mouse as a donor and either the beta2 microglobulin knockout (beta2m-/-) or the CD1d1-/- mouse that also lacks the NK-T cell population as a recipient. A normal population of NK-T cells with a typical NK-T phenotype and functions was detected in both the thymus and the spleen of these chimeras. These findings indicated that a radiation-resistant CD1(-) component of the thymus supported generation of functional NK-T cells from aly/aly precursors. Furthermore, transfer of an intact medullary thymic epithelial cell line into aly/aly thymus significantly induced the generation of NK-T cells in the thymus. These findings suggest that CD1 molecules of bone marrow-derived cells and the medullary epithelial cells acted in concert in the generation of the NK-T cell population and that a function(s) of the medullary thymic epithelial cells other than direct presentation of CD1 molecules to the NK-T precursors is indispensable for the development of NK-T cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号