首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have used an alkaline phosphatase protection assay to investigate the interaction of the trp repressor with its operator sequence. The assay is based on the principle that the trp repressor will protect a terminally 5'-32P-labeled operator DNA fragment from attack by alkaline phosphatase. The optimal oligonucleotide for investigating the trp repressor/operator interaction extends two base pairs from each end of the genetically defined target sequence predicted by in vivo studies [Bass et al. (1987) Genes Dev. 1, 565-572]. The assay works well over a 10,000-fold range of protein/DNA affinity and is used to show that the corepressor, L-tryptophan, causes the liganded repressor to bind a 20 base pair trp operator duplex 6400 times more strongly than the unliganded aporepressor. The affinity of the trp repressor for operators containing symmetrical mutations was interpreted in terms of the trp repressor/operator crystal structure as follows: (1) Direct hydrogen bonds with the functional groups of G-9 of the trp operator and the side chain of Arg 69 of the trp repressor contribute to DNA-binding specificity. (2) G-6 of the trp operator is critical for DNA-binding specificity probably because of the two water-mediated hydrogen bonds between its functional groups and the N-terminus of the trp repressor's E-helix. (3) Sequence-dependent aspects of the trp operator's conformation help stabilize the trp repressor/operator complex.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
3.
4.
5.
O'Brien PJ  Herschlag D 《Biochemistry》2001,40(19):5691-5699
Escherichia coli alkaline phosphatase (AP) is a proficient phosphomonoesterase with two Zn(2+) ions in its active site. Sequence homology suggests a distant evolutionary relationship between AP and alkaline phosphodiesterase/nucleotide pyrophosphatase, with conservation of the catalytic metal ions. Furthermore, many other phosphodiesterases, although not evolutionarily related, have a similar active site configuration of divalent metal ions in their active sites. These observations led us to test whether AP could also catalyze the hydrolysis of phosphate diesters. The results described herein demonstrate that AP does have phosphodiesterase activity: the phosphatase and phosphodiesterase activities copurify over several steps; inorganic phosphate, a strong competitive inhibitor of AP, inhibits the phosphodiesterase and phosphatase activities with the same inhibition constant; a point mutation that weakens phosphate binding to AP correspondingly weakens phosphate inhibition of the phosphodiesterase activity; and mutation of active site residues substantially reduces both the mono- and diesterase activities. AP accelerates the rate of phosphate diester hydrolysis by 10(11)-fold relative to the rate of the uncatalyzed reaction [(k(cat)/K(m))/k(w)]. Although this rate enhancement is substantial, it is at least 10(6)-fold less than the rate enhancement for AP-catalyzed phosphate monoester hydrolysis. Mutational analysis suggests that common active site features contribute to hydrolysis of both phosphate monoesters and phosphate diesters. However, mutation of the active site arginine to serine, R166S, decreases the monoesterase activity but not the diesterase activity, suggesting that the interaction of this arginine with the nonbridging oxygen(s) of the phosphate monoester substrate provides a substantial amount of the preferential hydrolysis of phosphate monoesters. The observation of phosphodiesterase activity extends the previous observation that AP has a low level of sulfatase activity, further establishing the functional interrelationships among the sulfatases, phosphatases, and phosphodiesterases within the evolutionarily related AP superfamily. The catalytic promiscuity of AP could have facilitated divergent evolution via gene duplication by providing a selective advantage upon which natural selection could have acted.  相似文献   

6.
7.
8.
9.
10.
The kinetics of alkaline phosphatase   总被引:1,自引:0,他引:1  
  相似文献   

11.
1. Reduction of a 19s immunoglobulin M with 3mm-mercaptoethanol or 0.05-0.5mm-dithiothreitol followed by alkylation gave sedimentation patterns indicating products compatible with structures consisting of one, two, three, four and five 7s sub-units. This supports the concept of a five-sub-unit structure for immunoglobulin M. 2. Reduction with 0.125mm-dithiothreitol or 20mm-cysteine produced 7s sub-units that could not be dissociated into chains in m-propionic acid. 3. By labelling (with iodo[2-(14)C]acetic acid) the thiol groups liberated during reduction with 0.125mm-dithiothreitol, it was possible to identify the tryptic peptides involved in the disulphide bridges that link the 7s sub-units together (inter-sub-unit bridges). 4. By further reducing and labelling (with iodo[2-(14)C]acetic acid) the 7s sub-units produced by 0.125mm-dithiothreitol, it was possible to identify tryptic peptides derived from intra-sub-unit bridges. 5. Sub-units produced by reduction with 20mm-cysteine proved to be unsuitable for distinguishing between inter-sub-unit bridges and intra-sub-unit bridges. 6. The possible arrangement of the interchain disulphide bridges was deduced.  相似文献   

12.
13.
14.
15.
16.
Alkaline phosphatase is a commonly requested enzyme test in clinical chemistry. However, the enzyme is not particularly substrate specific, which has led to a proliferation of methods for its analysis. It can exhibit a variable instability effect depending on the techniques required for its storage or analysis. Methods can also be highly dependent on sample isoenzyme distribution and reagent purity, leading to problems in the quality control of its analysis and in the comparison of results obtained from different methods. Alkaline phosphatase is not tissue specific and this may on occasion lead to uncertainty in the interpretation of its measured activity in blood serum. In recent years there has been a number of attempts to standardize methodology for this and other enzymes. Perhaps an alternative approach to the measurement of alkaline phosphatase activity will alleviate some of the problems encountered.  相似文献   

17.
W E Hoffmann  J L Dorner  H Morris 《Enzyme》1983,30(4):269-272
Two isoenzymes of alkaline phosphatase from horse kidney were identified by cellulose acetate electrophoresis. Horse kidney alkaline phosphatase was similar to horse intestinal alkaline phosphatase, in regard to both antigenicity and response to levamisole inhibition, but different from horse liver alkaline phosphatase. This study suggests that horse kidney alkaline phosphatase is an expression of the intestinal gene locus and not the hepatic gene locus.  相似文献   

18.
The alkaline phosphatase from KB cells was purified, characterized, and compared to placental alkaline phosphatase, which it resembles immunologically. Two nonidentical nonomeric subunits of the KB phosphatase were found. The two subunits, which have apparent molecular weights of 64,000 and 72,000, can be separated on polyacrylamide gels containing sodium dodecyl sulfate. The Mr = 64,000 KB subunit appears to be identical in protein structure to the monomer of placental alkaline phosphatase. The Mr = 72,000 KB subunit, while differing in the NH2-terminal amino acid, appears also to be very similar to the placental alkaline phosphatase monomer. Both KB phosphatase subunits bind (32P)phosphate, and bind to Sepharose-bound anti-placental alkaline phosphatase. Native KB phosphatase is identical to the placental isozyme in isoelectric point, pH optimum, and inhibition by amino acids, and has a very similar peptide map. The data presented support the hypothesis that the Mr = 64,000 KB phosphatase subunit may the the same gene product as the monomer of placental alkaline phosphatase. This paper strengthens the evidence that the gene for this fetal protein, normally repressed in all cells but placenta, is derepressed in the KB cell line. In addition, this paper presents the first structural evidence that there are two different subunit proteins comprising the placental-like alkaline phosphatase from a human tumor cell line.  相似文献   

19.
Human placental and germ cell alkaline phosphatases (PLAP and GCAP, respectively), are characterized by their differential sensitivities to inhibition by L-leucine, EDTA, and heat. Yet, they differ by only 7 amino acids at positions 15, 67, 68, 84, 241, 254, and 429 within their respective 484 residues. To determine the structural basis and the amino acid(s) involved in these physicochemical differences, we constructed three GCAP mutants by site-directed mutagenesis and six GCAP/PLAP chimeras and then expressed these alkaline phosphatase mutants in COS-1 cells. We report that the differential reactivity of PLAP and GCAP depends critically on a single amino acid at position 429. GCAP with Gly-429 is strongly inhibited by L-leucine, EDTA, and heat, whereas PLAP with Glu-429 is resistant. By substituting Gly-429 of GCAP with a series of amino acids, we demonstrate that the relative sensitivities of these mutants to L-leucine, EDTA, and heat inhibition are, in general, parallel. Mutants in the order of resistance to these treatments are: Glu (most resistant), Asp/Ile/Leu, Gln/Val/Lys, Ser/His, and Arg/Thr/Met/Cys/Phe/Trp/Tyr/Pro/Asn/Ala/Gly (least resistant). However, the Ser-429 and His-429 mutants were more resistant to EDTA and heat inhibition than the wild-type GCAP, but were equally sensitive to L-leucine inhibition. Structural analysis of mammalian alkaline phosphatase modeled on the refined crystal structure of Escherichia coli alkaline phosphatase indicates that the negative charge of Glu-429 of PLAP, which simultaneously stabilizes the protein as a whole and the metal binding specifically, probably acts through interactions with the metal ligand His-320 (His-331 in E. coli alkaline phosphatase). Replacement of codon 429 with Gly in GCAP leads to destabilization and loosening of the metal binding. The data suggest that the natural binding site for L-leucine may be near position 429, with the amino and carboxyl groups of L-leucine interacting with bound phosphate and His-432 (His-412 in E. coli alkaline phosphatase), respectively.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号