首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
The Ci-Dll-B gene is an early regulator of ectodermal development in the ascidian Ciona intestinalis (Imai et al., 2006). Ci-Dll-B is located in a convergently transcribed bigene cluster with a tandem duplicate, Ci-Dll-A. This clustered genomic arrangement is the same as those of the homologous vertebrate Dlx genes, which are also arranged in convergently transcribed bigene clusters. Sequence analysis of the C. intestinalis Dll-A-B cluster reveals a 378 bp region upstream of Ci-Dll-B, termed B1, which is highly conserved with the corresponding region from the congener Ciona savignyi. The B1 element is necessary and sufficient to drive expression of a lacZ reporter gene in a pattern mimicking the endogenous expression of Ci-Dll-B at gastrula stages. This expression pattern which is specific to the entire animal hemisphere is activated preferentially in posterior, or b-lineage, cells by a central portion of B1. Expression in anterior, or a-lineage cells, can be activated by this central portion in combination with the distal part of B1. Anterior expression can also be activated by the central part of B1 plus both the proximal part of B1 and non-conserved sequence upstream of B1. Thus, cis-regulation of early Ci-Dll-B expression is activated by a required submodule in the center of B1, driving posterior expression, which works in combination with redundant submodules that respond to differentially localized anterior factors to produce the total animal hemisphere expression pattern. Interestingly, the intergenic region of the cluster, which is important for expression of the Dlx genes in vertebrates, does not have a specific activating function in the reporter genes tested, but acts as an attenuator in combination with upstream sequences.  相似文献   

6.
The vertebrate Dlx genes, generally organized as tail-to-tail bigene clusters, are expressed in the branchial arch epithelium and mesenchyme with nested proximodistal expression implicating a code that underlies the fates of jaws. Little is known of the regulatory architecture that is responsible for Dlx gene expression in developing arches. We have identified two distinct cis-acting regulatory sequences, I12a and I56i, in the intergenic regions of the Dlx1/2 and Dlx5/6 clusters that act as enhancers in the arch mesenchyme. LacZ transgene expression containing I12a is restricted to a subset of Dlx-expressing ectomesenchyme in the first arch. The I56i enhancer is active in a broader domain in the first arch mesenchyme. Expression of transgenes containing either the I12a or the I56i enhancers is dependent on the presence of epithelium between the onset of their expression at E9-10 until independence at E11. Both enhancers positively respond to FGF8 and FGF9; however, the responses of the reporter transgenes were limited to their normal domain of expression. BMP4 had a negative effect on expression of both transgenes and counteracted the effects of FGF8. Furthermore, bosentan, a pharmacological inhibitor of Endothelin-1 signaling caused a loss of I56i-lacZ expression in the most distal aspects of the expression domain, corresponding to the area of Dlx-6 expression previously shown to be under the control of Endothelin-1. Thus, the combinatorial branchial arch expression of Dlx genes is achieved through interactions between signaling pathways and intrinsic cellular factors. I56i drives the entire expression of Dlx5/6 in the first arch and contains necessary sequences for regulation by at least three separate pathways, whereas I12a only replicates a small domain of endogenous expression, regulated in part by BMP-4 and FGF-8.  相似文献   

7.
8.
We have cloned a new Dlx gene (Dlx7) from human and mouse that may represent the mammalian orthologue of the newt geneNvHBox-5.The homeodomains of these genes are highly similar to all other vertebrate Dlx genes, and regions of similarity also exist between mammalian Dlx7 and a subset of vertebrate Dlx genes downstream of the homeodomain. The sequence divergence between human and mouse Dlx7 in these regions is greater than that predicted from comparisons of other vertebrate Dlx genes, however, and there is little sequence similarity upstream of the homeodomain both between these two genes and with other Dlx genes. We present evidence for alternative splicing of mouseDlx7upstream of the homeodomain that may account for some of this divergence. We have mapped humanDLX7distal to the 5′ end of the HOXB cluster at an estimated distance of between 1 and 2 Mb by FISH. Both the human and the mouse Dlx7 are shown to be closely linked to Dlx3 in a convergently transcribed orientation. These mapping results support the possibility that vertebrate distal-less genes have been duplicated in concert with the Hox clusters.  相似文献   

9.
Dlx homeobox genes of vertebrates are often organised as physically linked pairs in which the two genes are transcribed convergently (tail-to-tail arrangement). Three such Dlx pairs have been found in mouse, human, and zebrafish and are thought to have originated from the duplication of an ancestral gene pair. These pairs include Dlx1/Dlx2, Dlx7/Dlx3, and Dlx6/Dlx5 (the zebrafish orthologue of Dlx5 is named dlx4). Expression patterns of physically linked Dlx genes overlap extensively. Furthermore, orthologous Dlx genes often show highly similar expression patterns. We analysed Dlx expression during the gastrula and early somitogenesis of the mouse and zebrafish. It was found that expression of the mouse Dlx6 gene takes place in the rostral ectoderm and presumptive olfactory and otic placodes with patterns similar to the previously reported expression of the physically linked Dlx5 gene. However, we observed only very weak expression of the mouse Dlx3 gene at the same stage. This contrasts with the expression of dlx genes in zebrafish where dlx3 and dlx7, but not dlx4 and dlx6 are expressed during gastrulation in the rostral ectoderm and presumptive placodes. Thus, Dlx expression patterns at early stages are better conserved between paralogous pairs of physically linked genes than between orthologous pairs. This suggests that early expression of Dlx genes existed prior to the duplications that led to the multiple pairs of physically linked genes but was differentially conserved in different paralogs in zebrafish and mice.  相似文献   

10.
11.
Kiyasu T  Nagahashi Y  Hoshino T 《Gene》2001,265(1-2):103-113
The biotin biosynthesis genes of Kurthia sp., which is an aerobic gram-positive bacterium, were cloned from Kurthia sp. 538-KA26 and characterized. Eleven biotin biosynthetic genes have been identified in Kurthia sp. Kurthia sp. has two genes coding for KAPA synthase, bioF and bioFII, and also has two genes coding for BioH protein, bioH and bioHII. In addition, three genes, orf1, orf2, and orf3, whose functions are unknown, were found in the biotin gene clusters of Kurthia sp. The bioA, bioD, and orf1 genes are arranged in a gene cluster in the order orf1bioDA, and the bioB, bioF, and orf2 genes are arranged in a gene cluster in the order orf2bioFB. These gene clusters proceed to both directions; the face to face promoters and two 40-bp of palindrome sequences exist upstream of the orf1 and orf2 genes. The bioC, bioFII, and bioHII genes are arranged in a gene cluster in the order bioFIIHIIC; a 40-bp of palindrome sequence exists upstream of the bioFII gene. The bioH and orf3 genes are arranged in a gene cluster in the order bioHorf3; a palindrome sequence was not found upstream of the bioH gene. These palindrome sequences are extremely similar to each other, suggesting that the orf1bioDA, orf2bioFB, and bioFIIHIIC gene clusters are regulated by biotin. Kurthia sp. does not have the bioW gene coding pimeloyl-CoA synthase, suggesting that pimeloyl-CoA may be produced by a different pathway than that of gram-positive bacterium B. subtilis or B. sphaericus, further suggesting a modified fatty acid synthesis pathway via acetyl-CoA instead as E. coli has.  相似文献   

12.
The Dlx genes play an important role in the development of the pharyngeal arches and the structures derived from these tissues, including the craniofacial skeleton. They are typically expressed in a nested pattern along the proximo‐distal axis of the branchial arches in mice. This pattern is known as the “Dlx code” and has been proposed to be responsible for an early regional patterning of branchial arches in mammals. A number of cis‐ regulatory elements (CREs) have been identified within the Dlx loci, which target reporter expression to the developing pharyngeal arches of the mouse. Most of these CREs are located in the intergenic regions between the two genes constituting a Dlx bigene cluster. Therefore, the regionalized dlx expression in the branchial arches could be the result of the shared activities of these regulatory regions. Here we analyze previously published and new results showing these CREs are highly conserved in both their sequence and their activity in the pharyngeal arches of two distantly related vertebrates, the zebrafish and the mouse. A better understanding of Dlx gene regulation of the Dlx genes and of the genetic cascades in which they are involved can lead to clues explaining variations in morphology of the craniofacial regions of vertebrates.  相似文献   

13.
Induction of the otic placode involves a number of regulatory interactions. Early studies revealed that the induction of this program is initiated by instructive signals from the mesendoderm as well as from the adjacent hindbrain. Further investigations on the molecular level identified in zebrafish Fgf3, Fgf8, Foxi1, Pax8, Dlx3b and Dlx4b genes as key players during the induction phase. Thereafter an increasing number of genes participates in the regulatory interactions finally resulting in a highly structured sensory organ. Based on data from zebrafish we selected medaka genes with presumptive functions during early ear development for an expression analysis. In addition we isolated Foxi1 and Dlx3b gene fragments from embryonic cDNA. Altogether we screened the spatio-temporal distribution of more than 20 representative marker genes for otic development in medaka embryos, with special emphasis on the early phases. Whereas the spatial distribution of these genes is largely conserved between medaka and zebrafish, our comparative analysis revealed several differences, in particular for the timing of expression.  相似文献   

14.
15.
We present a study of inter- and intra-familial relationships of the carcharhiniform shark family Triakidae aimed at testing existing hypotheses of relationships for this group and at improving understanding of the evolution of reproductive traits in elasmobranchs. Our analyses and conclusions are based on evidence from DNA sequences of four protein-coding genes (three from the mitochondrial genome and a single copy nuclear gene) from eight of the nine genera and 20 of the 39 species currently assigned to the Triakidae. The sequence data offer strong support for the following previously proposed triakid clades: Galeorhinini (Hypogaleus+Galeorhinus); a subset of the Iagini (Furgaleus+Hemitriakis but not Iago); and part of the Triakinae (Mustelus, Scylliogaleus and part of Triakis). Interestingly, the molecular data provide considerable evidence of paraphyly of the genera Triakis and Mustelus. Our results suggest that the subgenera Triakis and Cazon of Triakis represent two distinct lineages that are only distantly related and that the genus Mustelus as currently defined does not constitute a monophyletic assemblage unless S. quecketti and some species of Triakis (subgenus Cazon) are included in Mustelus. Within our sample of species of Mustelus (including Cazon and Scylliogaleus), the sequence data support two well-defined clades that can be diagnosed by mode of reproduction (placental vs. aplacental species). The phylogenetic framework presented here is used to infer key events in the evolution and loss of placental viviparity among carcharhiniform sharks.  相似文献   

16.
Tooth development is a complex process including successive stages of initiation, morphogenesis, and histogenesis. The role of the Dlx family of homeobox genes during the early stages of tooth development has been widely analyzed, while little data has been reported on their role in dental histogenesis. The expression pattern of Dlx2 has been described in the mouse incisor; an inverse linear relationship exists between the level of Dlx2 expression and enamel thickness, suggesting a role for Dlx2 in regulation of ameloblast differentiation and activity. In vitro data have revealed that DLX homeoproteins are able to regulate the expression of matrix proteins such as osteocalcin. The aim of the present study was to analyze the expression and function of Dlx genes during amelogenesis. Analysis of Dlx2/LacZ transgenic reporter mice, Dlx2 and Dlx1/Dlx2 null mutant mice, identified spatial variations in Dlx2 expression within molar tooth germs and suggests a role for Dlx2 in the organization of preameloblastic cells as a palisade in the labial region of molars. Later, during the secretory and maturation stages of amelogenesis, the expression pattern in molars was found to be similar to that described in incisors. The expression patterns of the other Dlx genes were examined in incisors and compared to Dlx2. Within the ameloblasts Dlx3 and Dlx6 are expressed constantly throughout presecretory, secretory, and maturation stages; during the secretory phase when Dlx2 is transitorily switched off, Dlx1 expression is upregulated. These data suggest a role for DLX homeoproteins in the morphological control of enamel. Sequence analysis of the amelogenin gene promoter revealed five potential responsive elements for DLX proteins that are shown to be functional for DLX2. Regulation of amelogenin in ameloblasts may be one method by which DLX homeoproteins may control enamel formation. To conclude, this study establishes supplementary functions of Dlx family members during tooth development: the participation in establishment of dental epithelial functional organization and the control of enamel morphogenesis via regulation of amelogenin expression.  相似文献   

17.
Multiple functions of Dlx genes   总被引:5,自引:0,他引:5  
  相似文献   

18.
A cosmid genomic library was prepared from a single individual of the rodent Spalax ehrenbergi, the mole rat, captured in Israel. The library was screened with a mouse probe hybridizing with all mouse class I major-histocompatibility-complex (Mhc) genes; the cross-hybridizing clones were isolated; and their restriction maps were prepared using five enzymes. A total of 93 class I-bearing clones could be identified in the library. Forty-five of these clones showed partial overlaps and could be arranged into 14 clusters. Eleven of these clusters could be shown to contain two class I genes each; the remaining clusters, as well as most of the non-overlapping clones, each contained one class I gene. After the elimination of clones with possible cloning artifacts and of clones that may carry allelic forms of a given gene in the heterozygous animal, the total number of class I loci identified in Spalax is approximately 65. The high number of loci probably arose from the duplication of either the entire class I set or the different class I families. The high number of gene copies might represent a means of selecting different functional genes from the family in different mammalian orders. Three of the approximately 65 Spalax class I genes cross-hybridize with a probe specific for the mouse K, D, and L genes; two of these genes are in the same cluster. These three elements might possibly be the functional class I genes of the mole rat.  相似文献   

19.

Background  

Gene clusters are of interest for the understanding of genome evolution since they provide insight in large-scale duplications events as well as patterns of individual gene losses. Vertebrates tend to have multiple copies of gene clusters that typically are only single clusters or are not present at all in genomes of invertebrates. We investigated the genomic architecture and conserved non-coding sequences of vertebrate KCNA gene clusters. KCNA genes encode shaker-related voltage-gated potassium channels and are arranged in two three-gene clusters in tetrapods. Teleost fish are found to possess four clusters. The two tetrapod KNCA clusters are of approximately the same age as the Hox gene clusters that arose through duplications early in vertebrate evolution. For some genes, their conserved retention and arrangement in clusters are thought to be related to regulatory elements in the intergenic regions, which might prevent rearrangements and gene loss. Interestingly, this hypothesis does not appear to apply to the KCNA clusters, as too few conserved putative regulatory elements are retained.  相似文献   

20.
The group of Dlx genes belongs to the homeobox-containing superfamily, and its members are involved in various morphogenetic processes. In vertebrate genomes, Dlx genes exist as multiple paralogues generated by tandem duplication followed by whole genome duplications. In this review, we provide an overview of the Dlx gene phylogeny with an emphasis on the chordate lineage. Referring to the Dlx gene repertoire, we discuss the establishment and conservation of the nested expression patterns of the Dlx genes in craniofacial development. Despite the accumulating genomic sequence resources in diverse vertebrates, embryological analyses of Dlx gene expression and function remain limited in terms of species diversity. By supplementing our original analysis of shark embryos with previous data from other osteichthyans, such as mice and zebrafish, we support the previous speculation that the nested Dlx expression in the pharyngeal arch is likely a shared feature among all the extant jawed vertebrates. Here, we highlight several hitherto unaddressed issues regarding the evolution and function of Dlx genes, with special reference to the craniofacial development of vertebrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号