首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
Temporary rivers within the Nyaodza-Gachegache subcatchment in northwestern Zimbabwe were investigated to examine the role of flow permanence and habitat structure on macroinvertebrate community composition. Macroinvertebrate communities of intermittent and ephemeral rivers displayed significant differences in the number of taxa, macroinvertebrate abundance, Shannon and Simpson diversity indices and in size class structure. Intermittent sites were characterised by higher numbers of taxa, diversity and Ephemeroptera and Trichoptera richness compared to ephemeral sites. The fauna of ephemeral sites was dominated by a single taxon (Afrobaetodes) (Ephemeroptera, Baetidae) whilst larger sized taxa (e.g. Elassoneuria (Ephemeroptera, Oligoneuriidae), Dicentroptilum (Ephemeroptera, Baetidae), Aethaloptera (Trichoptera, Hydropsychidae), Pseudagrion (Odonata, Coenagrionidae) and Tholymis (Odonata, Libellulidae) were exclusively restricted to intermittent sites. Clear differences were observed between sand, gravel, cobble and vegetation habitats. Vegetation and cobbles supported distinct communities, with some taxa exclusively restricted either to vegetation (e.g. Pseudagrion, Leptocerina (Trichoptera, Leptoceridae), Cloeon (Ephemeroptera, Baetidae), Afronurus (Ephemeroptera, Heptageniidae) and Povilla (Ephemeroptera, Polymitarcidae) or cobble (e.g. Aethaloptera and Dicentroptilum) habitats. In terms of ensuring optimum diversity within the subcatchment, we consider conservation of critical habitats (cobbles and vegetation) and maintenance of natural flows as the appropriate management actions. Handling editor: D. Dudgeon  相似文献   

2.
1. Patterns in species assemblages are the result of the combined influence of processes acting on different spatial scales. Various studies describe the distribution of macroinvertebrate communities and their relationship with environmental factors at different geographical scales, but only a few of these studies concentrate on Western European lowlands. 2. Using Flanders as representative for the densely populated Western‐European lowlands, the specific aims of this study are: (i) to identify the different trichopteran species assemblages and to characterise them biologically using indicator species; (ii) to determine which environmental gradients most influence the observed species assemblages; and (iii) to analyse the relative importance of different spatial scale variables in constraining the Trichoptera distributions. 3. Assessment of the main environmental gradients suggested that the absence of Trichoptera from certain locations was mainly due to elevated nutrient concentrations and lower oxygen contents, confirming their sensitivity to anthropogenic disturbance. 4. Five Trichoptera species assemblages were distinguished based on Bray–Curtis dissimilarity coefficients. These assemblages did not differ significantly in species richness, but a shift in stream zonation preference was observed. In the ordination analysis 11 variables that were selected using a stepwise model building function manifested themselves as upstream–downstream and size‐related gradients. The Trichoptera assemblages in lowland streams thus appear to follow a longitudinal succession pattern that corresponds with the species‐specific preferences. 5. Partitioning the variance over the different spatial scales indicated that the reach‐scale variables were far more important in explaining the variation in species composition. The study design, which limited the minimum–maximum range of catchment‐scale characteristics, however, may have led to an overestimation of the impact of the local‐scale variables.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号