首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study has examined the requirements for the binding of rabbit reticulocyte elongation factor 1 (EF-1) to ribosomes under different assay conditions. When a centrifugation procedure was used to separate the ribosome EF-1 complex, the binding of EF-1 to ribosomes required GTP and Phe-tRNA, but not poly(U). The results suggested that undr these conditions a ternary complex, EF-1 . GTP . aminoacyl-tRNA, is necessary for the formation of a ribosome . EF-1 complex. However, when gel filtration was used to isolate the ribosome . EF-1 complex, only template and tRNA were required. These studie emphasize the fact that the procedure used to isolate the ribosome . EF-1 complex determines the requirements for stable complex formation. EF-1 can also interact with nucleic acids such as 28 S and 18 S rRNA, messenger RNA and DNA. In contrast to the binding to ribosomes, EF-1 binding to nucleic acids requires only Mg2+.  相似文献   

2.
GTPase activation of elongation factors Tu and G on the ribosome   总被引:6,自引:0,他引:6  
Mohr D  Wintermeyer W  Rodnina MV 《Biochemistry》2002,41(41):12520-12528
The GTPase activity of elongation factors Tu and G is stimulated by the ribosome. The factor binding site is located on the 50S ribosomal subunit and comprises proteins L7/12, L10, L11, the L11-binding region of 23S rRNA, and the sarcin-ricin loop of 23S rRNA. The role of these ribosomal elements in factor binding, GTPase activation, or functions in tRNA binding and translocation, and their relative contributions, is not known. By comparing ribosomes depleted of L7/12 and reconstituted ribosomes, we show that, for both factors, interactions with L7/12 and with other ribosomal residues contribute about equally and additively to GTPase activation, resulting in an overall 10(7)-fold stimulation. Removal of L7/12 has little effect on factor binding to the ribosome. Effects on other factor-dependent functions, i.e., A-site binding of aminoacyl-tRNA and translocation, are fully explained by the inhibition of GTP hydrolysis. Based on these results, we propose that L7/12 stimulates the GTPase activity of both factors by inducing the catalytically active conformation of the G domain. This effect appears to be augmented by interactions of other structural elements of the large ribosomal subunit with the switch regions of the factors.  相似文献   

3.
Site-directed mutagenesis has been used to change, specifically, residue 1067 within 23 S ribosomal RNA of Escherichia coli. This nucleoside (adenosine in the wild-type sequence) lies within the GTPase centre of the larger ribosomal subunit and is normally the target for the methylase enzyme responsible for resistance to the antibiotic thiostrepton. The performance of the altered ribosomes was not impaired in cell-free protein synthesis nor in GTP hydrolysis assays (although the 3 mutant strains grew somewhat more slowly than wild-type) but their responses to thiostrepton did vary. Thus, ribosomes containing the A to C or A to U substitution at residue 1067 of 23 S rRNA were highly resistant to the drug, whereas the A to G substitution resulted in much lesser impairment of thiostrepton binding and the ribosomes remained substantially sensitive to the antibiotic. These data reinforce the hypothesis that thiostrepton binds to 23 S rRNA at a site that includes residue A1067. They also exclude any possibility that the insensitivity of eukaryotic ribosomes to the drug might be due solely to the substitution of G at the equivalent position within eukaryotic rRNA.  相似文献   

4.
eEF-T and eEF-Tu from rabbit reticulocyte and from Artemia were affinity labeled using N epsilon-bromoacetyl-Lys-tRNA prepared with either yeast or E. coli tRNA. Only the eEF-Tu polypeptide was crosslinked when eEF-T was incubated with the reactive aminoacyl-tRNA analogue, which indicates that at least part of the aminoacyl-tRNA binding site is the same in both eEF-Tu and the multisubunit eEF-T. Complex formation (eEF-Tu x aa-tRNA x GTP) was required for crosslinking, since no covalent reaction with eEF-Tu occurred in the absence of GTP. The yield of crosslinked product was greatly reduced by adding either unmodified rabbit liver aminoacyl-tRNA or unmodified E. coli Lys-tRNA to the incubation to compete for the aminoacyl-tRNA binding site on eEF-T or eEF-Tu, indicating that the covalent reaction occurs while the N epsilon-bromoacetyl-Lys-tRNA is bound in this site. The affinity labeling of a prokaryotic and two different eukaryotic elongation factors by the same reagent suggests that there may be conservation of structure in the region of the proteins which binds the aminoacyl end of the aminoacyl-tRNA.  相似文献   

5.
An autoantibody reactive with a conserved sequence of 28 S rRNA (anti-28 S) was identified in serum from a patient with systemic lupus erythematosus. Anti-28 S protected a unique 59-nucleotide fragment synthesized in vitro against RNase T1 digestion. RNA sequence analysis revealed that it corresponded to residues 1944-2002 in human 28 S rRNA and 1767-1825 in mouse 28 S rRNA. These sequences are identical and highly conserved throughout all known eukaryotic 28 S rRNAs. In addition, this fragment is homologous to residues 1052-1110 of Escherichia coli 23 S rRNA that lies within the GTP hydrolysis center of the 50 S ribosomal subunit. Anti-28 S and its Fab fragments strongly inhibited poly(U)-directed polyphenylalanine synthesis, but had no effect on ribosomal peptidyltransferase activity. This effect resulted from inhibition of the binding of elongation factors EF-1 alpha and EF-2 to ribosomes and of the associated GTP hydrolysis. The inhibitory effect was almost completely suppressed by preincubation of anti-28 S with 28 S rRNA or in vitro synthesized RNA fragments containing the immunoreactive region. These results show that the immunoreactive conserved region of 28 S rRNA participates in the interaction of ribosomes with the two elongation factors in protein synthesis.  相似文献   

6.
We have tested a putative base-paired interaction between the conserved GT psi C sequence of tRNA and the conserved GAAC47 sequence of 5 S ribosomal RNA by in vitro protein synthesis using ribosomes containing deletions in this region of 5 S rRNA. Ribosomes reconstituted with 5 S rRNA possessing a single break between residues 41 and 42, deletion of residues 42-46, or deletion of residues 42-52 were tested for their ability to translate phage MS2 RNA. Initiator tRNA binding, aminoacyl-tRNA binding, ppGpp synthesis, and miscoding were also tested. All of the measured functions could be carried out by ribosomes carrying the deleted 5 S rRNAs. The sizes and relative amounts of the polypeptides synthesized by MS2 RNA-programmed ribosomes were identical whether or not the 5 S RNA contained deletions. Aminoacyl-tRNA binding and miscoding were essentially unaffected. Significant reduction in ApUpG (but not poly(A,U,G) or MS2 RNA)-directed fMet-tRNA binding and ppGpp synthesis were observed, particularly in the case of the larger (residues 42-52) deletion. We conclude that if tRNA and 5 S rRNA interact in this fashion, it is not an obligatory step in protein synthesis.  相似文献   

7.
gamma-Amides of GTP and affinity and photoaffinity derivatives of gamma-amides of GTP: gamma-anilide of GTP, gamma-(4-azido)anilide of GTP, gamma-[N-(4-azidobenzyl)-N-methyl]amide of GTP, gamma[4-N-(2-chloroethyl)-N-methylaminobenzyl]amide of GTP and gamma-[4-N-(2-oxoethyl)-N-methylaminobenzyl]amide of GTP substituted efficiently for GTP in the EF-Tu-dependent transfer of aminoacyl-tRNA to the ribosome but, in contrast to GTP, they were not hydrolyzed in this process. They represent a new class of non-hydrolyzable GTP analogs with preserved gamma-phosphodiester bond. The radioactive analog of GTP: gamma-[4-N-(2-chloroethyl)-N-methylamino[14C]benzyl]amide of GTP was used as an affinity labeling probe for the identification of components of the GTPase center formed in the EF-Tu-dependent transfer reaction of aminoacyl-tRNA to the ribosomal A-site. Within a six-component complex of poly(U)-programmed E. coli ribosomes with elongation factor Tu, Phe-tRNA(Phe) (at the A-site), tRNA(Phe) (at the P-site) and the [14C]GTP analog, mainly the ribosomal 23S RNA and to a lesser extent the ribosomal proteins L17, L21, S16, S21 and the ribosomal 16S RNA were labeled by the reagent. No significant modification of EF-Tu was detected.  相似文献   

8.
Thesaurin a is one of two protein components of a 42 S ribonucleoprotein particle that is very abundant in previtellogenic oocytes of Xenopus laevis. The primary function of the 42 S particle is the long-term storage of 5 S RNA and aminoacyl-tRNA. Thesaurin a is homologous to eukaryotic elongation factor 1 alpha (EF-1 alpha) and to prokaryotic elongation factor Tu (EF-Tu). Sequence comparison with EF-1 alpha and EF-Tu of different species indicates that thesaurin a is rather distantly related to all eukaryotic elongation factors. In spite of this, the secondary structure of thesaurin a, deduced from hydrophobic cluster analysis, is remarkably similar to that of EF-1 alpha and EF-Tu. The binding and catalytic properties of thesaurin a are also similar but not identical to those of EF-1 alpha. Like EF-1 alpha, purified thesaurin a binds tRNA, GDP, and GTP. Unlike EF-1 alpha, thesaurin a binds discharged tRNA more tightly than charged tRNA, and GTP more tightly than GDP. Thesaurin a also hydrolyzes GTP and catalyzes the mRNA-dependent binding of aminoacyl-tRNA to 80 S ribosomes. The functional properties of the 42 S particle are in general agreement with those of purified thesaurin a. In particular, the 42 S particle contains GTP and efficiently transfers aminoacyl-tRNA to 80 S ribosomes without addition of exogenous elongation factor.  相似文献   

9.
Replacement of the protein L11 binding domain within Escherichia coli 23S ribosomal RNA (rRNA) by the equivalent region from yeast 26S rRNA appeared to have no effect on the growth rate of E.coli cells harbouring a plasmid carrying the mutated rrnB operon. The hybrid rRNA was correctly processed and assembled into ribosomes, which accumulated normally in polyribosomes. Of the total ribosomal population, < 25% contained wild-type, chromosomally encoded rRNA; the remainder were mutant. The hybrid ribosomes supported GTP hydrolysis dependent upon E.coli elongation factor G, although at a somewhat reduced rate compared with wild-type particles, and were sensitive to the antibiotic, thiostrepton, a potent inhibitor of ribosomal GTPase activity that binds to 23S rRNA within the L11 binding domain. That thiostrepton could indeed bind to the mutant ribosomes, although at a reduced level relative to that seen with wild-type ribosomes, was confirmed in a non-equilibrium assay. The rationale for the ability of the hybrid ribosomes to bind the antibiotic, given that yeast ribosomes do not, was provided when yeast rRNA was shown by equilibrium dialysis to bind thiostrepton only 10-fold less tightly than did E.coli rRNA. The extreme conservation of secondary, but not primary, structure in this region between E.coli and yeast rRNAs allows the hybrid ribosomes to function competently in protein synthesis and also preserves the interaction with thiostrepton.  相似文献   

10.
T Uchiumi  R Kominami 《The EMBO journal》1994,13(14):3389-3394
An anti-RNA autoantibody (anti-28S) was employed to identify structural and functional elements characteristic of a domain termed the 'GTPase center' in eukaryotic 28S ribosomal RNA. This antibody, an inhibitor of ribosome-associated GTP hydrolysis, has a unique property: it binds to the RNA domain of eukaryotes but not to that of prokaryotes. The antibody binding occurred in the presence of Mg2+ and protected from chemical modification three conserved bases (U1958, G1960 and A1990) and the base G1959 which is replaced by A in prokaryotic 23S rRNA (A1067 in Escherichia coli). In vitro substitution of G1959 to A drastically weakened the antibody binding, and the reciprocal substitution, A1067-->G of the E.coli domain conferred the binding ability. This suggests that the G base determines the specificity of antibody binding. The G1959 was also protected by the association of ribosomes with elongation factor EF-2. The result, together with protection of E.coli base A1067 by EFG [D.Moazed, I.M.Robertson and H.F.Noller (1988) Nature, 334, 362-364], suggests that the position of G1959 in eukaryotes and A1067 in prokaryotes constitutes at least part of the factor binding site irrespective of the base replacement during evolution.  相似文献   

11.
The properties and role in peptide elongation of ATPase intrinsic to rat liver ribosomes were investigated. (i) Rat liver 80S ribosomes showed high ATPase and GTPase activities, whereas the GTPase activity of EF-1alpha and EF-2 was very low. mRNA, aminoacyl-tRNA, and elongation factors alone enhanced ribosomal ATPase activity and in combination stimulated it additively or synergistically. The results suggest that these translational components induce positive conformational changes of 80S ribosomes by binding to different regions of ribosomes. Translation inhibitors, tetracyclin and fusidic acid, inhibited ribosomal ATPase with or without elongational components. (ii) Two ATPase inhibitors, AMP-P(NH)P and vanadate, did not inhibit GTPase activities of EF-1alpha and EF-2 assayed as uncoupled GTPase, but they did inhibit poly(U)-dependent polyphe synthesis of 80S ribosomes. (iii) Effects of AMP-P(NH)P and ATP on poly(U)-dependent polyphe synthesis at various concentrations of GTP were examined. ATP enhanced the activity of polyphe synthesis even at high concentrations of GTP, suggesting a specific role of ATP. At low concentrations of GTP, the extent of inhibition by AMP-P(NH)P was very low, probably owing to the prevention of the reduction of the GTP concentration. (iv) Vanadate inhibited the translocation reaction by high KCl-washed polysomes. These findings together indicate that ribosomal ATPase participates in peptide translation by inducing positive conformational changes of mammalian ribosomes, in addition to its role of chasing tRNA from the E site.  相似文献   

12.
Xu YZ  Liu WY 《Biological chemistry》2000,381(2):113-119
Effects of the active aldehyde group of ribose C1' at position 4324 of rat 28S rRNA, in the inactivated ribosome generated by RNA N-glycosidases (trichosanthin, A-chain of cinnamomin and ricin), on peptide elongation have been studied. The aldehyde group inhibits the activities of eEF1A-dependent aminoacyl-tRNA binding to the inactivated ribosome and eEF1A-dependent GTPase, but increases eEF2-dependent activity. At a high concentration of RNA N-glycosidase, the generated aldehyde group also inhibits aminoacyl-tRNA binding to the inactivated ribosome in the absence of elongation factor and translocation activity. When the aldehyde group is reduced into a hydroxyl group by sodium borohydride or blocked with an amino acid through nucleophilic addition, the activities of eEF1A-dependent aminoacyl-tRNA binding and eEF1A-dependent GTPase of the inactivated ribosome are partially restored, but the altered activities of eEF2-dependent GTPase, translocation and aminoacyl-tRNA binding in the absence of elongation factor are not normalized. Thus, reduction or blockage of the aldehyde group with sodium borohydride or amino acids might change the conformation of the S/R domain in rat 28S ribosomal RNA to meet the requirement for eEF1A-dependent reactions, but not eEF2-involved reactions.  相似文献   

13.
J A Langer  F Jurnak  J A Lake 《Biochemistry》1984,23(25):6171-6178
A complex between elongation factor Tu (EF-Tu), GTP, phenylalanyl-tRNA (Phe-tRNA), oligo(uridylic acid) [oligo(U)], and the 30S ribosomal subunit of Escherichia coli has been formed and isolated. Binding of the EF-Tu complex appears to be at the functionally active 30S site, by all biochemical criteria that were examined. The complex can be isolated with 0.25-0.5 copy of EF-Tu bound per ribosome. The binding is dependent upon the presence of both the aminoacyl-tRNA and the cognate messenger RNA. Addition of 50S subunits to the preformed 30S-EF-Tu-GTP-Phe-tRNA-oligo(U) complex ("30S-EF-Tu complex") causes a rapid hydrolysis of GTP. This hydrolysis is coordinated with the formation of 70S ribosomes and the release of EF-Tu. Both the release of EF-Tu and the hydrolysis of GTP are stoichiometric with the amount of added 50S subunits. 70S ribosomes, in contrast to 50S subunits, neither release EF-Tu nor rapidly hydrolyze GTP when added to the 30S-EF-Tu complexes. The inability of 70S ribosomes to react with the 30S-EF-Tu complex argues that the 30S-EF-Tu complex does not dissociate prior to reaction with the 50S subunit. The requirements of the 30S reaction for Phe-tRNA and oligo(U) and the consequences of the addition of 50S subunits resemble the reaction of EF-Tu with 70S ribosomes, although EF-Tu binding to isolated 30S subunits does not occur during the elongation microcycle. This suggests that the EF-Tu ternary complex binds to isolated 30S subunits at the same 30S site that is occupied during ternary complex interaction with the 70S ribosome.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The properties of the N-tosyl-L-phenylalanyl chloromethane treated EF-T factor were studied in a ribosomal system in which splitting of GTP occurs. The action of N-tosyl-L-phenylalanyl chloromethane inhibits the binding of aminoacyl-tRNA to the EF-T factor. The binding and exchange of guanosine phosphates continued to be preserved. The inhibited factor is inactive in the GTPase reaction which depends on the participation of ribosomes and aminoacyl-tRNA. The uncoupled GTPase reaction (which is not dependent on the presence of aminoacyl-tRNA) is also sensitive to the effect of the inhibitor. The inhibition of the uncoupled GTPase is incomplete. These findings are attributed to the involvement of the aminoacyl-tRNA binding site of the EF-T factor in the uncoupled GTPase reaction.  相似文献   

15.
Highly purified peptide elongation factor 1 from rabbit reticulocytes liberates the terminal phosphate from [gamma-32P]GTP and incorporates it into its own protein. Approximately one phosphate residue becomes bound by one molecule of the factor. Only the eEF-1 alpha subunit of the factor (Mr 53 000) becomes phosphorylated as revealed by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate followed by autoradiography and by the incubation of [gamma-32P]GTP with individual subunits of the elongation factor separated by chromatofocusing in the presence of 5 M urea. The phosphorylation also takes place, though to a lesser extent, if the factor is incubated with Na2H32PO4, probably due to the presence of endogenous GTP bound in the molecule of the factor. The content of endogenous GTP in various factor preparations was 0.21-0.43 mol/mol factor. Phosphorylation of the peptide elongation factor is ribosome-independent, acid-labile and apparently autocatalytic since no other proteins are required for this reaction. Preincubation of the factor with GTP or with inorganic phosphate results in the phosphorylation of the factor and is followed by an enhanced binding of phenylalanyl-tRNA to 80S ribosomes in the presence of poly(U). This is accompanied by a dephosphorylation of the factor protein and thus the reversible autophosphorylation of the factor apparently activates its binding site for aminoacyl-tRNA. This is supported by the observation that sodium fluoride, which inhibits the dephosphorylation of the factor, blocks the factor-catalyzed binding of aminoacyl-tRNA to ribosomes. The incorporation of phosphate into factor protein also inhibits the formation of an eEF-1 X GDP complex, which is inactive in protein synthesis. Thus GDP liberated by the GTPase activity of the factor cannot affect its binding site for aminoacyl-tRNA. This may be the other reason for the enhanced activity of the phosphorylated factor. The autocatalytic GTP-dependent phosphorylation of the peptide elongation factor 1 apparently modifies its function and may thus play a regulatory role in protein synthesis.  相似文献   

16.
Two inhibitors of ribosome-dependent GTP hydrolysis by elongation factor (EF)G were found in the ribosome wash of Escherichia coli strain B. One of these inhibitors was purified to homogeneity and characterized. The isolated inhibitor was found to consist of two polypeptide subunits with apparent molecular masses of 23 kDa and 10 kDa. Inhibition of EF-G GTPase could not be overcome by increasing amounts of the elongation factor or high concentrations of GTP, but was reversed by large amounts of ribosomes. The effect of the inhibitor was reduced by increasing concentrations of either 30S or 50S ribosomal subunits. EF-G-dependent GTPase of 50S ribosomal subunits was not affected by the inhibitor. These findings clearly show that the inhibitor interferes with the modulation of EF-G GTPase activity by the interactions between 30S and 50S ribosomal subunits. Under conditions, where 30S CsCl core particles are able to associate with 50S subunits and to stimulate EF-G GTPase, the effect of the inhibitor was considerably reduced when intact 30S ribosomal subunits were substituted by 30S CsCl core particles. This finding indicates that 30S CsCl split proteins are important for the action of the inhibitor and that the inhibitor does not affect the EF-G GTPase merely by interfering with the association of ribosomal subunits. Furthermore, poly(U)-dependent poly(phenylalanine) synthesis was considerably less sensitive to the inhibitor than EF-G GTPase. When ribosomes were preincubated with poly(U) and Phe-tRNA(Phe), poly(phenylalanine) synthesis was considerably less affected by the inhibitor, whereas EF-G GTPase was still sensitive.  相似文献   

17.
Two Escherichia coli mutants lacking ribosomal protein L1, previously shown to display 40 to 60% reduced capacity for in vitro protein synthesis (Subramanian, A. R., and Dabbs, E. R. (1980) Eur. J. Biochem. 112, 425-430), have been used to study partial reactions of protein biosynthesis. Both the binding of N-acetyl-Phe-tRNA to ribosomes and the 6 to 8-fold stimulation of the elongation factor G (EF-G)-dependent GTPase reaction by mRNA plus tRNA, assayed in the presence of wild type 30 S subunits, were low with L1-deficient 50 S subunits. Addition of pure protein L1 to the assay restored both reactions to 100% of the control. By contrast, the basic EF-G GTPase reaction in the absence of mRNA and tRNA was not at all affected (mRNA alone had no effect). None of the following partial reactions were more than moderately modified by the lack of protein L1: binding to ribosomes of EF-G.GDP plus fusidic acid; the translocation reaction catalyzed by EF-G plus GTP; poly(U)-dependent binding to ribosomes of Phe-tRNAPhe (whether dependent on elongation factor Tu plus GTP or not); and the EF-Tu-dependent GTPase activity. It is concluded that protein L1 is involved in the interaction between ribosomes and peptidyl-tRNA (or tRNA) in the peptidyl site and consequently in the ribosomal GTPase activity depending on the simultaneous action of tRNA and EF-G.  相似文献   

18.
The specificity of the cell-free system of Escherichia coli for mRNA was examined, and the "accessibility" of some natural and synthetic RNAs to the ribosomes was determined by measurement of AcPhe-tRNA and fMet-tRNA binding, AcPhe-puromycin and fMet-puromycin formation, and polypeptide synthesis. The E. coli system effectively initiates the translation of various synthetic RNAs with AcPhe-tRNA or fMet-tRNA under conditions optimal for the translation of viral RNA. Poly(A,G,U) is accessible to the ribosomes according to all of the above criteria. Poly(A,C,G,U), 23 S rRNA, R17 RNA, and MS2 RNA, on the other hand, show limited accessibility when tested for initiator tRNA binding, or for AcPhe-puromycin and fMet-puromycin formation. MS2 and R17 RNA, but not poly(A,C,G,U) and 23 S rRNA, show accessibility when measured by polypeptide synthesis. The results suggest that, except at initiator sites of natural mRNA, an RNA containing about equal amounts of all four bases is inaccessible to E. coli ribosomes for polypeptide synthesis. Rate constants obtained for fMet-tRNA binding with MS2 RNA, poly(A,G,U), and poly(C,G,U) indicate that the ribosomes do not have any special affinity for the viral RNA. Thus, the selection of the initiator site in protein synthesis may be critically determined more by the accessibility of the initiator codon than by ribosomal recognition of the site.  相似文献   

19.
The specificity of the cell-free system of Escherichia coli for mRNA was examined, and the “accessibility” of some natural and synthetic RNAs to the ribosomes was determined by measurement of AcPhe-tRNA and fMet-tRNA binding, AcPhe-puromycin and fMet-puromycin formation, and polypeptide synthesis. The E. coli system effectively initiates the translation of various synthetic RNAs with AcPhe-tRNA or fMet-tRNA under conditions optimal for the translation of viral RNA. Poly(A,G,U) is accessible to the ribosomes according to all of the above criteria. Poly(A,C,G,U), 23 S rRNA, R17 RNA, and MS2 RNA, on the other hand, show limited accessibility when tested for initiator tRNA binding, or for AcPhe-puromycin and fMet-puromycin formation. MS2 and R17 RNA, but not poly(A,C,G,U) and 23 S rRNA, show accessibility when measured by polypeptide synthesis. The results suggest that, except at initiator sites of natural mRNA, an RNA containing about equal amounts of all four bases is inaccessible to E. coli ribosomes for polypeptide synthesis. Rate constants obtained for fMet-tRNA binding with MS2 RNA, poly(A,G,U), and poly(C,G,U) indicate that the ribosomes do not have any special affinity for the viral RNA. Thus, the selection of the initiator site in protein synthesis may be critically determined more by the accessibility of the initiator codon than by ribosomal recognition of the site.  相似文献   

20.
The pre-steady-state kinetics of GTP hydrolysis catalysed by elongation factor G and ribosomes from Escherichia coli has been investigated by the method of quenched-flow. The GTPase activities either uncoupled from or coupled to the ribosomal translocation process were characterized under various experimental conditions. A burst of GTP hydrolysis, with a kapp value greater than 30 s-1 (20 degrees C) was observed with poly(U)-programmed vacant ribosomes, either in the presence or absence of fusidic acid. The burst was followed by a slow GTP turnover reaction, which disappears in the presence of fusidic acid. E. coli tRNAPhe, but not N-acetylphenylalanyl-tRNAPhe (N-AcPhe-tRNAPhe), stimulates the GTPase when bound in the P site. If the A site of poly(U)-programmed ribosomes, carrying tRNAPhe in the P site, is occupied by N-AcPhe-tRNAPhe, the burst of Pi discharge is replaced by a slow GTP hydrolysis. Since, under these conditions, N-AcPhe-tRNAPhe is translocated from the A to the P site, this GTP hydrolysis very probably represents a GTPase coupled to the translocation reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号