首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Indices of rostrality (ir, ir') are developed to assess the extent to which the medial end of the lunate sulcus (L) is rostrally positioned in photographs and figures of lateral views of primate brains and endocasts, and indices are determined for chimpanzees, SK 1585 and the Taung endocast. Ir quantifies the extent of rostrality as it has traditionally been viewed (in A-P projections) while ir' takes dorsal curvature into account. The ir of the feature that I have identified as the lunate sulcus of Taung is within one standard deviation of the mean ir for Pan and its ir' is within 1.5 standard deviations from the mean ir' for Pan. Both findings are compatible with my earlier statement that the medial end of the lunate sulcus of the Taung endocast is in a pongid-like position. Use of stereoplotting to transfer the position of L from chimpanzee endocasts and brains to australopithecine endocasts is critically assessed: Holloway stereoplotted five chimpanzee brains and then transferred their mean coordinates that describe the lunate sulcus to the Taung endocast. If stereoplotting successfully transfers the extent to which L is rostrally located, one would expect the mean L of Pan and its transferred counterpart in Taung to have identical index values of rostrality. However, the ir of the lunate sulcus that Holloway located on Taung is over two standard deviations lower than the mean ir for the five chimpanzees he stereoplotted to determine its angular coordinates, and Holloway's ir' for Taung is one standard deviation lower than the five chimpanzees' mean ir'. These discrepancies are shown to be due to shape differences, and it is concluded that stereoplotting should not be used to transfer sulci between differently shaped endocasts without correcting for these differences. I also reply to Holloway's criticisms of my use of L/H indices, palpation, techniques for sampling endocasts, and illustration of the Taung endocast. It is shown that there is room on the Taung specimen for the lateral end of L, and the pongid-like sulcal pattern of Taung is reaffirmed. Thus, we do not yet know when human-like sulcal patterns first appeared in the hominid fossil record.  相似文献   

2.
3.
Earlier observations of the virtual endocast of LB1, the type specimen for Homo floresiensis, are reviewed, extended, and interpreted. Seven derived features of LB1's cerebral cortex are detailed: a caudally-positioned occipital lobe, lack of a rostrally-located lunate sulcus, a caudally-expanded temporal lobe, advanced morphology of the lateral prefrontal cortex, shape of the rostral prefrontal cortex, enlarged gyri in the frontopolar region, and an expanded orbitofrontal cortex. These features indicate that LB1's brain was globally reorganized despite its ape-sized cranial capacity (417 cm3). Neurological reorganization may thus form the basis for the cognitive abilities attributed to H. floresiensis. Because of its tiny cranial capacity, some workers think that LB1 represents a Homo sapiens individual that was afflicted with microcephaly, or some other pathology, rather than a new species of hominin. We respond to concerns about our earlier study of microcephalics compared with normal individuals, and reaffirm that LB1 did not suffer from this pathology. The intense controversy about LB1 reflects an older continuing dispute about the relative evolutionary importance of brain size versus neurological reorganization. LB1 may help resolve this debate and illuminate constraints that governed hominin brain evolution.  相似文献   

4.
The globular braincase of modern humans is distinct from all fossil human species, including our closest extinct relatives, the Neandertals. Such adult shape differences must ultimately be rooted in different developmental patterns, but it is unclear at which point during ontogeny these group characteristics emerge.Here we compared internal shape changes of the braincase from birth to adulthood in Neandertals (N = 10), modern humans (N = 62), and chimpanzees (N = 62). Incomplete fossil specimens, including the two Neandertal newborns from Le Moustier 2 and Mezmaiskaya, were reconstructed using reference-based estimation methods. We used 3D geometric morphometrics to statistically compare shapes of virtual endocasts extracted from computed-tomographic scans. Throughout the analysis, we kept track of possible uncertainties due to the missing data values and small fossil sample sizes.We find that some aspects of endocranial development are shared by the three species. However, in the first year of life, modern humans depart from this presumably ancestral pattern of development. Newborn Neandertals and newborn modern humans have elongated braincases, and similar endocranial volumes. During a ‘globularization-phase’ modern human endocasts change to the globular shape that is characteristic for Homo sapiens. This phase of early development is unique to modern humans, and absent from chimpanzees and Neandertals.Our results support the notion that Neandertals and modern humans reach comparable adult brain sizes via different developmental pathways. The differences between these two human groups are most prominent directly after birth, a critical phase for cognitive development.  相似文献   

5.
Incomplete endocasts of Aegyptopithecus, one of the oldest known pongids. indicate that by 26 to 28,000,000 years ago the pongid brain was advanced over that of most prosimians in having relatively more visual cortex, relatively smaller olfactory bulbs and a well developed central sulcus, and in being relatively larger. The brain of Aegyptopithecus was more primitive than that of modern anthropoids in having a relatively smaller frontal lobe. The brain of Aegyptopithecus was relatively long and low, like that of Alouatta, but unlike that of most other anthropoids; that difference in shape may be the result of allometric factors, or may reflect retention of primitive cranial features in Aegyptopithecus.  相似文献   

6.
The relationship between femoral neck superior and inferior cortical thickness in primates is related to locomotor behavior. This relationship has been employed to infer bipedalism in fossil hominins, although bipeds share the same pattern of generalized quadrupeds, where the superior cortex is thinner than the inferior one. In contrast, knuckle‐walkers and specialized suspensory taxa display a more homogeneous distribution of cortical bone. These different patterns, probably related to the range of movement at the hip joint and concomitant differences in the load stresses at the femoral neck, are very promising for making locomotor inferences in extinct primates. To evaluate the utility of this feature in the fossil record, we relied on computed tomography applied to the femur of the Late Miocene hominoid Hispanopithecus laietanus as a test‐case study. Both an orthograde body plan and orang‐like suspensory adaptations had been previously documented for this taxon on different anatomical grounds, leading to the hypothesis that this fossil ape should display a modern ape‐like distribution of femoral neck cortical thickness. This is confirmed by the results of this study, leading to the conclusion that Hispanopithecus represents the oldest evidence of a homogeneous cortical bone distribution in the hominoid fossil record. Our results therefore strengthen the utility of femoral neck cortical thickness for making paleobiological inferences on the locomotor repertoire of fossil primates. This feature would be particularly useful for assessing the degree of orthograde arboreal locomotor behaviors vs. terrestrial bipedalism in putative early hominins. Am J PhyAnthropol 2012. © Wiley Periodicals, Inc.  相似文献   

7.
Changes in visual evoked potentials were studied in rats at different stages of formation of experimental photogenic epilepsy induced by injection of tetanus toxin into the lateral geniculate body. The greatest change in evoked potentials in the lateral geniculate body consisted of the appearance of an aditional component in the series of waves of the primary response. Meanwhile in the ipsilateral visual cortex the amplitude of the first negative component of the evoked potential was considerably increased. Correlation was found between the changes in the amplitude of this component in the visual cortex and the change in steepness of the additional component of the evoked potential in the geniculate body, reflecting functional reorganization of that nucleus. The results are evidence of significant disturbances of the relay function of the lateral geniculate body when a generator of pathologically enhanced excitation is formed in it.Institute of General Pathology and Pathological Physiology, Academy of Medical Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 10, No. 2, pp. 142–149, March–April, 1978.  相似文献   

8.
The effects of ageing on the turnover of dopamine, noradrenaline and serotonin in the lateral geniculate nucleus and the visual cortex were evaluated, using high performance liquid chromatography (HPLC) with electrochemical detection. Compared to adult animals, aged rats showed more changes in the visual cortex than in the lateral geniculate nucleus, with dopamine turnover decreased in both structures and noradrenaline turnover unaltered. Changes in serotonin turnover were witnessed only in the visual cortex. A decrease in the monoamine oxidase-A to -B ratio was also observed with increased age for both the lateral geniculate nucleus and visual cortex.  相似文献   

9.
Holloway (1984) used a method of direct tape-arc measurements on chimpanzee brain casts to reject the hypothesis that the lunate sulcus is located in an anterior position in the Taung endocast. However, Holloway neglected to measure the occipital pole-lunate sulcus (OP-LS) arc directly on the Taung endocast as he did on chimpanzee brain casts (a crucial part of his methodology); instead, he determined the relative position of Taung's lunate sulcus on the basis of a calculation that confounds direct measurements and measurements from photographs. When arc OP-LS is measured directly on Taung according to Holloway's methods, the feature that has been identified as the medial end of the lunate sulcus is shown to be located within the range that Holloway determined for chimpanzees. Thus Holloway's methodology and data support rather than refute the claim that the lunate sulcus is located in a pongid-like position in australopithecines.  相似文献   

10.
11.
发展性阅读障碍是一种常见的学习障碍,KIAA0319是发展性阅读障碍相关基因,可能通过影响脑发育进而影响阅读能力。本文就发展性阅读障碍相关基因KIAA0319对鱼类、非灵长类哺乳动物、灵长类哺乳动物和人类大脑发育的影响进行了综述,发现该基因会对大脑语言及阅读相关脑结构如听觉通路、视觉通路和颞叶等的发育产生影响。听觉通路方面,KIAA0319基因可能会损伤内侧膝状体核从而影响听皮层的信息传入。视觉通路方面,KIAA0319基因可能影响外侧膝状体核内的大细胞,使得视觉信息无法正常传递到视皮层,影响背侧视觉通路。颞叶方面,KIAA0319基因的缺陷可能损害颞叶的灰质和白质,并影响颞叶的半球不对称以及颞叶和其他脑区的连接。不过阅读障碍机制复杂,不同阅读障碍相关基因之间、基因与环境之间存在相互影响,仍需进一步探讨。  相似文献   

12.
Paleoneurology concerns the study and analysis of fossil endocasts. Together with cranial capacity and discrete anatomical features, shape can be analysed to consider the spatial relationships between structures and to investigate the endocranial structural system. A sample of endocasts from fossil specimens of the genus Homo has been analysed using traditional metrics and 2D geometric morphometrics based on lateral projections of endocranial shape. The maximum and frontal widths show a size-related pattern of variation shared by all the taxa considered. Furthermore, as cranial capacity increases in the non-modern morphotypes there is a general endocranial vertical stretching (mainly centred at the anterior ascending circumvolution) with flattening and relative shortening of the parietal areas. This pattern could have involved some structural stress between brain development and vault bones at the parietal midsagittal profile in the heavy encephalised Neandertals. In contrast, modern humans show a species-specific neomorphic hypertrophy of the parietal volumes, leading to a dorsal growth and ventral flexion (convolution) and consequent globularity of the whole structure. Brain tensors such as the falx cerebri have been hypothesised to represent one of the main physical constraints on morphogenetic trajectories, with additional influences from cranial base structures. The neurofunctional inferences discussed here stress the role of the parietal areas in the visuo-spatial coordination and integration, which can be involved in higher cerebral functions and related to conceptual thinking.  相似文献   

13.
I have identified and illustrated a spherical “dimple” or “depression” on the Taung endocast as indicating the most likely position of the medial end of the lunate sulcus but have not drawn an actual lunate sulcus on Taung because one is not visible. In a recent paper, R.L. Holloway (Am. J. Phys. Anthropol. 77:27–33, 1988) drew a lunate sulcus on his copy of the Taung endocast, incorrectly attributed this sulcus to me, and used it to obtain a ratio of 0.254 to describe “Falk's” position of the lunate sulcus. My published ratio of 0.242 for Taung (Falk: Am. J. Phys. Anthropol. 67:313–315, 1985a) was not considered, although the focus of Holloway's paper was my assessment of the position of the lunate sulcus. Holloway also excluded published ratios for a chimpanzee in my collection from his statistical analysis but, even so, my published ratio for Taung is still only 1.5 standard deviations from his chimpanzee mean. If my chimpanzee brain is included in the sample, the ratio for Taung is 1.2 standard deviations from the mean. Furthermore, one of Holloway's own chimpanzees (B60–7) has a ratio of 0.241, just 0.001 below my ratio for Taung. There is no sulcus where Holloway has drawn one on Taung, his “F(LS)” is not mine, his 2 mm error is not mine, and the correct ratio for my measurement of Tuang is the one that I published, not the one that Holloway attributes to me. Assessment of Holloway's chimpanzee data supports my claim that the dimple on the Taung endocast is within the chimpanzee range for the medial end of the lunate sulcus.  相似文献   

14.
Observations on petalial asymmetry for 190 hominoid endocasts are reported, and their statistical differences assessed. While all taxa of hominoids show asymmetries to various degrees, the patterns or combinations of petalial asymmetries are very different, with fossil hominids and modern Homo sapiens showing an identical pattern of left-occipital, right-frontal petalias, which contrasts with those found normally in pongids. Of the pongids, Gorilla shows the greater degree of asymmetry in left-occipital petalias. Only modern Homo and hominids (Australopithecus, Homo erectus, Neandertals) show a distinct left-occipital, right-frontal petalial pattern. Analysis by x2 statistics shows the differences to be highly significant. Due to small sample size and incompleteness of endocasts, small-brained hominids, i.e., Australopithecus, are problematical. To the degree that gross petalial patterns are correlated with cognitive task specialization, we speculate that human cognitive patterns evolved early in hominid evolution and were related to selection pressures operating on both symbolic and spatiovisual integration, and that these faculties are corroborated in the archaeological record.  相似文献   

15.
The fluorochrome pattern produced by DA/DAPI double staining in Pan paniscus chromosomes is reported. The location of DA/DAPI prominent bands differs from that reported for all other hominoid species. However, the pattern in the pygmy chimpanzee is most similar to that seen in Pan troglodytes. Comparison of the DA/DAPI pattern of the other hominoid species allows the construction of a proposed hominoid ancestral karyotype and a preliminary phylogenetic reconstruction of DA/DAPI bands for the great apes and man.  相似文献   

16.
The study of hominin brain evolution focuses on the interiors of fossilized braincases. Applications of recent three-dimensional computed tomography (CT) and magnetic resonance imaging (MRI) techniques for visualizing and measuring >virtual endocasts< from braincases in combination with advances in computer graphics and software for acquiring relevant data are transforming the way in which fossil skulls are analyzed, and improving the quality of paleoneurological investigations. Although CT imaging is preferred for fossil skulls, a novel method that combines high-resolution MRI of physical endocasts, electronic reconstruction of their missing parts, and warping of the resulting virtual endocasts is currently being developed and has great potential for future studies of hominin brain evolution. Applications of CT and MR techniques have already resulted in surprising new findings, which are briefly outlined. Exciting revelations about hominin brain evolution are expected as the 21st century unfolds.  相似文献   

17.
The postnatal development of high-affinity 3H-muscimol binding to GABAA receptors was studied in the lateral geniculate nucleus, superior colliculus, frontal and visual cortex of the rat brain. In the lateral geniculate nucleus 3H-muscimol binding rises from day 10 through day 37 reaching the highest value during the entire development followed by a slight decrease until adulthood. In the superior colliculus 3H-muscimol binding increased continuously from day 10 through day 37, and then decreased until day 50 reaching the adult value. In the visual and frontal cortex, binding reached the highest levels on days 14 and 25, respectively, persisted until day 37 followed by a slight decrease until adulthood. The ontogeny of 3H-muscimol binding sites in the visual regions does not essentially differ from that in other brain regions, suggesting that the appearance of 3H-muscimol binding sites in the visual system is not correlated with the functional maturation of the visual system. Unilateral eyelid closure from day 11 until day 25 did not affect the development of GABAA receptors in any of the central visual regions examined, indicating the lack of environmentally controlled mechanism.  相似文献   

18.

Background

Variation in brain structure is both genetically and environmentally influenced. The question about potential differences in brain anatomy across populations of differing race and ethnicity remains a controversial issue. There are few studies specifically examining racial or ethnic differences and also few studies that test for race-related differences in context of other neuropsychiatric research, possibly due to the underrepresentation of ethnic minorities in clinical research. It is within this context that we conducted a secondary data analysis examining volumetric MRI data from healthy participants and compared the volumes of the amygdala, hippocampus, lateral ventricles, caudate nucleus, orbitofrontal cortex (OFC) and total cerebral volume between Caucasian and African-American participants. We discuss the importance of this finding in context of neuroimaging methodology, but also the need for improved recruitment of African Americans in clinical research and its broader implications for a better understanding of the neural basis of neuropsychiatric disorders.

Methodology/Principal Findings

This was a case control study in the setting of an academic medical center outpatient service. Participants consisted of 44 Caucasians and 33 ethnic minorities. The following volumetric data were obtained: amygdala, hippocampus, lateral ventricles, caudate nucleus, orbitofrontal cortex (OFC) and total cerebrum. Each participant completed a 1.5 T magnetic resonance imaging (MRI). Our primary finding in analyses of brain subregions was that when compared to Caucasians, African Americans exhibited larger left OFC volumes (F 1,68 = 7.50, p = 0.008).

Conclusions

The biological implications of our findings are unclear as we do not know what factors may be contributing to these observed differences. However, this study raises several questions that have important implications for the future of neuropsychiatric research.  相似文献   

19.
A crucial component of research on brain evolution has been the comparison of fossil endocranial surfaces with modern human and primate endocrania. The latter have generally been obtained by creating endocasts out of rubber latex shells filled with plaster. The extent to which the method of production introduces errors in endocast replicas is unknown. We demonstrate a powerful method of comparing complex shapes in 3-dimensions (3D) that is broadly applicable to a wide range of paleoanthropological questions. Pairs of virtual endocasts (VEs) created from high-resolution CT scans of corresponding latex/plaster endocasts and their associated crania were rigidly registered (aligned) in 3D space for two Homo sapiens and two Pan troglodytes specimens. Distances between each cranial VE and its corresponding latex/plaster VE were then mapped on a voxel-by-voxel basis. The results show that between 79.7% and 91.0% of the voxels in the four latex/plaster VEs are within 2 mm of their corresponding cranial VEs surfaces. The average error is relatively small, and variation in the pattern of error across the surfaces appears to be generally random overall. However, inferior areas around the cranial base and the temporal poles were somewhat overestimated in both human and chimpanzee specimens, and the area overlaying Broca's area in humans was somewhat underestimated. This study gives an idea of the size of possible error inherent in latex/plaster endocasts, indicating the level of confidence we can have with studies relying on comparisons between them and, e.g., hominid fossil endocasts.  相似文献   

20.
Pedal phalanges of living anthropoids and several Miocene fossil hominoid taxa were studied to reveal functional adaptations of living anthropoid feet and to infer positional behavior of fossil hominoids. Among the examined living anthropoids, Pan has a very developed (long and robust) hallux. Proconsul and Nacholapithecus, a large hominoid from Nachola, northern Kenya, display a moderately long hallux like Alouatta and Cebus, suggesting the well-developed capability of a hallux-assisted power grip. Allometric analyses revealed that the Miocene hominoids examined (mainly from East Africa) as a whole displayed a different scaling pattern about the width of the proximal articular surface of the hallucial terminal phalanx from that of living anthropoids. Larger-sized hominoids display a wider articular surface than comparable-sized living anthropoids while smaller-sized fossil hominoids do the reverse. Such a difference was less marked for the height of the articular surface. These results may suggest that positional adaptations of Miocene hominoids are not merely resultants of a common body size function that is observed in living anthropods. The wide articular surface of fossil hominoid hallucial terminal phalanges suggests an adaptation for vertical climbing and clinging, in which the hallux is kept perpendicularly to the long axis of the vertical support.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号