首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Skeletonema costatum and Coccolithus huxleyi were grown in nitrogen-limited chemostat cultures with illumination provided in light/dark cycles. S. costatum assimilated nitrate and ammonium primarily during the day and less so at night. Conversely, the concentration of nitrate and ammonium in the culture medium varied periodically, increasing at night and decreasing in the light. C. huxleyi assimilated both N sources at a rate sufficient to keep them at very low levels both day and night. However, the activity of N-assimilating enzymes, measured in cell-free extracts, were higher in the light than in the dark periods, implying light/dark differences in the capacity to assimilate nitrogen. Such periodicity in the rate of uptake and enzymatic activity appears to complicate the mathematical expression of nutrient-limited growth of phytoplankton exposed to natural light/dark cycles. Three aspects of dial periodicity in N assimilation have been observed in natural phytoplankton communities in the sea: (1) in assimilation rate, (2) in activity of enzymes of N-assimilation, and (3) in the ammonium concentration of the seawater. The cultures also showed periodicity in these parameters and appear to be useful model systems for study.  相似文献   

2.
The climate of the native tropical forest habitats of Hylocereus undatus, a hemiepiphytic cactus cultivated in 20 countries for its fruit, can help explain the response of its net CO2 uptake to environmental factors. Under wet conditions, about 85% of the total daily net CO2 uptake occurs at night via Crassulacean acid metabolism, leading to a high water‐use efficiency. Total daily net CO2 uptake is reduced 57% by only 10 days of drought, possibly involving stomatal closure induced by abscisic acid produced in the roots, which typically occupy a small substrate volume. Total daily net CO2 uptake for H. undatus is maximal at day/night air temperatures of 30/20°C, optimal temperatures that are higher than those for desert cacti but representative of ambient temperatures in the tropics; its total daily net CO2 uptake becomes zero at day/night air temperatures of 42/32°C. Stem damage occurs at 45°C for H. undatus, whose photosynthetic cells show little acclimation to high temperatures compared with other cacti and are also sensitive to low temperatures, ‐1.5°C killing half of these cells. Consistent with its shaded habitat, total daily net CO2 uptake is appreciable at a total daily PPF of only 2 mol m2 day' and is maximal at 20 mol m?2 day?1, above which photoinhibition reduces net CO2 uptake. Net CO2 uptake ability, which is highly correlated with stem nitrogen and chlorophyll contents, changes only gradually (halftimes of 2–3 months) as the concentration of applied N is changed. Doubling the atmospheric CO2 concentration raises the total daily net CO2 uptake of H. undatus by 34% under optimal conditions and by even larger percentages under adverse environmental conditions.  相似文献   

3.
1. Irradiance strongly affects the abundance of stream periphyton communities that in turn influence patterns of instream nutrient uptake. We examined relationships between irradiance and periphyton nutrient uptake taking into account diel and seasonal variation in ambient irradiance. 2. Uptake of dissolved N, P and C by periphyton as areal uptake (U) and demand (Vf) was determined under 11 irradiance levels (0–100% of ambient conditions) using shallow stream‐side experimental channels. Experiments were conducted once per season over one annual cycle with both day and night uptake rates assessed, together with periphyton biomass and autotrophic production rates. 3. No consistent diel variation in areal uptake or demand was detected for the predominant inorganic or total dissolved nutrients even at the highest irradiances. Lack of variation may indicate nutrient limitation, with photosynthetic sequestration and storage of C during the day for subsequent utilisation at night. Alternatively, oxygen consumption by photoautotrophs at night may stimulate compensatory heterotrophic uptake (e.g. denitrification). 4. In all seasons, release of dissolved organic N was detected during the day but to a lesser extent at night. This was not directly related to irradiance levels, indicating that heterotrophic metabolism (e.g. microbial decomposition) contributes to this phenomenon. 5. Areal uptake and demand for the predominant inorganic and total dissolved nutrients increased in response to increasing irradiance in some or all seasons, but rates were typically higher during the spring and summer. Saturation of areal uptake and demand at elevated irradiances was evident during the spring. demand was also saturated at higher irradiances in the summer and autumn. Maximum demand was comparable during spring and summer, but saturation occurred at lower irradiance in summer (24 h average 135–145 μmol m?2 s?1) relative to spring (312–424 μmol m?2 s?1), indicating more efficient nutrient uptake in summer. Higher total periphyton biomass in summer, but comparable autotrophic biomass (chlorophyll a), implies that heterotrophic metabolism may contribute to this greater efficiency. In spring, autotrophic biomass peaked at an irradiance level of 225 μmol m?2 s?1, also suggesting a role for heterotrophic metabolism in demand at higher irradiances. 6. The results of this study show that irradiance levels exert a strong influence on the nature and quantity of instream nutrient uptake with N demand saturated at elevated irradiance levels during the spring, summer and autumn. Our results also suggest that heterotrophic metabolism makes a measurable contribution to instream nutrient uptake even under higher irradiances that favour autotrophic activity.  相似文献   

4.
Dried powder of Hypnea musciformis was extracted with water at pH 7 after an initial short pre-treatment with cold, diluted HCl. Carrageenans were isolated by alcohol precipitation after an amylase treatment and a filtration of the extracts. The yields at 25 and 90 °C were 25 and 75% (w/w) of the dry alga, with molecular weights (Mw) corresponding to 194 000 and 245 000, respectively. The chemical structure was dominated by G4S-DA-(kappa-carrageenan or carrageenose 4-sulphate). A simple fractionation procedure for kappa-carrageenase hydrolysates, based on stirring in different enthanol/water mixtures, is introduced. NMR analysis showed that oligosaccharides with a repeating DA-G4S structure were the main constituents in the enzymic hydrolysates of the carrageenans from Hypnea musciformis. These oligosaccharides were solubilized in an ethanol concentration from 96 to 48% (v/v). In some enzyme resistant fractions D6S-G4S and DA2S-G4S sequences and D2S,6S unites were detected by 13C-NMR.Author for correspondence  相似文献   

5.
Seasonal variations in growth, biomass, phenology, and phycocolloid content were studied in a population of Hypnea musciformis (Wulfen in Jacquin) Lamouroux on the coast of the state of São Paulo. H. musciformis grows epiphytically on Sargassaum cymosum C. Agardh in a zone ca. 0.5 m wide at the lower spring tide. It also epiphytizes, but to a lesser extent, Laurencia scoparia J. Agardh and occasionally Bryothamnion seaforthii (Turner) Kützing and Acanthophora spicifera (Vahl) Bargesen. Seawater temperatures vary from 19°C in winter to 29°C in summer. Variations in H. musciformis biomass (32–190 g dry weight · m?2), were controlled by several factors, notably seawater temperature, diurnal lower spring tides on sunny days accompanied by calm seas soon followed by rough water, and by grazine, especially by Gammaridea (amphipods) and Aplysia (sea-hares). Fertile tetrasporophytes were present all year, their frequency varying from 22–99%. Cystocarpic plants were rare; male thalli were not found. Carrageenan fields varied from 48–66% of dry weight. Lowest values of carrageenan occurred when sea-water temperatures were high (26–29° C) and biomass was low or, when biomass was high but frequency of fertile tetrasporophytes was highest. Mean field growth in plastic containers initiated from branches of H. musciformis (ca. 0.1 g) over a 28-day period was 0.48, 0.88, 1.30, and 1.53 g fresh weight, respectively, from summer to spring.  相似文献   

6.
The aim of this work was to discover whether the respiration of wheat (Triticum aestivum L. cv. Huntsman) leaves, transferred to darkness after 7 h photosynthesis, showed an initial period of wasteful respiration. For young and old leaves, CO2 production and O2 uptake after 7 h photosynthesis were up to 56% higher than at the end of an 8-h night. The maximum catalytic activities of citrate synthase (EC 4.1.3.7), aconitase (EC 4.2.1.3), fumarase (EC 4.2.1.2) and cytochrome-c oxidase (EC 1.9.3.1) at the end of the day did not differ from those at the end of the night. Changes in the contents of glucose 6-phosphate, fructose-1,6-bisphosphate, dihydroxyacetone phosphate, and -ketoglutarate did not as a group parallel the changes in the rate of respiration. The detailed distribution of label from [U-14C] sucrose supplied to leaves in the dark was similar at the end of the day and the end of the night. No correlation was observed between the rates of leaf respiration and extension growth. It is argued that the higher rate of respiration at the beginning of the night cannot be attributed to wasteful respiration.Abbreviation RQ respiratory quotient We thank Dr H. Thomas and Professor C.J. Pollock, Institute for Grassland and Environmental Research, Plas Gogerddan, Aberystwyth, UK for their generous help in measuring leaf extension. R.H.A. thanks the Science and Engineering Research Council for a studentship.  相似文献   

7.
Two types of acorns (fresh, current-year acorns and old, previous-year acorns) of Quercus liaotungensis were used under two different situations (night and day) to examine the removal and predation by animals in the field. The acorns disappeared very fast. During the day, all of the 280 this-year acorns (TA) and all of the 140 last-year acorns (LA) were removed by animals within 6 h and 5 h, respectively, after acorns were put in place. At night, all of the 280 TA acorns were removed by animals within 10 h after acorns were distributed, and 71 out of 140 LA acorns were removed within 10 h. Animals consumed a small proportion of acorns in situ (11.8%). The number of TA acorns consumed in situ at night was higher than that during the day. During the day, the number of LA acorns consumed in situ was significantly higher than TA acorns. This result suggests that the most important harvesters of Q. liaotungensis during the day were visually orientated diurnal animals, and the most important harvesters at night were olfactorily orientated nocturnal animals. Furthermore, the latter are more efficient than the former at finding and harvesting acorns, because they spend less energy on harvesting the same number of sound acorns.  相似文献   

8.
氨氮胁迫对日本蟳免疫生理指标及器官结构的影响   总被引:2,自引:0,他引:2  
采用生物酶测定及组织学方法,研究了水体中不同浓度氨氮胁迫下日本蟳免疫相关指标的变化,以及对鳃、肝胰腺和胃等器官结构的影响。结果表明:在氨氮胁迫下,各实验组的血细胞密度(DHC)、血蓝蛋白含量、超氧化物歧化酶(SOD)和过氧化氢酶(CAT)活力,以及低浓度胁迫组的酚氧化酶(PO)和溶菌酶(LSZ)活力呈"先升后降"的变化趋势;高浓度组LSZ活力持续下降。在低浓度氨氮胁迫下,过氧化代谢产物丙二醛(MDA)含量呈"先升后降再升",而高浓度氨氮胁迫导致MDA含量持续上升。胁迫第15天,除低浓度组的DHC、血蓝蛋白含量和PO活力略高于对照组外,其他实验组所测指标均低于对照组;PO、LSZ、SOD和CAT等酶活力以及DHC均与氨氮胁迫浓度呈显著负相关,MDA含量则与胁迫浓度呈显著正相关(P0.01)。高浓度氨氮胁迫会导致鳃几丁质膜变薄、断裂,鳃上皮排列紊乱、染色质异固缩;鳃腔中血淋巴减少,密度降低,血细胞凝集、质膜破裂,胞质严重空泡化;肝胰腺上皮形态不规则,B细胞减少,腺细胞出现大量空泡,染色质凝聚;胃几丁质膜断裂,胃上皮排列不规则,胞质中出现大量残余体。研究表明高浓度氨氮胁迫对日本蟳免疫相关指标和器官结构产生显著影响,SOD活力和MDA含量长期变化情况可作为衡量日本蟳在氨氮胁迫下免疫状态的指标。  相似文献   

9.
Hypnea musciformis is the only species so far exploited in Brazil as raw material for the production of k-carrageenan. Due to the erratic production in space and time, increasing harvest and transportation costs, experiments have been performed in order to assess the viability of H. musciformis mariculture.In nature the species occurs as an epiphyte, and so mariculture using artificial substrates that simulated the natural host of the species was tried. These substrates were attached, at regular intervals, to linear ropes. In the sea, these ropes were stretched between cement blocks.Seeding occurs naturally, by means of spores, or detached pieces of H. musciformis scattered in the water column that get entangled on the ropes. The best yields (0.54 wet kg m–1 month–1) were obtained with unthreaded rope substrates maintained in a vertical position by small rafts. Production is highest in the first 18 m off the rocky shore (0–2.1 m deep), at the highest substrate density utilized (10 m–1), 2–3 months after installing the ropes in seawater. The main factor controlling seasonal production is water movement.  相似文献   

10.
Summary The conditions for effective isolation of viable protoplasts from Laminaria japonica with an alginase produced by marine bacterium Alteromonas sp. and a commercially available cellulase were investigated. The highest yields of viable protoplasts (7.910.4x106 cells g–1 FW) were obtained with a hypertonic solution containing 50 % seawater, 25 mM MgCl2, 5 mM HEPES buffer system, and 0.5 M mannitol. Protoplasts were not obtained from thalli of L. japonica when an abalone alginase (abalone acetone powder; AAP: Sigma) was used instead of the bacterial alginase. The isolated protoplasts were cultured in an PESI medium at 5 °C. Complete cell wall formation was observed within 7 days, and dividing cells were first observed in a 9-day-old culture. Some protoplasts regenerated into sheet-shaped thalli and rhizoid structures were also observed on some thalli after 30 to 40 days in culture. This is the first report of protoplast regeneration into plantlets of L. japonica Areschoug (Laminariales, Phaeophyceae).Abbreviations FW Flesh weight - AAP Abalone acetone powder - HEPES N-2-hydroxy-ethylpiperazine-N-2-ethanesulfonic acid - Tris Tris(hyrdoxymethyl)aminomethane - PESI Provasoli's enriched seawater with iodine  相似文献   

11.
Our primary objective was to determine if a relationship existed between seasonal change in phytoplankton and high affinity for (K m) or uptake rates (V maX) of ammonium which might explain seasonal phytoplankton succession in oligotrophic ecosystems. We measured ammonium uptake using [14C]-methylamine and estimatedK m andV max using Hanes Plots at 2-week intervals during 6 months of thermal stratification in Mountain lake, Virginia (37° 22 N, 80° 32 W). Community composition, nutrient levels, and other variables were determined in all uptake experiments. A second objective was to determine if ammonium was preferentially utilized over nitrate and to characterize further the ammonium transport system.V max increased steadily from May until the end of July, each increase coinciding with major changes in the phytoplankton community. Cryptophyceans dominated in May, chlorophyceans in June and July, and cyanophyceans from the end of July to late October. With cyanophycean dominance,V max declined until chlorophyceans reestablished dominance in late October. By contrast,K m values increased from May to the end of July, but thereafter showed no correlation. Acetylene reduction experiments showed no nitrogen fixation during late summer and fall when blue-green algae were present. Preference for ammonium was implied also by negative nitrate reductase assays. Overall, the coincidence ofV max andK m values for [14C]-methylamine uptake and changing phytoplankton community structure suggests the possibility that successive algal communities may be changing as a result of specific species differences in ammonium affinity and uptake rates.  相似文献   

12.
Habitat selection by tufted ducks (Aythya fuligula), a diving duck which swallows benthic prey organisms, was studied during winter at two neighboring lagoons (Lakes Nakaumi and Shinji, Honshu, Japan) which differ strongly in their benthic fauna and in their diving duck densities. The ducks fed overwhelmingly on the dominant bivalve found in each of the two lagoons, the mussel Musculista senhousia in L. Nakaumi and the clam Corbicula japonica in L. Shinji. In general, however, the ducks probably preferred the mussels to the clams because of: (i) their high (2.9 times) calorific content for their weight; (ii) their high digestibility; (iii) their greater accessibility; and (iv) their shorter handling time. An average tufted duck (850 g) was estimated to require 1.3 kg of mussels or 3.8 kg of clams to meet their daily energy requirements. As a result, the two wintering populations were estimated to consume 4970 t mussels and 4770 t clams during a single wintering season, amounting to some 20% of the standing clam crop. Throughout the winter the average gizzard weight (37 g), and gizzard–body mass ratio (4.2%) of the Lake Nakaumi population were half those of the Lake Shinji population (73 g, 8.1%, respectively), despite their significantly similar nutritive body condition (% body lipid > 12%). The need to maintain a specialized gizzard mass in order to be able to cope with the different prey species results in little opportunity for sampling movements of birds between lakes/prey types and as a result two subpopulations of ducks are indicated to be segregated.  相似文献   

13.
Iron propagation cages were settled on sand and/or rock beds in coastal areas of Hokkaido. The cage was oxidized by dissolved oxygen and the released Fe(II) diffused into the seawater around the cage. Fe(II) concentrations in the range of 10–50 nM were detected within a 20-m distance around the cage. For comparison, in the Japan Sea, the total iron concentration is less than 2 nM.Laminaria japonica was grown in an indoor semi-continuous culture system. The critical Fe level for maintaining maximum growth, and the subsistence Fe level for survival were measured. The concentrations obtained were 14–21 and 8 g Fe g–1 tissue, respectively. Iron found inL. japonica growing on rocks and/or rock beds in the Japan Sea was close to the subsistence level. However, the Fe level inL. japonica on the cage in the Japan Sea was considerably higher. The concentrations of chlorophyll-a and fucoxanthin collected from the cage were significantly higher for sporophytes, demonstrating that iron is a very important element for the growth of seaweeds.  相似文献   

14.
We investigated aquatic macrophytes, water quality, and phytoplankton biomass and species composition in three shallow lakes with different levels of vegetation cover and nutrient concentration in Kushiro Moor, during August 2000. Trapa japonica can live in a wide range of nutrient levels. This species forms an environment with a steeper extinction of light, higher concentrations of dissolved organic carbon (DOC), lower concentrations of dissolved oxygen (DO) near the bottom, and lower concentrations of nitrate+nitrite and soluble reactive phosphorus (SRP) than other vegetation types. The pH was much higher in a Polygonum amphibium community, and the DO near the bottom did not decrease compared to a T.japonica community in the summer. The relationship between chlorophyll a and the limiting nutrient (total phosphorus (TP) when total nitrogen (TN):TPis 10 and TN/10 when TN:TP is <10) significantly differed between lakes with and without submerged vegetation. The chlorophyll a concentrations at a given nutrient level were significantly lower in water with submerged macrophytes than in water without them. Correspondence analysis showed that the difference in phytoplankton community structure across sites was largely due to the presence or absence of submerged macrophytes, and the ordination of phytoplankton species in the lakes with submerged macrophytes is best explained by environmental gradients of TN, chlorophyll, pH and SRP.  相似文献   

15.
Seed germination and seedling growth of the annual halophyte species Suaeda japonica Makino were investigated in response to variable salinity of sediment pore water. The germination percentage of S. japonica’s soft brown seeds, which are dominant among dimorphic seeds, decreased with an increase in salinity, although germination was still observed at 1200‐mM NaCl concentration. The germination percentage and germination speed observed in April were higher than those observed in December when treated with sediment water with 400–1200 mM of NaCl concentrations. These data suggest that S. japonica seedlings could be established on sediments that experience high temperatures. Germination recovery of S. japonica seeds transferred from 600‐mM NaCl containing sediment (seawater equivalent) was lowest among 0–1200‐mM NaCl treatments, implying the low tolerance of seawater conditions of S. japonica seeds. Seeds germinated in 900‐ to 1200‐mM NaCl medium showed poor growth, but survived, in hypersaline conditions, and exhibited improvement in growth upon transfer to lower salinity.  相似文献   

16.
Summary Proteins extracted from seed embryos of 29 different cultivated rice (Oryza sativa L.) and one wild rice (O. rufipogon Griff.) were compared by two-dimensional gel electrophoresis analysis. Among more than 300 protein spots on the gel we found some interesting variations in ten spots which were individually designated as proteins A-J. Protein E was observed in all indica cultivars but was not found in those of the subspecies japonica. In contrast, protein F was only detected in japonica cultivars. Protein A existed in all japonica cultivars but, with the exception of IR-36, could not be found in other indica cultivars. Therefore, proteins A, E and F can be used as markers for the identification of indica and japonica. Some so-called Javanica cultivars showed the characteristics of japonica subspecies with regard to proteins A and F, while one other cultivar of Javanica expressed a type intermediate between indica and japonica interms of proteins A and E. One feature discriminating between Javanica and japonica cultivars was found in the D, G, and J proteins which were expressed strongly in Javanica cultivars but were scarcely expressed in those of japonica. Expression of subspecies-specific proteins E and F in f1 hybrids was also investigated.  相似文献   

17.
Summary Tillandsia usneoides, in the common sense a non-succulent plant, exhibits CO2 exchange characterized by net CO2 dark fixation during the night and depression of CO2 exchange during the day. Malate has been demonstrated to accumulate during CO2 dark fixation and to be converted to carbohydrates in light. Thus, T. usneoides exhibits CAM like typical succulents.Net CO2 uptake during the day is increased with net CO2 output being suppressed in duration of time and extent when light intensity increases. Furthermore, a slight increase in CO2 fixation during the following night can be observed if the plants were treated with high light intensity during the previous day.Curves of CO2 exchange typical for CAM are obtained if T. usneoides is kept at 15°C and 20°C. Lower temperature tend to increase CO2 uptake during the day and to inhibit CO2 dark fixation. Temperatures higher than 20°C favour loss of CO2 by respiration, which becomes apparent during the whole day and night at 30°C and higher temperatures. Thus, T. usneoides gains carbon only at temperatures well below 25°C.Net CO2 uptake during the day occurs only in moist plant material and is inhibited in plants cept under water stress conditions. However, CO2 uptake during the night is clearly favoured if the plants dry out. Therefore dry plants gain more carbon than moist ones.Curves of CO2 exchange typical for CAM were also obtained with 13 other species of the genus Tillandsia.The exhibition of CAM by the non-succulent T. usneoides calls for a new definition of the term succulence if it is to remain useful in characterizing this metabolic pathway. Because CO2-fixing cells of T. usneoides possess relatively large vacuoles and are relatively poor in chloroplasts, they resembles the assimilatory cells of typical CAM-exhibiting succulents. Therefore, if succulence only means the capacity of big vacuoles to store malate, the assimilatory cells in T. usneoides are succulent. It seems to be useful to investigate parameters which would allow a definition of the term succulence on the level of the cell rather than on the level of the whole plant or plant organs.  相似文献   

18.
Daily variation in the body temperature of the green iguana (Iguana iguana) was studied by telemetry in laboratory photo-thermal enclosures under a 12Light12Dark (LD) photoperiod. The lizards showed robust daily rhythms of thermoregulation maintaining their body temperatures (Tb) at higher levels during the day than during the night. Some animals maintained rhythmicity when kept in constant darkness. On lightdark cycles parietalectomy produced only a transient increase of median Tb in the first or second night following the operation. Pinealectomized lizards on the other hand maintained their body temperatures at significantly lower levels during the day and at significantly higher levels during the night than did sham-operated or intact lizards. This effect was apparently permanent, since one month after pinealectomy lizards still displayed the altered pattern. Plasma melatonin levels in intact animals were high during the night and low during the day and were unaffected by parietalectomy. Pinealectomized lizards showed low levels of plasma melatonin during both the day and the night. A daily intraperitoneal injection of melatonin in pinealectomized animals given a few minutes after the light to dark transition decreased the body temperatures selected by the lizards during the night and increased the body temperatures selected during the following day. Control injections of saline solution had no effect. The significance of these results is discussed in relation to the role of the pineal complex and melatonin in the mediation of thermoregulatory behavior.Abbreviations LD LightDark - T b body temperature - PAR-X parietalectomy - PIN-X pinealectomy  相似文献   

19.
Haemolymph ammonia-N of Penaeus japonicus (15.6 ± 2.17 g) increased with increased ambient ammonia-N, as they were exposed individually in 30 ppt seawater to 0.003 (control), 0.367, 0.731, 1.439 and 3.665 mmol/1 ammonia-N after 24 hr. Ammonia-N excretion was inhibited and net ammonia-N uptake occurred, as shrimps were exposed to 0.367 mmol/1 ammonia-N or greater. Haemocyanin and protein levels in the haemolymph of shrimp decreased, whereas free amino acid levels increased with increased ambient ammonia-N in the range of 0.003–1.439 mmol/1 ammonia-N. Exposure of shrimp to ambient ammonia-N at 1.439 mmol/1 caused accumulation of haemolymph ammonia and urea, and caused catabolism of haemocyanin and protein to free amino acids. Urea, taurine and glutamine are the major organic constituents in the haemolymph of shrimp under ammonia stress.  相似文献   

20.
We studied the relationship between the diurnal nectar secretion pattern of flowers of Cayratia japonica and insect visiting patterns to these flowers. Flower morphology of C. japonica changed greatly for about 12 hours after flower-opening and the maximum duration of nectar secretion was 2 days. The nectar volume peaked at 11∶00 and 15∶00, and declined at night and at 13∶00 regardless of time elapsed after flower-opening. The nectar volume at the two peaks was, on average, 0.25 μl on bagged inflorescences and 0.1μl on unbagged inflorescences (both, sugar concentration=60%). The flower secreted nectar compensatory when the nectar was removed. This means that insects consume more nectar than the difference of nectar volume between bagged and unbagged flowers. Apis cerana is a primary visitor of this flower, and was the only species for which we confirmed pollen on the body, among many species of flower visiting insects to this flower. Apis cerana visited intensively at the two peaks of nectar secretion. Visits of the other insects were rather constant or intensive only when there was no nectar secretion. Thus flowers of C. japonica with morphologically unprotected nectaries may increase likelihood that their nectar is used by certain pollinators, by controlling the nectar secretion time in day. In this study the pattern of nectar secretion allowed A. cerana maximum harvest of nectar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号