首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. 3H- and 35S-labelled heparan sulphate was isolated from monolayers of human lung fibroblasts and subjected to degradations by (a) deaminative cleavage and (b) periodate oxidation/alkaline elimination. Fragments were resolved by gel- and ion-exchange-chromatography. 2. Deaminative cleavage of the radioactive glycan afforded mainly disaccharides with a low content of ester-sulphate and free sulphate, indicating that a large part (approx. 80%) of the repeating units consisted of uronosyl-glucosamine-N-sulphate. Blocks of non-sulphated [glucuronosyl-N-acetyl glucosamine] repeats (3–4 consecutive units) accounted for the remainder of the chains. 3. By selective oxidation of glucuronic acid residues associated with N-acetylglucosamine, followed by scission in alkali, the radioactive glycan was degraded into a series of fragments. The glucuronosyl-N-acetylglucosamine-containing block regions yielded a compound N-acetylglucosamine–R, where R is the remnant of an oxidized and degraded glucuronic acid. Periodate-insensitive uronic acid residues were recovered in saccharides of the general structure glucosamine–(uronic acid–glucosamine)n–R. 4. Further degradations of these saccharides via deaminative cleavage and re-oxidations with periodate revealed that iduronic acid may be located in sequences such as glucosamine-N-sulphate→iduronic acid→N-acetylglucosamine. Occasionally the iduronic acid was sulphated. Blocks of iduronic acid-containing repeats may contain up to five consecutive units. Alternating arrangements of iduronic acid- and glucuronic acid-containing repeats were also observed. 5. 3H- and 35S-labelled heparan sulphates from sequential extracts of fibroblasts (medium, EDTA, trypsin digest, dithiothreitol extract, cell-soluble and cell-insoluble material) afforded similar profiles after both periodate oxidation/alkaline elimination and deaminative cleavage.  相似文献   

2.
Oligosaccharides obtained from heparan sulphate by nitrous acid degradation were shown to be degraded sequentially by beta-D-glucuronidase or alpha-L-iduronidase followed by alpha D-N-acetylglucosaminidase. Structural analysis of the tetrasaccharide fraction showed the following. (1) N-Acetylglucosamine is preceded by a non-sulphated uronic acid residue that can be either D-glucuronic of L-iduronic acid, but followed by a glucuronic acid residue. (2) The N-acetylglucosamine in the major fraction is sulphated. (3) Very few if any of the uronic acid residues are sulphated (4). The results indicate that the area of the heparan sulphate chain where disaccharides containing N-acetylglucosamine and N-sulphated glucosamine residues alternate is higher in sulphate content than expected and that the sulphate groups are mainly located on the hexosamine units.  相似文献   

3.
Heparanase is an endo-beta-glucuronidase that cleaves heparan sulfate (HS) chains of heparan sulfate proteoglycans on cell surfaces and in the extracellular matrix (ECM). Heparanase, overexpressed by most cancer cells, facilitates extravasation of blood-borne tumor cells and causes release of growth factors sequestered by HS chains, thus accelerating tumor growth and metastasis. Inhibition of heparanase with HS mimics is a promising target for a novel strategy in cancer therapy. In this study, in vitro inhibition of recombinant heparanase was determined for heparin derivatives differing in degrees of 2-O- and 6-O-sulfation, N-acetylation, and glycol splitting of nonsulfated uronic acid residues. The contemporaneous presence of sulfate groups at O-2 of IdoA and at O-6 of GlcN was found to be non-essential for effective inhibition of heparanase activity provided that one of the two positions retains a high degree of sulfation. N-Desulfation/ N-acetylation involved a marked decrease in the inhibitory activity for degrees of N-acetylation higher than 50%, suggesting that at least one NSO3 group per disaccharide unit is involved in interaction with the enzyme. On the other hand, glycol splitting of preexisting or of both preexisting and chemically generated nonsulfated uronic acids dramatically increased the heparanase-inhibiting activity irrespective of the degree of N-acetylation. Indeed N-acetylated heparins in their glycol-split forms inhibited heparanase as effectively as the corresponding N-sulfated derivatives. Whereas heparin and N-acetylheparins containing unmodified D-glucuronic acid residues inhibited heparanase by acting, at least in part, as substrates, their glycol-split derivatives were no more susceptible to cleavage by heparanase. Glycol-split N-acetylheparins did not release basic fibroblast growth factor from ECM and failed to stimulate its mitogenic activity. The combination of high inhibition of heparanase and low release/potentiation of ECM-bound growth factor indicates that N-acetylated, glycol-split heparins are potential antiangiogenic and antimetastatic agents that are more effective than their counterparts with unmodified backbones.  相似文献   

4.
1. Heparan sulphate from bovine lung was fractionated with cetylpyridinium chloride. Solubilisation of complexes was accomplished by increasing concentrations of NaCl in a step-wise manner. Fractions I-IV, which were low-sulphated, contained more D-glucuronic acid than L-iduronic acid, fraction V contained equal proportions while fraction VI was L-iduronic acid-rich. 2. Gel chromatography of heparan sulphates II-IV in 0.5 M sodium acetate yielded extremely asymmetric profiles, while fractions V, VI and heparin did not. 3. Heparan sulphate IV was separated into aggregatable and non-aggregatable species by gel chromatography in 0.5 M sodium acetate. The particle/molecular weights of the two species were determined by light scattering. In 0.15 M NaCl or KCl the aggregatable chains yielded particle weights of 60 000-100 000 while the molecular weight was 20 000 (in 4.0 M guanidine HCl). Non-aggregatable chains afforded 'monomeric' values in 0.15 M NaCl or KCl. 4. Periodate oxidation of D-glucuronic acid residues in N-acetylated block regions followed by scission in alkali was used to fragment aggregating and non-aggregating heparan sulphate IV. The former chains yielded, on average, shorter oligosaccharides than did the latter. Reoxidation of the remaining D-glucuronic acid residues (adjacent to N-sulphated amino sugars) in the oligosaccharides followed by alkaline cleavage resulted in distinctly different fragmentation patterns in the two cases. The iduronate-containing oligosaccharides derived from aggregatable chains were markedly degraded into fragments ranging from glucosamine-L-iduronic acid-glucosamine-(C-3 fragment) to higher saccharides. Only higher saccharides were obtained from fragments of non-aggregatable chains. 5. It is concluded that self-associating heparan sulphates comprise both D-glucuronic acid- and L-iduronic acid-containing repeating units and that these units are arranged in an alternating or mixed fashion. These characteristics are analogous to those observed with self-associating dermatan sulphate species (Fransson, L.-A. and C?ster, L. (1979) Biochim. Biophys. Acta 582, 132-144).  相似文献   

5.
Heparin, heparan sulphate, and various derivatives thereof have been oxidised with periodate at pH 3.0 and 4° and at pH 7.0 and 37°. Whereas oxidation under the latter conditions destroys all of the nonsulphated uronic acids, treatment with periodate at low pH and temperature causes selective oxidation of uronic acid residues. The reactivity of uronic acid residues depends on the nature of neighbouring 2-amino-2-deoxyglucose residues. d-Glucuronic acid residues are susceptible to oxidation when flanked by N-acetylated amino sugars, but resistant when adjacent residues are either unsubstituted or N-sulphated. L-Iduronic acid residues in their natural environment (2-deoxy-2-sulphoamino-d-glucose) are resistant to oxidation, whereas removal of N-sulphate groups renders a portion of these residues periodate-sensitive. Oxidised uronic acid residues in heparin-related glycans may be cleaved by alkali, producing a series of oligosaccharide fragments. Thus, periodate oxidation-alkaline elimination provides an additional method for the controlled degradation of heparin.  相似文献   

6.
Metabolism of biosynthetically [35S]sulphate-labelled heparan sulphate proteoglycan (HSPG) was studied in the isolated glomerulus. Chromatography and electrophoresis resolved HS into 5 components, designated HS1a, HS1b, and HS2 to HS4 in order of increasing Kd. Both HS1a (250 kDa) and HS1b (130 kDa) are present in the glomerular basement membrane and have glycosaminoglycan chains of 25-45 kDa. Chemical analysis of glycosaminoglycan chains indicated a similar content of 50% N-sulphation and 30% 6-O-sulphation on the hexosamine residues of all HSs, with the remaining 20% of sulphate likely at the 2-O-position of uronic acid residues. By pulse-chase analysis, the basement-membrane fraction was found to have a half-life of residency in the glomerulus of 37 h. Both HS1a and HS1b are mainly released intact into the medium and are not further broken down in that compartment. In contrast, HS2 is almost completely released into the medium immediately after synthesis and is not normally recovered from the tissue. It is a 90-kDa HSPG with a hydrophobic core protein and glycosaminoglycan chains similar in size to those of HS1. In addition to these larger PGs, HS3 and HS4 represent glycosaminoglycan chains with little or no core protein. HS1a, HS1b and HS2 were iodinated and deglycosylated. Each has a 30-kDa core protein in addition to 18 kDa of chondroitinase ABC- and nitrous-acid-resistant O-linked carbohydrate. This suggests the possibility of a single core protein with variable glycosylation and destination. HS1a has 5-6 glycosaminoglycan chains, HS1b 2-3 and HS2 1-2. We propose that basement-membrane HSPG (HS1a and HS1b) and a related, underglycosylated secreted HSPG (HS2) are the major HSPGs synthesized by the isolated glomerulus. Other molecular species may represent discrete steps in the turnover of basement-membrane HSPG.  相似文献   

7.
1. A method was developed for determination of the uronic acid composition of heparin-like glycosaminoglycans. Polymers or oligosaccharides are degraded to monosaccharides by a combination of acid hydrolysis and deamination with HNO2. The resulting uronic acid monosaccharides (accounting for about 70% of the uronic acid contents of the starting materials) are isolated and converted into the corresponding aldono-1,4-lactones, which are separated by g.l.c. The calculated ratios of glucuronic acid/iduronic acid are reproducible within 5%. 2. Samples of heparin from pig intestinal mucosa (molar ratio of sulphate/disaccharide unit, 2.40) and heparan sulphate from human aorta (sulphate/disaccharide ratio, 0.46) were subjected to uronic acid analysis. l-Iduronic acid constituted 77% and 19% respectively of the total uronic acid contents. 3. The correlation between the contents of sulphate and iduronic acid indicated by this finding also applied to the fractionated deamination products of the two polymers. The sulphated fragments varied in size from disaccharide to octasaccharide (or larger) and showed sulphate/disaccharide molar ratios in the range of 0.05–2.0. The proportion of iduronic acid increased with increasing ester sulphate contents of the oligosaccharides. 4. Previous studies on the biosynthesis of heparin in a cell-free system have shown that l-iduronic acid residues are formed by C-5 epimerization of d-glucuronic acid units at the polymer level; the process requires concomitant sulphation of the polymer. The results obtained in the present structural study conform to these findings, and suggest further that similar mechanisms may operate in the biosynthesis of heparan sulphate. The epimerization reaction appears to be linked to the sulphation of hydroxyl groups but does not seem to require sulphation of the target uronic acid residues. The significance of sulphamino groups in relation to the formation of iduronic acid is unknown.  相似文献   

8.
Heparan sulphate and heparin are chemically related alpha beta-linked glycosaminoglycans composed of alternating sequences of glucosamine and uronic acid. The amino sugars may be N-acetylated or N-sulphated, and the latter substituent is unique to these two polysaccharides. Although there is general agreement that heparan sulphate is usually less sulphated than heparin, reproducible differences in their molecular structure have been difficult to identify. We suggest that this is because most of the analytical data have been obtained with degraded materials that are not necessarily representative of complete polysaccharide chains. In the present study intact heparan sulphates, labelled biosynthetically with [3H]glucosamine and Na2(35)SO4, were isolated from the surface membranes of several types of cells in culture. The polysaccharide structure was analysed by complete HNO2 hydrolysis followed by fractionation of the products by gel filtration and high-voltage electrophoresis. Results showed that in all heparan sulphates there were approximately equal numbers of N-sulpho and N-acetyl substituents, arranged in a similar, predominantly segregated, manner along the polysaccharide chain. O-Sulphate groups were in close proximity to the N-sulphate groups but, unlike the latter, the number of O-sulphate groups could vary considerably in heparan sulphates of different cellular origins ranging from 20 to 75 O-sulphate groups per 100 disaccharide units. Inspection of the published data on heparin showed that the N-sulphate frequency was very high (greater than 80% of the glucosamine residues are N-sulphated) and the concentration of O-sulphate groups exceeded that of the N-sulphate groups. We conclude from these and other observations that heparan sulphate and heparin are separate families of N-sulphated glycosaminoglycans.  相似文献   

9.
A particular heparan sulphate fraction which possessed the largest proportion of high affinity variants for human low density lipoprotein contained almost equal proportions of the repeating units l-iduronosyl(O-sulphate)N-sulphamidoglucosamine and d-glucoronosyl-N-acetylglucosamine. The heparan sulphate was fractionated on lipoprotein-agarose into three populations. Results of periodate oxidation—alkaline elimination indicated that the size of the completely N-sulphated block regions increased with increasing affinity. In contrast, the number of consecutive l-iduronosyl(O-sulphate)-containing repeats decreased with increasing affinity towards lipoprotein. After selective periodate oxidation—alkaline scission of d-glucoronic acid residues only a portion of the heparan sulphate fragments retained high affinity for lipoprotein. This portion consisted of fragments larger than dodecasaccharide which contained both l-iduronic acid-O-sulphate and non-sulphated uronic acid residues (−) 2:1). No affinity or little affinity was displayed by fragments (of comparable size) that contained only sulphated l-iduronic acid residues.  相似文献   

10.
The sulfated glycosaminoglycan heparan sulfate (HS) is found ubiquitously on cell surfaces, in the extracellular matrix, and intracellularly as HS proteoglycans. Because of the structural heterogeneity of HS, tissue-derived HS preparations represent a mixture of HS chains originating from different cell types and tissue loci. Monoclonal anti-HS antibodies have been employed to detect the localization of specific HS epitopes in tissues, but limited information has been available on the saccharide structures recognized by the antibodies. We have studied the saccharide epitope structures of four anti-HS antibodies, HepSS1, JM13, JM403, and 10E4, which all recognize distinct HS species as demonstrated by different patterns of immunoreactivity upon staining of embryonic rat and adult human tissues. The epitopes recognized by JM13 and HepSS1 were found almost exclusively in basement membrane HS, whereas JM403 and 10E4 reacted also with cell-associated HS species. The binding of HepSS1, JM403, and 10E4 to HS was dependent on the GlcN N-substitution of the polysaccharide rather than O-sulfation. HepSS1 thus interacted with N-sulfated HS domains, JM403 binding was critically dependent on N-unsubstituted GlcN residues, and 10E4 bound to "mixed" HS domains containing both N-acetylated and N-sulfated disaccharide units. By contrast, JM13 binding seemed to require the presence of 2-O-sulfated glucuronic acid residues.  相似文献   

11.
Oligosaccharides with the general structure UA-(GlcNAc-GlcUA-)m-aManOH (m = 1-5) (where UA represents uronic acid, GlcNAc N-acetylglucosamine, GlcUA glucuronic acid and aManOH anhydromannitol) were prepared from low-sulphated heparan sulphates of bovine lung origin by nitrous acid deaminative cleavage followed by reduction. Analysis of the methylene signals in the 100 MHz 13C-n.m.r. spectrum of the tetrasaccharide (m = 1) shows that, whereas the extent of C-6 O-sulphation in the GlcNAc is approx. 65%, in the aManOH [formerly a GlcNSO3 (N-sulphoglucosamine) residue in the parent heparan sulphate] it is only approx. 10%. In the higher oligosaccharides (m = 2-5) the gross extent of C-6 O-sulphation of GlcNAc residues falls systematically with increasing oligosaccharide size, whereas that in the aManOH residues remains below 10%. There is also evidence that the C-6 O-sulphation of the GlcNAc residues is confined to the GlcNAc residue adjacent to the non-reducing terminal uronic acid residue. It is therefore tentatively proposed that the GlcNAc in the sequence -GlcNSO3-UA-GlcNAc- might be a favoured substrate for the 6-O-sulphotransferase. It is concluded that in the low-sulphated heparan sulphates GlcNSO3 residues that do not occur in (GlcNSO3-UA-)n blocks tend to have a significantly smaller extent of C-6 O-sulphation than do GlcNAc residues that occur in -GlcNSO3-UA-GlcNAc-GlcUA-GlcNSO3-sequences.  相似文献   

12.
Structural requirements for heparan sulphate self-association   总被引:4,自引:0,他引:4  
To investigate heparan sulphate self-association, various sub-fractions of beef-lung heparan sulphate have been subjected to affinity chromatography on heparan sulphate-agarose. A particular variant of heparan sulphate was chiefly bound to matrices substituted with the same or cognate heparan sulphates. N-desulphation and N-acetylation abolished the chain-chain interaction. Also, dermatan sulphates and chondroitin sulphates showed affinity for heparan sulphate-agarose. [3H]Heparan sulphates that were bound to a heparan sulphate-agarose were desorbed by elution with the corresponding heparan sulphate chains and also with unrelated heparan sulphates, heparin, and the galactosaminoglycans to various degrees. However, the corresponding heparan sulphate species was the most efficient at low concentrations. Dextran sulphate was unable to desorb bound heparan sulphate. When the corresponding heparan sulphate was N-desulphated/N-acetylated, carboxyl-reduced, or periodate-oxidised (D-glucuronate), the modified polymer was unable to displace [3H]heparan sulphate from heparan sulphate-agarose. The displacing ability of heparin was also destroyed by periodate oxidation. It is concluded that self-interaction between heparan sulphate chains is strongly dependent on the overall molecular conformation. The N-sulphate and carboxylate groups as well as the integrity of the D-glucuronate residue are all essential for maintaining the proper secondary structure.  相似文献   

13.
The snail glycosaminoglycan acharan sulfate (AS) is structurally related to heparan sulfates (HS) and has a repeating disaccharide structure of alpha-d-N-acetylglucosaminyl-2-O-sulfo-alpha-l-iduronic acid (GlcNAc-IdoA2S) residues. Using the phage display technology, a unique antibody (MW3G3) was selected against AS with a V(H)3, DP 47, and a CDR3 amino acid sequence of QKKRPRF. Antibody MW3G3 did not react with desulfated, N-deacetylated or N-sulfated AS, indicating that reactivity depends on N-acetyl and 2-O-sulfate groups. Antibody MW3G3 also had a high preference for (modified) heparin oligosaccharides containing N-acetylated glucosamine and 2-O-sulfated iduronic acid residues. In tissues, antibody MW3G3 identified a HS oligosaccharide epitope containing N-acetylated glucosamine and 2-O-sulfated iduronic acid residues as enzymatic N-deacetylation of HS in situ prevented staining, and 2-O-sulfotransferase-deficient Chinese hamster ovary cells were not reactive. An immunohistochemical survey using various rat organs revealed a distinct distribution of the MW3G3 epitope, which was primarily present in the basal laminae of most (but not all) blood vessels and of some epithelia, including human skin. No staining was observed in the glycosaminoglycan-rich tumor matrix of metastatic melanoma. In conclusion, we have selected an antibody that identifies HS oligosaccharides containing N-acetylated glucosamine and 2-O-sulfated iduronic acid residues. This antibody may be instrumental in identifying structural alterations in HS in health and disease.  相似文献   

14.
Cell surface heparan sulfate (HS) proteoglycans are required in development and postnatal repair. Important classes of ligands for HS include growth factors and extracellular matrix macromolecules. For example, the focal adhesion component syndecan-4 interacts with the III(12-14) region of fibronectin (HepII domain) through its HS chains. The fine structure of HS is critical to growth factor responses, and whether this extends to matrix ligands is unknown but is suggested from in vitro experiments. Cell attachment to HepII showed that heparin oligosaccharides of >or=14 sugar residues were required for optimal inhibition. The presence of N-sulfated glucosamine in the HS was essential, whereas 2-O-sulfation of uronic acid or 6-O-sulfation of glucosamine had marginal effects. In the more complex response of focal adhesion formation through syndecan-4, N-sulfates were again required and also glucosamine 6-O-sulfate. The significance of polymer N-sulfation and sulfated domains in HS was confirmed by studies with mutant Chinese hamster ovary cells where heparan sulfation was compromised. Finally, focal adhesion formation was absent in fibroblasts synthesizing short HS chains resulting from a gene trap mutation in one of the two major glucosaminoglycan polymerases (EXT1). Several separate, specific properties of cell surface HS are therefore required in cell adhesion responses to the fibronectin HepII domain.  相似文献   

15.
Functional properties of heparan sulfate (HS) are generally ascribed to the sulfation pattern of the polysaccharide. However, recently reported functional implications of rare N-unsubstituted glucosamine (GlcNH(2)) residues in native HS prompted our structural characterization of sequences around such residues. HS preparations were cleaved with nitrous acid at either N-sulfated or N-unsubstituted glucosamine units followed by reduction with NaB(3)H(4). The labeled products were characterized following complementary deamination steps. The proportion of GlcNH(2) units varied from 0.7-4% of total glucosamine in different HS preparations. The GlcNH(2) units occurred largely clustered at the polysaccharide-protein linkage region in intestinal HS, also more peripherally in aortic HS. They were preferentially located within N-acetylated domains, or in transition sequences between N-acetylated and N-sulfated domains, only 20-30% of the adjacent upstream and downstream disaccharide units being N-sulfated. The nearest downstream (toward the polysaccharide-protein linkage) hexuronic acid was invariably GlcUA, whereas the upstream neighbor could be either GlcUA or IdoUA. The highly sulfated but N-unsubstituted disaccharide unit, -IdoUA2S-GlcNH(2)6S-, was detected in human renal and porcine intestinal HS, but not in HS from human aorta. These results are interpreted in terms of a biosynthetic mechanism, whereby GlcNH(2) residues are formed through regulated, incomplete action of an N-deacetylase/N-sulfotransferase enzyme.  相似文献   

16.
Two heparan sulphates, of different N- and O-sulphate content and iduronic/ glucuronic acid ratio (HS I and HS II), were submitted to partial periodate oxidation, borohydride reduction and subsequent O-sulphation. The sulphated derivatives showed increased anticoagulant activities by APTT assay and were significantly degraded by heparinase.  相似文献   

17.
Within cells, dermatan sulfate (DS) and heparan sulfate (HS) are degraded in two steps. The initial endohydrolysis of these polysaccharides is followed by the sequential action of lysosomal exoenzymes to reduce the resulting oligosaccharides to monosaccharides and inorganic sulfate. Mucopolysaccharidosis (MPS) type II is a lysosomal storage disorder caused by a deficiency of the exoenzyme iduronate-2-sulfatase (I2S). Consequently, partially degraded fragments of DS and HS have been shown to accumulate in the lysosomes of affected cells and are excreted in the urine. Di- to hexadecasaccharides, isolated from the urine of a MPS II patient using anion exchange and gel filtration chromatography, were identified using electrospray ionization-tandem mass spectrometry (ESI-MS/MS). These oligosaccharides were shown to have non-reducing terminal iduronate-2-sulfate residues by digestion with recombinant I2S. A pattern of growing oligosaccharide chains composed of alternating uronic acid and N-acetylhexosamine residues was identified and suggested to originate from DS. A series of oligosaccharides consisting of hexosamine/N-acetylhexosamine alternating with uronic acid residues was also identified and on the basis of the presence of unacetylated hexosamine; these oligosaccharides are proposed to derive from HS. The presence of both odd and even-length oligosaccharides suggests both endo-beta-glucuronidase and endo-N-acetylhexosaminidase activities toward both glycosaminoglycans. Furthermore, the putative HS oligosaccharide structures identified indicate that heparanase activities are directed toward regions of both low and high sulfation, while the N-acetylhexosaminidase activity acted only in regions of low sulfation in this polysaccharide.  相似文献   

18.
Selective periodate oxidation of unsubstituted l-iduronic acid residues in copolymeric dermatan sulphate chains was followed by reduction-hydrolysis or alkaline elimination. By this procedure the glucuronic acid-containing periods were isolated in oligosaccharide form; general formula: [Formula: see text] Further degradation of these oligosaccharides with chondroitinase-AC yielded three types of products: (a) sulphated trisaccharide containing an unsaturated uronosyl moiety in the non-reducing terminal and a C(4) fragment in the reducing terminal, DeltaUA-GalNAc-(-SO(4))-R; (b) monosulphated, unsaturated disaccharide, DeltaUA-GalNAc-SO(4) when n is greater than or equal to 2; and (c) N-acetylgalactosamine with or without sulphate. Oligosaccharides containing a single glucuronic acid residue (n=1) comprised more than half of the glucuronic acid-containing oligosaccharides. The terminal N-acetylgalactosamine moiety of the shortest oligosaccharide was largely 4-sulphated, whereas higher oligosaccharides primarily contained 6-sulphated or unsulphated hexosamine moieties in the same position. Moreover, IdUA-SO(4)-containing oligosaccharides were encountered. These oligosaccharides were resistant to the action of chondroitinase-ABC.  相似文献   

19.
The distribution of N-sulphate groups within fibroblast heparan sulphate chains was investigated. The detergent-extractable heparan sulphate proteoglycan from adult human skin fibroblasts, radiolabelled with [3H]glucosamine and [35S]sulphate, was coupled to CNBr-activated Sepharose 4B. After partial depolymerization of the heparan sulphate with nitrous acid, the remaining Sepharose-bound fragments were removed by treatment with alkali. These fragments, of various sizes, but all containing an intact reducing xylose residue, were fractionated on Sephacryl S-300 and the distribution of the 3H and 35S radiolabels was analysed. A decreased degree of sulphation was observed towards the reducing termini of the chains. After complete nitrous acid hydrolysis of the Sepharose-bound proteoglycan, analysis of the proximity of N-sulphation to the reducing end revealed the existence of an extended N-acetylated sequence directly adjacent to the protein-linkage sequence. The size of this N-acetylated domain was estimated by gel filtration to be approximately eight disaccharide units. This domain appears to be highly conserved, being present in virtually all the chains derived from this proteoglycan, implying the existence of a mechanism capable of generating such a non-random sequence during the post-polymeric modification of heparan sulphate. Comparison with the corresponding situation in heparin suggests that different mechanisms regulate polymer N-sulphation in the vicinity of the protein-linkage region of these chemically related glycosaminoglycans.  相似文献   

20.
Biosynthetically radiolabelled heparan sulphate proteoglycans have been isolated from the growth medium and the cell lysate of a human neuroblastoma cell line (CHP100). Chromatography on Sepharose CL-4B identified two heparan sulphate proteoglycans in the medium (Kav 0.220 and 0.389), whereas in the cell lysate the major proteoglycan species were more heterogenous and of a smaller overall molecular size (Kav 0.407) than the medium-derived counterparts. Chromatography on Sepharose CL-6B of free heparan sulphate glycosaminoglycan chains showed that the majority of cell-layer-derived material heparan sulphate 2, Kav = 0.509) was smaller than medium heparan sulphates (heparan sulphate 1 and heparan sulphate 2, Kav 0.230 and 0.317). Analysis of the patterns of polymer sulphation by nitrous acid treatment, gel chromatography and high-voltage electrophoresis established that in each heparan sulphate fraction there was on average 1.1 sulphate residues per disaccharide with an N:O sulphate ratio of 1.1. Heparan sulphate in the medium had a high proportion of di-O-sulphated disaccharides in regions of the chain with repeat disaccharide sequences of structure GlcA-GlcNSO3, whereas cell-associated material was enriched in di-O-sulphated tetrasaccharides of alternating sequences GlcA-GlcNAc-GlcA-GlcNSO3. The identification of several populations of heparan sulphate proteoglycans differing in molecular size and glycosaminoglycan fine structure may reflect the functional diversity of this family of macromolecules in the nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号