首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Acylphosphatase can be converted in vitro, by addition of trifluoroethanol (TFE), into amyloid fibrils of the type observed in a range of human diseases. The propensity to form fibrils has been investigated for a series of mutants of acylphosphatase by monitoring the range of TFE concentrations that result in aggregation. We have found that the tendency to aggregate correlates inversely with the conformational stability of the native state of the protein in the different mutants. In accord with this, the most strongly destabilized acylphosphatase variant forms amyloid fibrils in aqueous solution in the absence of TFE. These results show that the aggregation process that leads to amyloid deposition takes place from an ensemble of denatured conformations under conditions in which non-covalent interactions are still favoured. These results support the hypothesis that the stability of the native state of globular proteins is a major factor preventing the in vivo conversion of natural proteins into amyloid fibrils under non-pathological conditions. They also suggest that stabilizing the native states of amyloidogenic proteins could aid prevention of amyloidotic diseases.  相似文献   

2.
Calamai M  Taddei N  Stefani M  Ramponi G  Chiti F 《Biochemistry》2003,42(51):15078-15083
A potentially amyloidogenic protein has to be at least partially unfolded to form amyloid aggregates. However, aggregation of the partially or totally unfolded state of a protein is modulated by at least three other factors: hydrophobicity, propensity to form secondary structure, and net charge of the polypeptide chain. We propose to evaluate the relative importance of net charge, as opposed to the other factors, on protein aggregation and amyloidogenicity. For this aim, we have used two homologous proteins that were previously shown to be able to form amyloid fibrils in vitro, the N-terminal domain of HypF from Escherichia coli (HypF-N) and human muscle acylphosphatase (AcP). The aggregation process from an ensemble of partially unfolded conformations is ca. 1000-fold faster for HypF-N than for AcP. This difference can mainly be attributed to a higher hydrophobicity and a lower net charge for HypF-N than for AcP. By using protein engineering methods, we have decreased the net charge of AcP to a value identical to that of wild-type HypF-N and increased the net charge of HypF-N to a value identical to that of wild-type AcP. Amino acid substitutions were selected to minimize changes in hydrophobicity and secondary structure propensities. We were able to estimate that the difference in net charge between the two wild-type proteins contributes to 20-25% of the difference in their aggregation rates. An understanding of the relative influences of these forces in protein aggregation has implications for elucidating the complexity of the aggregation process, for predicting the effect of natural mutations, and for accurate protein design.  相似文献   

3.
Glycosaminoglycans (GAGs) are highly sulfated linear polysaccharides prevalent in the extracellular matrix, and they associate with virtually all amyloid deposits in vivo. GAGs accelerate the aggregation of many amyloidogenic peptides in vitro, but little mechanistic evidence is available to explain why. Herein, spectroscopic methods demonstrate that GAGs do not affect the secondary structure of the monomeric 8 kDa amyloidogenic fragment of human plasma gelsolin. Moreover, monomerized 8 kDa gelsolin does not bind to heparin under physiological conditions. In contrast, 8 kDa gelsolin cross-β-sheet oligomers and amyloid fibrils bind strongly to heparin, apparently because of electrostatic interactions between the negatively charged polysaccharide and a positively charged region of the 8 kDa gelsolin assemblies. Our observations are consistent with a scaffolding mechanism whereby cross-β-sheet oligomers, upon formation, bind to GAGs, accelerating the fibril extension phase of amyloidogenesis, possibly by concentrating and orienting the oligomers to more efficiently form amyloid fibrils. Notably, heparin decreases the 8 kDa gelsolin concentration necessary for amyloid fibril formation, likely a consequence of fibril stabilization through heparin binding. Because GAG overexpression, which is common in amyloidosis, may represent a strategy for minimizing cross-β-sheet oligomer toxicity by transforming them into amyloid fibrils, the mechanism described herein for GAG-mediated acceleration of 8 kDa gelsolin amyloidogenesis provides a starting point for therapeutic strategy development. The addition of GAG mimetics, small molecule sulfonates shown to reduce the amyloid load in animal models of amyloidosis, to a heparin-accelerated 8 kDa gelsolin aggregation reaction mixture neither significantly alters the rate of amyloidogenesis nor prevents oligomers from binding to GAGs, calling into question their commonly accepted mechanism.  相似文献   

4.
The self-assembly of proteins and peptides into polymeric amyloid fibrils is a process that has important implications ranging from the understanding of protein misfolding disorders to the discovery of novel nanobiomaterials. In this study, we probe the stability of fibrils prepared at pH 2.0 and composed of the protein insulin by manipulating electrostatic interactions within the fibril architecture. We demonstrate that strong electrostatic repulsion is sufficient to disrupt the hydrogen-bonded, cross-β network that links insulin molecules and ultimately results in fibril dissociation. The extent of this dissociation correlates well with predictions for colloidal models considering the net global charge of the polypeptide chain, although the kinetics of the process is regulated by the charge state of a single amino acid. We found the fibrils to be maximally stable under their formation conditions. Partial disruption of the cross-β network under conditions where the fibrils remain intact leads to a reduction in their stability. Together, these results support the contention that a major determinant of amyloid stability stems from the interactions in the structured core, and show how the control of electrostatic interactions can be used to characterize the factors that modulate fibril stability.  相似文献   

5.
Protein aggregation is a problem with a multitude of consequences, ranging from affecting protein expression to its implication in many diseases. Of recent interest is the specific form of aggregation leading to the formation of amyloid fibrils, structures associated with diseases such as Alzheimer's disease. The ability to form amyloid fibrils is now regarded as a property generic to all polypeptide chains. Here we show that around the isoelectric point a different generic form of aggregation can also occur by studying seven widely different, nonrelated proteins that are also all known to form amyloid fibrils. Under these conditions gels consisting of relatively monodisperse spherical particulates are formed. Although these gels have been described before for beta-lactoglobulin, our results suggest that the formation of particulates in the regime where charge on the molecules is minimal is a common property of all proteins. Because the proteins used here also form amyloid fibrils, we further propose that protein misfolding into clearly defined aggregates is a generic process whose outcome depends solely on the general properties of the state the protein is in when aggregation occurs, rather than the specific amino acid sequence. Thus under conditions of high net charge, amyloid fibrils form, whereas under conditions of low net charge, particulates form. This observation furthermore suggests that the rules of soft matter physics apply to these systems.  相似文献   

6.
BackgroundPolybasic helical peptides, such as peptide p5, bind human amyloid extracts and synthetic amyloid fibrils. When radiolabeled, peptide p5 has been shown to specifically bind amyloid in vivo thereby allowing imaging of the disease. Structural requirements for heparin and amyloid binding have been studied using analogues of p5 that modify helicity and chirality.MethodsPeptide-ligand interactions were studied using CD spectroscopy and solution-phase binding assays with radiolabeled p5 analogues. The interaction of a subset of peptides was further studied by using molecular dynamics simulations.ResultsDisruption of the peptide helical structure reduced peptide binding to heparin and human amyloid extracts. The all-D enantiomer and the β-sheet-structured peptide bound all substrates as well as, or better than, p5. The interaction of helical and β-sheet structured peptides with Aβ fibrils was modeled and shown to involve both ionic and non-ionic interactions.ConclusionsThe α-helical secondary structure of peptide p5 is important for heparin and amyloid binding; however, helicity is not an absolute requirement as evidenced by the superior reactivity of a β-sheet peptide. The differential binding of the peptides with heparin and amyloid fibrils suggests that these molecular interactions are different. The all-D enantiomer of p5 and the β-sheet peptide are candidates for amyloid targeting reagents in vivo.General SignificanceEfficient binding of polybasic peptides with amyloid is dependent on the linearity of charge spacing in the context of an α-helical secondary structure. Peptides with an α-helix or β-sheet propensity and with similar alignment of basic residues is optimal.  相似文献   

7.
It is known that human muscle acylphosphatase (AcP) is able, under appropriate conditions in vitro, to aggregate and form amyloid fibrils of the type associated with human diseases. A number of compounds were tested for their ability to bind specifically to the native conformation of AcP under conditions favoring denaturation and subsequent aggregation and fibril formation. Compounds displaying different binding affinities for AcP were selected and their ability to inhibit protein fibrillization in vitro was evaluated. We found that compounds displaying a relatively high affinity for AcP are able to significantly delay protein fibrillization, mimicking the effect of stabilizing mutations; in addition, the effectiveness of such outcome correlates positively to both ligand concentration and affinity to the native state of AcP. By contrast, the inhibitory effect of ligands on AcP aggregation disappears in a mutant protein in which such binding affinity is lost. These results indicate that the stabilization of the native conformation of amyloidogenic proteins by specific ligand binding can be a strategy of general interest to inhibit amyloid formation in vivo.  相似文献   

8.
Glycosaminoglycans (GAGs), which are found in association with all extracellular amyloid deposits in humans, are known to accelerate the aggregation of various amyloidogenic proteins in vitro. However, the precise molecular mechanism(s) by which GAGs accelerate amyloidogenesis remains elusive. Herein, we show that sulfated GAGs, especially heparin, accelerate transthyretin (TTR) amyloidogenesis by quaternary structural conversion. The clustering of sulfate groups on heparin and its polymeric nature are essential features for accelerating TTR amyloidogenesis. Heparin does not influence TTR tetramer stability or TTR dissociation kinetics, nor does it alter the folded monomer-misfolded monomer equilibrium directly. Instead, heparin accelerates the conversion of preformed TTR oligomers into larger aggregates. The more rapid disappearance of monomeric TTR in the presence of heparin likely reflects the fact that the monomer-misfolded amyloidogenic monomer-oligomer-TTR fibril equilibria are all linked, a hypothesis that is strongly supported by the light scattering data. TTR aggregates prepared in the presence of heparin exhibit a higher resistance to trypsin and proteinase K proteolysis and a lower exposure of hydrophobic side chains comprising hydrophobic clusters, suggesting an active role for heparin in amyloidogenesis. Our data suggest that heparin accelerates TTR aggregation by a scaffold-based mechanism, in which the sulfate groups comprising GAGs interact primarily with TTR oligomers through electrostatic interactions, concentrating and orienting the oligomers, facilitating the formation of higher molecular weight aggregates. This model raises the possibility that GAGs may play a protective role in human amyloid diseases by interacting with proteotoxic oligomers and promoting their association into less toxic amyloid fibrils.  相似文献   

9.
Glycosaminoglycans (GAGs) are frequently associated with amyloid deposits in most amyloid diseases, and there is evidence to support their active role in amyloid fibril formation. The purpose of this study was to obtain structural insight into GAG-protein interactions and to better elucidate the molecular mechanism underlying the effect of GAGs on the amyloid aggregation process and on the related cytotoxicity. To this aim, using Fourier transform infrared and circular diochroism spectroscopy, electron microscopy and thioflavin fluorescence dye we examined the effect of heparin and other GAGs on the fibrillogenesis and cytotoxicity of aggregates formed by the amyloidogenic W7FW14 apomyoglobin mutant. Although this protein is unrelated to human disease, it is a suitable model for in vitro studies because it forms amyloid-like fibrils under physiological conditions of pH and temperature. Heparin strongly stimulated aggregation into amyloid fibrils, thereby abolishing the lag-phase normally detected following the kinetics of the process, and increasing the yield of fibrils. Moreover, the protein aggregates were harmless when assayed for cytotoxicity in vitro. Neutral or positive compounds did not affect the aggregation rate, and the early aggregates were highly cytotoxic. The surprising result that heparin induced amyloid fibril formation in wild-type apomyoglobin and in the partially folded intermediate state of the mutant, i.e., proteins that normally do not show any tendency to aggregate, suggested that the interaction of heparin with apomyoglobin is highly specific because of the presence, in protein turn regions, of consensus sequences consisting of alternating basic and non-basic residues that are capable of binding heparin molecules. Our data suggest that GAGs play a dual role in amyloidosis, namely, they promote beneficial fibril formation, but they also function as pathological chaperones by inducing amyloid aggregation.  相似文献   

10.
The artificial protein albebetin (ABB) and its derivatives containing biologically active fragments of natural proteins form fibrils at physiological pH. The amyloid nature of the fibrils was confirmed by far UV circular dichroism spectra indicating for rich beta-structure, thioflavin T binding assays, and examination of the obtained polymers by atomic force microscopy. Fusing of short peptides--octapeptide of human alpha(2)-interferon (130-137) or hexapeptide HLDF-6 (41-46) of human leukemia differentiation factor--with the N-terminus of ABB led to increased amyloidogenicity of the protein: the rate of fibril formation increased and the morphology of fibrils became more complex. The presence of free hexapeptide HLDF-6 in the ABB solution had the same effect. Increasing ionic strength also activated the process of amyloid formation, but to less extent than did the peptides fused with ABB or added to the ABB solution. We suggest an important role of electrostatic interactions in formation of ABB fibrils. The foregoing ways (addition of salt or peptides) allow decrease in electrostatic repulsion between ABB molecules carrying large negative charge (-12) at neutral pH, thus promoting fibril formation.  相似文献   

11.
Amyloidogenesis is a characteristic feature of the 40 or so known protein deposition diseases, and accumulating evidence strongly suggests that self-association of misfolded proteins into either fibrils, protofibrils, or soluble oligomeric species is cytotoxic. The most likely mechanism for toxicity is through perturbation of membrane structure, leading to increased membrane permeability and eventual cell death. There have been a rather limited number of investigations of the interactions of amyloidogenic polypeptides and their aggregated states with membranes; these are briefly reviewed here. Amyloidogenic proteins discussed include A-beta from Alzheimer's disease, the prion protein, α-synuclein from Parkinson's disease, transthyretin (FAP, SSA amyloidosis), immunoglobulin light chains (primary (AL) amyloidosis), serum amyloid A (secondary (AA) amyloidosis), amylin or IAPP (Type 2 diabetes) and apolipoproteins. This review highlights the significant role played by fluorescence techniques in unraveling the nature of amyloid fibrils and their interactions and effects on membranes. Fluorescence spectroscopy is a valuable and versatile method for studying the complex mechanisms of protein aggregation, amyloid fibril formation and the interactions of amyloidogenic proteins with membranes. Commonly used fluorescent techniques include intrinsic and extrinsic fluorophores, fluorescent probes incorporated in the membrane, steady-state and lifetime measurements of fluorescence emission, fluorescence correlation spectroscopy, fluorescence anisotropy and polarization, fluorescence resonance energy transfer (FRET), fluorescence quenching, and fluorescence microscopy.  相似文献   

12.
Amyloidogenesis is a characteristic feature of the 40 or so known protein deposition diseases, and accumulating evidence strongly suggests that self-association of misfolded proteins into either fibrils, protofibrils, or soluble oligomeric species is cytotoxic. The most likely mechanism for toxicity is through perturbation of membrane structure, leading to increased membrane permeability and eventual cell death. There have been a rather limited number of investigations of the interactions of amyloidogenic polypeptides and their aggregated states with membranes; these are briefly reviewed here. Amyloidogenic proteins discussed include A-beta from Alzheimer's disease, the prion protein, alpha-synuclein from Parkinson's disease, transthyretin (FAP, SSA amyloidosis), immunoglobulin light chains (primary (AL) amyloidosis), serum amyloid A (secondary (AA) amyloidosis), amylin or IAPP (Type 2 diabetes) and apolipoproteins. This review highlights the significant role played by fluorescence techniques in unraveling the nature of amyloid fibrils and their interactions and effects on membranes. Fluorescence spectroscopy is a valuable and versatile method for studying the complex mechanisms of protein aggregation, amyloid fibril formation and the interactions of amyloidogenic proteins with membranes. Commonly used fluorescent techniques include intrinsic and extrinsic fluorophores, fluorescent probes incorporated in the membrane, steady-state and lifetime measurements of fluorescence emission, fluorescence correlation spectroscopy, fluorescence anisotropy and polarization, fluorescence resonance energy transfer (FRET), fluorescence quenching, and fluorescence microscopy.  相似文献   

13.
The amyloid fibril of a fragment of the substrate binding site of αA-crystallin (αAC(71-88)) exhibited chaperone-like activity by suppressing the aggregation of alcohol dehydrogenase (ADH) and luciferase. By contrast, the amyloid fibril of the cytotoxic fragment of amyloid β protein (Aβ(25-35)) facilitated the aggregation of the same proteins. We have determined the zeta potential of the amyloid fibril by measuring their electrophoretic mobility to study the effects of the surface charge on the modulation of protein aggregation. The αAC(71-88) amyloid possesses a large negative zeta potential value which is unaffected by the binding of the negatively charged ADH, indicating that the αAC(71-88) amyloid is stable as a colloidal dispersion. By contrast, the Aβ(25-35) amyloid possesses a low zeta potential value, which was significantly reduced with the binding of the negatively charged ADH. The canceling of the surface charge of the amyloid fibril upon substrate binding reduces colloidal stability and thereby facilitates protein aggregation. These results indicate that one of the key factors determining whether amyloid fibrils display chaperone-like or antichaperone activity is their electrostatic interaction with the substrate. The surface of the αAC(71-88) amyloid comprises a hydrophobic environment, and the chaperone-like activity of the αAC(71-88) amyloid is best explained by the reversible substrate binding driven by hydrophobic interactions. On the basis of these findings, we designed variants of amyloid fibrils of αAC(71-88) that prevent protein aggregation associated with neurodegenerative disorders.  相似文献   

14.
The accumulation of aggregated protein in the cell is associated with the pathology of many diseases and constitutes a major concern in protein production. Intracellular aggregates have been traditionally regarded as nonspecific associations of misfolded polypeptides. This view is challenged by studies demonstrating that, in vitro, aggregation often involves specific interactions. However, little is known about the specificity of in vivo protein deposition. Here, we investigate the degree of in vivo co-aggregation between two self-aggregating proteins, Abeta42 amyloid peptide and foot-and-mouth disease virus VP1 capsid protein, in prokaryotic cells. In addition, the ultrastructure of intracellular aggregates is explored to decipher whether amyloid fibrils and intracellular protein inclusions share structural properties. The data indicate that in vivo protein aggregation exhibits a remarkable specificity that depends on the establishment of selective interactions and results in the formation of oligomeric and fibrillar structures displaying amyloid-like properties. These features allow prokaryotic Abeta42 intracellular aggregates to act as effective seeds in the formation of Abeta42 amyloid fibrils. Overall, our results suggest that conserved mechanisms underlie protein aggregation in different organisms. They also have important implications for biotechnological and biomedical applications of recombinant polypeptides.  相似文献   

15.
A number of medical disorders, including Alzheimer's disease and type II diabetes, is characterised by the deposition of amyloid fibrils in tissue. The insolubility and size of the fibrils has largely precluded the determination of their structures at high resolution. Studies probing the stability of amyloid fibrils can reveal which non-covalent interactions are important in the formation and maintenance of the fibril structure. In particular, we review here the use of high hydrostatic pressure and high temperature as perturbation techniques. In general, small aggregates formed early in the assembly process can be dissociated by high pressure, but mature amyloid fibrils are highly pressure stable. This finding suggests that a temporal transition occurs during which side chain packing and hydrogen bond formation are optimised, whereas the hydrophobic effect and electrostatic interactions play a dominant role in the early stages of the aggregation. High temperatures, however, can disrupt most aggregates. Though the observed stability of amyloid fibrils is not unique to these structures, the notion that amyloid fibrils can represent the global minimum in free energy is supported by this type of investigations. Some implications regarding the nature of toxic species, associated with at least many of the amyloid disorders, and recently proposed structural models are discussed.  相似文献   

16.
Various proteins have been shown to form various aggregated structures including the filamentous aggregates known as amyloid fibrils depending on the solution conditions. Hen egg white lysozyme (HEWL) is one of the proteins that form the amyloid fibrils. To gain insight into the mechanism of this polymorphism of the aggregated structures, we employed a model system consisting of HEWL, pure water, and ethanol, and investigated the kinetic process of the fibril formation in various salt concentrations with time-resolved neutron scattering. It was shown that by addition of NaCl in a range between 0.3 mM and 1.0 mM to HEWL solution in 90% ethanol, gelation occurred, and this gelation proceeded through a two-step process: the lateral association of the protofilaments, followed by the cross-linking of these fibrils formed. Both the structures of the fibrils and the rate of the gelation depended on NaCl concentration. The average structures of the fibrils formed at 1.0 mM NaCl were characterized by the radius of gyration of their cross-section (45.9(+/-0.4)A) and the number of the protofilaments within the fibril (4.10(+/-0.12)), corresponding to the mature amyloid fibrils. A range of intermediate structures was formed below 1 mM NaCl. Above 2 mM NaCl, precipitation occurred because of the formation of amorphous aggregates. Here the branch point to the formation of the mature amyloid fibrils or to the amorphous aggregates was after the formation of the protofilaments. Sensitivity of the aggregated structures to salt concentration suggests that electrostatic interaction plays an essential role in the formation of these structures. The structural diversity both in the fibrils and the aggregated structures of the fibrils can be interpreted in terms of the difference in the degree of the electrostatic shielding at different salt concentrations.  相似文献   

17.
The human molecular chaperone protein DNAJB6 was recently found to inhibit the formation of amyloid fibrils from polyglutamine peptides associated with neurodegenerative disorders such as Huntington disease. We show in the present study that DNAJB6 also inhibits amyloid formation by an even more aggregation-prone peptide (the amyloid-beta peptide, Aβ42, implicated in Alzheimer disease) in a highly efficient manner. By monitoring fibril formation using Thioflavin T fluorescence and far-UV CD spectroscopy, we have found that the aggregation of Aβ42 is retarded by DNAJB6 in a concentration-dependent manner, extending to very low sub-stoichiometric molar ratios of chaperone to peptide. Quantitative kinetic analysis and immunochemistry studies suggest that the high inhibitory efficiency is due to the interactions of the chaperone with aggregated forms of Aβ42 rather than the monomeric form of the peptide. This interaction prevents the growth of such species to longer fibrils and inhibits the formation of new amyloid fibrils through both primary and secondary nucleation. A low dissociation rate of DNAJB6 from Aβ42 aggregates leads to its incorporation into growing fibrils and hence to its gradual depletion from solution with time. When DNAJB6 is eventually depleted, fibril proliferation takes place, but the inhibitory activity can be prolonged by introducing DNAJB6 at regular intervals during the aggregation reaction. These results reveal the highly efficacious mode of action of this molecular chaperone against protein aggregation, and demonstrate that the role of molecular chaperones can involve interactions with multiple aggregated species leading to the inhibition of both principal nucleation pathways through which aggregates are able to form.  相似文献   

18.
Konno T 《Biochemistry》2001,40(7):2148-2154
Amyloid-induced aggregation and precipitation of soluble proteins were investigated in vitro using the amyloid fibrils of the beta(25--35) peptide, a cytotoxic fragment of the Alzheimer's beta-peptide at positions 25--35. The aggregation rate of firefly luciferase was found to be modulated by both a chaperone molecule DnaK and the beta(25--35) amyloid, but their effects were opposite in direction. The amyloid fibril drastically facilitated the luciferase aggregation, which may define a kind of anti-chaperone activity. The effect of the beta(25--35) amyloid to promote protein aggregation and precipitation was further demonstrated for a wide variety of target proteins. The amount of coprecipitation was well correlated with the predicted isoelectric point of the target proteins, indicating that the interaction between the beta(25--35) amyloid and the target was driven by an electrostatic force between them. This view was confirmed by the experiments using an electrically neutral mutant peptide, beta(25--35)KA. It was also found that clustering of the beta(25--35) peptide to form amyloid and the conformation of the target protein are additional factors that determine the strength of the amyloid-protein interaction. Spectroscopic and electron microscopic methods have revealed that the proteins coprecipitated with the beta(25--35) amyloid formed amorphous aggregates deposited together with the amyloid fibrils. The conformation of protein molecules left in the residual soluble fraction was also damaged in the amyloid-containing solution. As a summary, this study has proposed a scheme for events related to the nonspecific amyloid-protein interaction, which may play substantial roles in in vivo conditions.  相似文献   

19.
Protein aggregation is associated with a variety of pathological conditions, including Alzheimer's and Creutzfeldt-Jakob diseases and type II diabetes. Such degenerative disorders result from the conversion of the normal soluble state of specific proteins into aggregated states that can ultimately form the characteristic amyloid fibrils found in diseased tissue. Under appropriate conditions it appears that many, perhaps all, proteins can be converted in vitro into amyloid fibrils. The aggregation propensities of different polypeptide chains have, however, been observed to vary substantially. Here, we describe an approach that uses the knowledge of the amino acid sequence and of the experimental conditions to reproduce, with a correlation coefficient of 0.92 and over five orders of magnitude, the in vitro aggregation rates of a wide range of unstructured peptides and proteins. These results indicate that the formation of protein aggregates can be rationalised to a considerable extent in terms of simple physico-chemical parameters that describe the properties of polypeptide chains and their environment.  相似文献   

20.
Amyloid fibrils are a hallmark of Alzheimer’s and prion diseases. In both pathologies fibrils are found associated to glycosaminoglycans, modulators of the aggregation process. Amyloid peptides and proteins with very poor sequence homologies originate very similar aggregates. This implies the possible existence of a common formation mechanism. A homologous structural motif has recently been described for the Alzheimer’s peptide Aβ(1-28) and the prion protein fragment PrP(185-208). We have studied the influence histidine residues and heparin on the aggregation process of both peptides and determined the possible amyloid characteristics of PrP(185-208), still unknown. The results show that PrP(185-208) forms amyloid aggregates in the presence of heparin. Histidines influence the aggregation kinetics, as in Aβ(1-28), although to a lesser extent. Other spectroscopic properties of the PrP(185-208) fragment are shown to be equivalent to those of other amyloid peptides and PrP(185-208) is shown to be cytotoxic using a neuroblastoma cell line.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号