首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polyphosphazene polyacids show potential as immunostimulating compounds and materials for microencapsulation. Their synthesis requires multistep chemical transition from a hydrolytically unstable macromolecular precursor, poly(dichlorophosphazene), to a water-soluble polyelectrolyte. Insufficient synthetic control in these reactions can lead to molecular weight variations and formation of macromolecules with "structural defects" resulting in significant variations in polymer performance. Simple and reproducible "one pot-one solvent" method is reported for the preparation of polyphosphazene polyacids-poly[di(carboxylatophenoxy)phosphazene] and its copolymers. Molecular weight characteristics and polymer compositions were studied as a function of reaction parameters. Macromolecular byproducts, incompletely substituted polymers containing hydroxyl groups and partially deprotected polymers containing propyl ester functionalities, were synthesized and characterized. It was demonstrated, that the presence of such groups can affect polymer characteristics, such as hydrolytic degradation profiles, immunostimulating activity, and microsphere forming properties. In vivo studies showed that the immunostimulating activity of polyphosphazene polyacids correlates with the content of acid functionalities in the polymer.  相似文献   

2.
Miroshnikov AI 《Biofizika》2004,49(5):866-871
To study the causes of the biological effect of electrochemically activated solutions, nutrient growth media M 9 were prepared using catholyte and anolyte solutions containing separate components of the nutrient medium, such as distilled water, phosphate buffer, phosphate buffer with chlorides (NaCl, NH4Cl), and chlorides. The biological activity of different nutrient media was assessed by a comparison with the stimulation or inhibition of the growth of Escherichia coli cells in the catholyte and anolyte of the complete nutrient medium M 9. It was shown that medium M 9 prepared on the catholytes of different initial solutions acquired the stimulating properties only if the initial solution contained salts containing chlorine. The stimulating effect of the initial solution was 18-24%. Electrochemical treatment of solutions containing no chlorides (distilled water, phosphate buffer) and subsequent addition of the components of nutrient medium to exposed solutions had neither a stimulating nor the inhibiting effect on cell growth. The cultivation of cells in a nutrient medium based on the catholyte of preliminarily treated hydrochloric acid showed that it is the presence of chlorine ions in solution during electrolysis that causes the stimulating effect of the nutrient medium based on the catholyte. The formation of oxidizers and the inhibitory effect of the anolyte described previously was also observed if the solution contained chlorine ions during electrolysis. Possible mechanisms of the biological effect of catholytes containing chlorides during electrolysis were discussed.  相似文献   

3.
Free radical formation induced by ultrasound and its biological implications.   总被引:21,自引:0,他引:21  
The chemical effects of ultrasound in aqueous solutions are due to acoustic cavitation, which refers to the formation, growth, and collapse of small gas bubbles in liquids. The very high temperatures (several thousand K) and pressures (several hundred atmospheres) of collapsing gas bubbles lead to the thermal dissociation of water vapor into .OH radicals and .H atoms. Their formation has been confirmed by electron spin resonance (ESR) and spin trapping. The sonochemistry of aqueous solutions of gases and of volatile and nonvolatile solutes is reviewed. The similarities and differences between sonochemistry and radiation chemistry of aqueous solutions are explained. Some unusual characteristics of aqueous sonochemistry can be understood by considering the properties of supercritical water. By the use of rare gases with different thermal conductivities, it is possible to distinguish between temperature-dependent processes such as redox reactions initiated by .OH radicals and .H atoms and pressure-dependent processes which lead to polymer degradation and cell lysis. The evidence for free radical formation in aqueous solutions by pulsed ultrasound is discussed. This subject is of interest because it is related to the possible deleterious effects of ultrasonic diagnostic devices. The role of free radicals and of mechanical effects induced by ultrasound in DNA degradation, inactivation of enzymes, lipid peroxidation, and cell killing is reviewed.  相似文献   

4.
"Schizophrenic" diblock copolymers containing nonionic and zwitterionic blocks were prepared with well-controlled molecular weights via atom-transfer radical polymerization (ATRP). In this work, we report a systematic study of how morphological changes of poly(N-isopropylacrylamide)-block-poly(sulfobetaine methacrylate) (PNIPAAm-b-PSBMA) copolymers affect hemocompatibility in human blood solution. The "schizophrenic" behavior of PNIPAAm-b-PSBMA was observed by (1)H NMR, dynamic light scattering (DLS), and turbidity measurement with double morphological transition, exhibiting both lower critical solution temperature (LCST) and upper critical solution temperature (UCST) in aqueous solution. Below the UCST of PSBMA block, micelles were obtained with a core of insoluble PSBMA association and a shell of soluble PNIPAAm, whereas the opposite micelle structure was observed above the LCST of PNIPAAm block. In between the UCST and LCST, unimers with both soluble blocks were detected. Hydrodynamic size of prepared polymers and copolymers is determined to illustrate the correlations between intermolecular nonionic/zwitterionic associations and blood compatibility of PNIPAAm, PNIPAAm-b-PSBMA, and PSBMA suspension in human blood. Human fibrinogen adsorption onto the PNIPAAm-b-PSBMA copolymers from single-protein solutions was measured by DLS to determine the nonfouling stability of copolymer suspension. The new nonfouling nature of PNIPAAm-b-PSBMA copolymers was demonstrated to show extremely high anticoagulant activity and antihemolytic activity in human blood over a wide range of explored temperatures from 4 to 40 °C. The temperature-independent blood compatibility of nonionic/zwitterionic block copolymer along with their schizophrenic phase behavior in aqueous solution suggests their potential in blood-contacting applications.  相似文献   

5.
Block copolymers were prepared by ring-opening polymerization of epsilon-caprolactone in the presence of monohydroxyl or dihydroxyl poly(ethylene glycol) (PEG), using Zn powder as catalyst. The resulting poly(epsilon-caprolactone) (PCL)-PEG diblock and PCL-PEG-PCL triblock copolymers were characterized by various analytical techniques such as NMR, size-exclusion chromatography, differential scanning calorimetry, and X-ray diffraction. Both copolymers were semicrystalline polymers, the crystalline structure being of the PCL type. Films were prepared by casting dichloromethane solutions of the polymers on a glass plate. Square samples with dimensions of 10 x 10 mm were allowed to degrade in a pH = 7.0 phosphate buffer solution containing Pseudomonas lipase. Data showed that the introduction of PEG blocks did not decrease the degradation rate of poly(epsilon-caprolactone).  相似文献   

6.
A new injectable biodegradable hydrogel system with thermosensitive sol-gel transition behavior was developed. A series of A-B-A triblock copolymers consisting of Pluronic copolymer end-capped with D- or L-lactic acid oligomers (PL-LA(n)) with various chain lengths (n = 5,12) was synthesized. It was assumed that a pair of two triblock copolymers with enantiomeric oligolactide chains, when blended in an equimolar mixture, would form more stable, self-assembled, and stereocomplexed (ST) hydrogels. A series of blend hydrogels encapsulating human growth hormone (hGH) was prepared by varying blend ratios between PL and stereocomplexed PL copolymers. They showed sustained release of hGH via an erosion-dependent mechanism. The hydrogel with a 5% blending ratio exhibited the most delayed mass erosion as well as sustained protein release patterns in vitro possibly due to the formation of a fish-net like 3-D mesh structure. The effect of incubation condition on hGH release and degradation behaviors was also assessed.  相似文献   

7.
A series of new nitric oxide (NO) releasing copolymers have been prepared by covalently anchoring alkyldiamine side chains onto a polymethacrylate-based polymer backbone, followed by NO addition to form the desired pendant diazeniumdiolate structures. The resulting diazeniumdiolated copolymers were characterized via UV spectroscopy, and their proton-driven decomposition to release NO was also examined by UV and FTIR as well as chemiluminescence. Polymers with up to 22.1 mol % of incorporated amine sites that can be converted to corresponding diazeniumdiolates could be prepared, and such polymers release up to 0.94 micromol/mg of NO. Further, novel NO releasing polymeric coatings were formulated by doping one of the new polymethacrylate-based NO donors within inert polymeric matrixes. Biodegradable poly(lactide-co-glycolide) was employed as a film additive to greatly prolong the NO release of such coatings by continuously generating protons within the organic phase of the polymeric films, thereby driving decomposition of the diazeniumdiolates.  相似文献   

8.
Combining controlled radical polymerizations and a controlled polypeptide synthetic technique, such as N-carboxyanhydride (NCA) ring-opening polymerization, enables the generation of well-defined block copolymers to be easily accessible. Here we combine NCA polymerization with the nitroxide-mediated radical polymerization of poly(n-butyl acrylate) (PBA) and polystyrene (PS), using a TIPNO and SG1-based bifunctional initiator to create a hybrid block copolymer. The polypeptide block consists of (block) copolymers of poly(L-glutamic acid) embedded with various quantities of L-alanine. The formed superstructures (vesicles and micelles) of the block copolymers possessed varying degrees of enzyme responsiveness when exposed to elastase and thermolysin, resulting in controlled enzymatic degradation dictated by the polypeptide composition. The PBA containing block copolymers possessing 50% L-alanine in the polypeptide block showed a high degradation response compared to polymers containing lower L-alanine quantities. The particles stabilized by copolypeptides with L-alanine near the hydrophobic block showed full degradation within 4 days. Particles containing polystyrene blocks revealed no appreciable degradation under the same conditions, highlighting the specificity of the system and the importance of synthetic polymer selection. However, when the degradation temperature was increased to 70 °C, degradation could be achieved due to the higher block copolymer exchange between the particle and the solution. A number of novel biohybrid structures are disclosed that show promise as enzyme-responsive materials with potential use as payload release vehicles, following their controlled degradation by specific, target, enzymes.  相似文献   

9.
The photo-induced transformation of monuron (3-(4-chlorophenyl)-1,1 dimethylurea) was investigated in an aqueous solution containing nitrates and nitrites at 310 nm and 365 nm, respectively. In both NO(3)(-) and NO(2)(-) conditions, the degradation of monuron followed pseudo-first order kinetics. The intermediate products were identified by GC-MS, and the nitration, hydroxylation and coupling reactions were determined. In addition, the oxidation of the N-terminus group, the substitution of chlorine by ˙OH and the nitration by ˙NO(2) radical onto the phenyl ring were observed. The photo-induced transformation of monuron was studied under variable conditions of pH, inducer concentration, substrate concentration, humic acids, oxygen content and salts used as hydroxyl radical scavengers. The photodegradation rates were strongly influenced by all the above parameters. The degradation of monuron was also studied in the dark and in the presence of NO(2)(-) as well as in an aqueous solution with the addition of hydrogen peroxide.  相似文献   

10.
Jia Z  Wong L  Davis TP  Bulmus V 《Biomacromolecules》2008,9(11):3106-3113
N-(2-Hydroxypropyl)methacrylamide (HPMA) containing polymers that are widely used as anticancer drug carriers. We have synthesized new amphiphilic block copolymers of HPMA with a functional monomer 2-(2-pyridyldisulfide)ethylmethacrylate (PDSM) via reversible addition-fragmentation chain transfer (RAFT) polymerization. In a one-pot reaction, the versatility of PDS groups on poly(PDSM)- b-poly(HPMA) was used to conjugate an anticancer drug, doxorubicin (DOX), and also simultaneously crosslink the micellar assemblies via acid-cleavable hydrazone bonds and reducible disulfide bonds. DOX-conjugated crosslinked micelles with an average diameter of approximately 60 nm were observed to be formed in aqueous medium. Disintegration of the micelles into unimers in the presence of a disulfide reducing agent confirmed the crosslinking via disulfide bonds. While the release of DOX from the crosslinked micelles at pH 5.0 was faster compared to the release at pH 7.4, a high proportion of released DOX was found to retain the original active structure. Overall results demonstrate the simplicity and the versatility of the poly(PDSM)- b-poly(HPMA) system, which are potentially important in the design of new generation of polymer therapeutics.  相似文献   

11.
Polymer solutions can fill any potential irregular cavity using minimally invasive techniques and thus have potential uses in ophthalmology. We prepared acrylamide hydrogels containing disulfide bonds by free radical polymerization in aqueous ethanol. The hydrogels were liquefied using dithiothreitol to yield water-soluble acrylamide copolymers containing pendant thiol (-SH) groups. The weight average molecular weights of the copolymers ranged from 1.43 x 10(5) to 9.22 x 10(5) daltons by GPC. Ellman's analysis and Raman spectroscopy confirmed the presence of -SH. The aqueous solutions of these purified thiol-containing copolymers were oxidized with 3,3'-dithiodipropionic acid or air to reform the hydrogels. The moduli of the reformed hydrogels ranged from 0.27 to 1.1 kPa depending on concentration and thiol content. Rapid endocapsular gelation yielded optically clear gel within the lens capsular bag. This technique now enables us to validate methods to determine the biomechanics of the lens and its role in accommodation.  相似文献   

12.
A novel thermosensitive macromolecular prodrug of 5-fluorouracil (5-FU) was synthesized using cyclotriphosphazene, and its thermosensitivity, degradability, and in vitro antitumor activity were studied. A series of alpha-substituted glycine derivatives of 5-FU containing carboxylic groups were prepared, and cyclotriphosphazenes with amino groups were synthesized via the stepwise substitution of hexachlorocyclotriphosphazene (NPCl(2))(3) with methoxy-poly(ethylene glycol) (MPEG) or alkoxy ethylene oxide and lysine ethyl ester (LysOEt). The coupling reaction of the two derivatives, and their subsequent deprotection, yielded a thermosenstive 5-FU-cyclotriphosphazene conjugate, which exhibited a unique octopus-shaped molecular structure, in which the three hydrophilic PEG groups (or alkoxy ethylene oxides) were oriented in one direction, opposing the other three hydrophobic groups containing 5-FU, with respect to the trimer ring plane. This conjugate exhibited a reversible and thermosensitive phase transition in an aqueous medium, from soluble to insoluble states. The lower critical solution temperature (LCST) of the conjugate was controlled by substitution with different hydrophilic/hydrophobic side groups, and a few of the conjugates displayed LCSTs which were just below body temperature. This, of course, implies possible applications for local drug delivery by direct intratumoral injection. The conjugate exhibited gradual degradation at 37 degrees C in both neutral and acidic buffer solutions, and high temperature significantly facilitated its hydrolytic degradation. All of the conjugates displayed dose-dependent cytotoxicity against the leukemia L1210 cell line and exhibited more pronounced cytotoxic effects than did 5-FU.  相似文献   

13.
We have previously demonstrated the feasibility of blending bioerodible polyphosphazenes with poly(lactide-co-glycolide) (PLGA) to form versatile polymeric materials with altered bioerosion properties. These studies demonstrated the effective neutralization of the acidic degradation products of PLGA by the polyphosphazene hydrolysis products. In the present study, five new polymers of dipeptide polyphosphazenes poly[(ethyl glycinato)x(glycyl-ethyl glycinato)yphosphazene] and novel blends of these polyphosphazenes with poly(lactide-co-glycolide) (PLGA) were synthesized and fabricated. The miscibility was analyzed using differential scanning calorimetry and scanning electron microscopy. Hydrogen bonding within the blends was assessed by attenuated total reflectance infrared spectroscopy. The phosphazene component of the blend contained varying ratios of the glycyl-glycine ethyl ester to the glycine ethyl ester. Poly[(ethyl glycinato)0.5(glycine ethyl glycinato)1.5phosphazene formed completely miscible blends with PLGA (50:50) and PLGA (85:15). This is ascribed to the multiple hydrogen-bonding sites within the side groups of the polyphosphazene. The components of the blend act as plasticizers for each other because a glass transition temperature for each blend was detected at a lower temperature than for each individual polymer. A hydrolysis study showed that unblended solid poly[(ethyl glycinato)0.5(glycyl ethyl glycinato)1.5phosphazene] hydrolyzed in less than 1 week. However, the blends degraded at a slower rate than both parent polymers. This is attributed to the buffering capacity of the polyphosphazene hydrolysis products, which increases the pH of the degradation media from 2.5 to 4, thereby slowing the degradation rate of PLGA.  相似文献   

14.
Lee H  Zeng F  Dunne M  Allen C 《Biomacromolecules》2005,6(6):3119-3128
Six amphiphilic diblock copolymers based on methoxy poly(ethylene glycol) (MePEG) and poly(delta-valerolactone) (PVL) with varying hydrophilic and hydrophobic block lengths were synthesized via a metal-free cationic polymerization method. MePEG-b-PVL copolymers were synthesized using MePEG with Mn = 2000 or Mn = 5000 as the macroinitiator. 1H NMR and GPC analyses confirmed the synthesis of diblock copolymers with relatively narrow molecular weight distributions (Mn/Mw = 1.05-1.14). DSC analysis revealed that the melting temperatures (Tm) of the copolymers (47-58 degrees C) approach the Tm of MePEG as the PVL content is decreased. MePEG-b-PVL copolymer aggregates loaded with the hydrophobic anti-cancer drug paclitaxel were found to have effective mean diameters ranging from 31 to 970 nm depending on the composition of the copolymers. A MePEG-b-PVL copolymer of a specific composition was found to form drug-loaded micelles of 31 nm in diameter with a narrow size distribution and improve the apparent aqueous solubility of paclitaxel by more than 9000-fold. The biological activity of paclitaxel formulated in the MePEG-b-PVL micelles was confirmed in human MCF-7 breast and A2780 ovarian cancer cells. Furthermore, the biocompatibility of the copolymers was established in CHO-K1 fibroblast cells using a cell viability assay. The in vitro hydrolytic and enzymatic degradation of the micelles was also evaluated over a period of one month. The present study indicates that the MePEG-b-PVL copolymers are suitable biomaterials for hydrophobic drug formulation and delivery.  相似文献   

15.
N-(2-Hydroxypropyl)methacrylamide (HPMA) copolymers (pHPMA) containing 4-nitrophenyl ester (ONp) or thiazolidine-2-thione (TT) reactive groups in side chains and telechelic/semitelechelic pHPMA with TT groups were designed as highly hydrophilic biocompatible polymers suitable for chemical coating of polyelectrolyte-based DNA-containing nanoparticles bearing amino groups on the surface. The course of the coating reaction carried out in aqueous solution was evaluated on model self-assembling polyelectrolyte DNA/poly(L-lysine) (DNA/PLL) complexes either by monitoring the amount of residual polymer reactive groups by UV spectroscopy or by monitoring changes in the weight-average molecular weight and hydrodynamic size of the complexes using light scattering methods. Physicochemical stability of the coated complexes in buffered saline solution was also investigated. Contrary to uncoated particles, the coated complexes showed remarkable stability to aggregate in 0.15 M NaCl. Coating with pHPMA had practically no effect on the size distribution of the most stable complexes prepared by complexation of DNA with high-molecular-weight PLL (M(w) = 134 000) as shown by dynamic light scattering. The coating reaction was faster and more efficient with multivalent HPMA copolymers containing TT reactive groups than that with HPMA copolymers containing ONp groups.  相似文献   

16.
Uniformly sized polymeric separation media were prepared using o- or p-xylene as porogenic template to investigate chromatographic selectivity towards tetra-chlorinated dibenzo-p-dioxins (TCDDs). TCDDs having chlorine atoms at ortho positions of phenyl rings were selectively retained on stationary phase prepared with o-xylene as porogenic template, while TCDDs having chlorine atoms at para positions of phenyl ring were found to be retained selectively on the stationary phase imprinted by the porogenic template, p-xylene. Slightly longer cross-linking agent afforded chromatographically selective retention for larger TCDD isomers. It was also found that positional relationship between substituted chlorine atoms was also important for chromatographic recognition.  相似文献   

17.
Thirty-one isomers of polychlorinated biphenyl (PCB) were examined for biodegradability by two species of Alcaligenes and Acinetobacter. The following relationships between chlorine substitution and biodegradability of PCBs were observed. (i) Degradation decreased as chlorine substitution increased. PCB isomers containing more than four chlorines were less susceptible to degradation. (ii) PCBs containing two chlorines on either the ortho position of a single ring (i.e., 2,6-) or on both rings (i.e., 2,2′-) showed very poor degradability. (iii) PCBs containing all chlorine atoms on only a single ring were generally degraded faster than when the same number of chlorines were substituted on both rings. (iv) Preferential ring fission of the molecules occurred with nonchlorinated or lesser chlorinated rings. (v) The formation and accumulation of a yellow intermediate was always observed in 4′-chloro-substituted PCBs. (vi) Significant differences between the two organisms with respect to degradability were not observed except for 2,4,6-trichlorobiphenyl.  相似文献   

18.
Lu Y  Liu L  Guo S 《Biopolymers》2007,86(5-6):403-408
Chitosan-g-PCL-b-MPEG copolymers of various compositions were successful synthesized via a protection-graft-deprotection procedure, by the esterification of phthaloyl-protected chitosan (PHCS) with MPEG-b-PCL-COOH, which was synthesized from MPEG and epsilon-caprolactone and carboxylated by maleic anhydride. The chemical structure of the chitosan-g-PCL-b-MPEG was characterized by Fourier transform infrared and NMR spectroscopy. The chitosan-g-PCL-b-MPEG was obtained as amphoteric hybrid with amino polysaccharide backbone and amphiphilic MPEG-b-PCL side chain. Their crystallinity and aggregation behavior in aqueous solution were also investigated.  相似文献   

19.
Shim WS  Kim SW  Lee DS 《Biomacromolecules》2006,7(6):1935-1941
Novel pH- and temperature-sensitive biodegradable poly(epsilon-caprolactone-co-lactide)-poly(ethylene glycol) (PCLA-PEG) block copolymers were synthesized with oligomeric sulfamethazine (OSM) end groups (OSM-PCLA-PEG-PCLA-OSM). Aqueous solutions of these block copolymers have shown sol-gel transition behavior upon both temperature and pH changes under physiological conditions (37 degrees C, pH 7.4). The sol-gel transition of these block copolymer solutions was fine-tuned by controlling the PEG length, the hydrophobic to hydrophilic block ratio (PCLA/PEG), and the molecular weight of the sulfamethazine oligomer. Since changes in temperature do not induce gel formation in this pH- and temperature-sensitive block copolymer solution, this hydrogel can be employed as an injectable carrier using a long guide catheter into the body. In addition, the pH of the block copolymer solution showed no change following PCLA degradation over 1 month, and no indication of gel collapse was observed on addition of buffer solution. As such, these properties make the OSM-PCLA-PEG-PCLA-OSM hydrogel an ideal candidate for use as an injectable carrier for certain protein-based drugs known to denature in low-pH environments.  相似文献   

20.
Hu Y  Zhang L  Cao Y  Ge H  Jiang X  Yang C 《Biomacromolecules》2004,5(5):1756-1762
Poly(epsilon-caprolactone)-b-poly(ethylene glycol)-b-poly(epsilon-caprolactone) triblock copolymers were synthesized by the ring-opening polymerization of epsilon-caprolactone in the presence of hydroxyl-terminated poly(ethylene glycol) with different molecular weights, using stannous octoate catalyst. Micelles prepared by the precipitation method with these triblock copolymers exhibit a core-shell structure. The degradation behaviors of these core-shell micelles in aqueous solution were investigated by FT-IR, 1H NMR, GPC, DLS, TEM, and AFM. It was found that the degradation behavior of micelles in aqueous solution was quite different from that of bulk materials. The size of the micelles increased in the initial degradation stages and decreased gradually when the degradation period was extended. The caprolactone/ethylene oxide (CL/EO) ratio in micelles measured by NMR also shows an increase at the initial degradation stage and a decrease at later stages. The morphology of these micelles became more and more irregular during the degradation period. We explain the observed behavior by a two-stage degradation mechanism with interfacial erosion between the cores and the shells followed by core erosion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号