首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Soybean hairy roots, transformed with the soybean chalcone synthase (CHS6) or isoflavone synthase (IFS2) genes, with dramatically decreased capacity to synthesize isoflavones were produced to determine what effects these changes would have on susceptibility to a fungal pathogen. The isoflavone and coumestrol concentrations were decreased by about 90% in most lines apparently due to gene silencing. The IFS2 transformed lines had very low IFS enzyme activity in microsomal fractions as measured by the conversion of naringenin to genistein. The CHS6 lines with decreased isoflavone concentrations had 5 to 20-fold lower CHS enzyme activities than the appropriate controls. Both IFS2 and CHS transformed lines accumulated higher concentrations of both soluble and cell wall bound phenolic acids compared to controls with higher levels found in the CHS6 lines indicating alterations in the lignin biosynthetic branch of the pathway. Induction of the soybean phytoalexin glyceollin, of which the precursor is the isoflavone daidzein, by the fungal pathogen Fusarium solani f. sp. glycines (FSG) that causes soybean sudden death syndrome (SDS) showed that the low isoflavone transformed lines did not accumulate glyceollin while the control lines did. The (iso)liquritigenin content increased upon FSG induction in the IFS2 transformed roots indicating that the pathway reactions before this point can control isoflavonoid synthesis. The lowest fungal growth rate on hairy roots was found on the FSG partially resistant control roots followed by the SDS sensitive control roots and the low isoflavone transformants. The results indicate the importance of phytoalexin synthesis in root resistance to the pathogen. Names are necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by USDA implies no approval of the product to the exclusion of others that may also be suitable.  相似文献   

2.
Liu S  Norris DM  Hartwig EE  Xu M 《Plant physiology》1992,100(3):1479-1485
The hypocotyl of different soybean genotypes was tested for its inducible phytoalexin (i.e. glyceollin or coumestrol) accumulation and its inducible soybean looper resistance in response to chemical elicitation. A very highly insect-resistant soybean genotype (PI 227687) produced significantly more phytoalexins than a relatively insect-susceptible one (Davis) in response to the same chemical elicitation. The resultant standardized hypocotyl assay allowed quick categorization of unknown soybean genotypes regarding the level of insect resistance in the fully developed plants. Glyceollin was a better indicator of inducible resistance than coumestrol. Elicitor concentration influenced the amount of glyceollin and coumestrol accumulated. Younger seedlings (4-5 d old) responded stronger to chemical elicitation than did older ones (7-10 d old). The elicited accumulation of glyceollin showed a temporal pattern that peaked at 72 h. Accumulation of coumestrol showed a gradual increase. Elicitation of phytoalexins in juvenile soybean plants by sulfhydryl-binding reagents was found to be useful for the prediction of genotypic differences in the level of insect resistance in the fully developed plants.  相似文献   

3.
4.
5.
Effects of isoflavones on plant salt tolerance were investigated in soybean (Glycine max L. Merr. cultivar N23674) and tobacco (Nicotiana tabacum L.). Leaf area, fresh weight, net photosynthetic rate (Pn), and transpiration rate (Tr) of soybean N23674 plants treated with 80 mM NaCl were significantly reduced, while a gene (GmIFS1) encoding for 2-hydroxyisoflavone synthase was highly induced, and isoflavone contents significantly increased in leaves and seeds. To test the impact of isoflavones to salt tolerance, transgenic soybean cotyledon hairy roots expressing GmIFS1 (hrGmIFS1) were produced. Salt stress slightly increased isoflavone content in hairy roots of the transgenic control harboring the empty vector but substantially reduced the maximum root length, root fresh weight, and relative water content (RWC). The isoflavone content in hrGmIFS1 roots, however, was significantly higher, and the above-mentioned root growth parameters decreased much less. The GmIFS1 gene was also transformed into tobacco plants; plant height and leaf fresh weight of transgenic GmIFS1 tobacco plants were much greater than control plants after being treated with 85 mM NaCl. Leaf antioxidant capacity of transgenic tobacco was significantly higher than the control plants. Our results suggest that salt stress-induced GmIFS1 expression increased isoflavone accumulation in soybean and improved salt tolerance in transgenic soybean hairy roots and tobacco plants.  相似文献   

6.
《Plant science》1988,58(2):193-202
A procedure for transformation of monohaploid and diploid potato genotypes through infection of stem internodes with hairy root inducing strains of Agrobacterium is described. Hairy roots induced by A. rhizogenes strain LBA9402 and A. tumefaciens strain LBA1020, both containing the Ri1855 plasmid, were analysed for phenotype, growth and development, and opine expression. The ploidy level of the hairy roots was determined by measurements of the nuclear DNA content and the chromosome number. The genotypes of potato (8 monohaploids, 2 diploids) greatly differed in their response to transformation, i.e. the frequency of stem internodes with primary hairy roots, the number of roots per internode and their phenotype. Transformation efficiency was lower in most of the monohaploid genotypes as compared to that in diploid genotypes. Hairy root clones could be established in 4 of the 8 monohaploid genotypes and in both diploid genotypes after subculturing of primary hairy roots. Hormone autotrophy was observed in all the root clones. The root clones varied in their phenotype and opine expression; opine expression was found in only 50% of the clones. Twenty-five of the 26 hairy root clones of the diploid genotypes showed only parental (diploid) chromosome number, even after 6 months of culture, suggesting genetic stability during the transformation and in the resulting hairy roots. However, in monohaploid genotypes the hairy root clones were either diploid or tetraploid. The transformation of monohaploid and diploid potato genotypes can be an efficient system for the establishment of a series of genetic marker lines for gene mapping.  相似文献   

7.
Hairy root cultures of a model legume, Lotus japonicus, were established to characterize two heterologous cDNAs encoding enzymes involved in isoflavone biosynthesis, i.e. licorice 2-hydroxyisoflavanone synthase (IFS) and soybean 2-hydroxyisoflavanone dehydratase (HID) catalyzing sequential reactions to yield isoflavones. While the control and the IFS overexpressor did not accumulate detectable isoflavones, the HID overexpressors did accumulate daidzein and genistein, showing that HID is a critical determinant of isoflavone productivity. Production of coumestrol in all the genotypes and isoliquiritigenin/liquiritigenin in IFS + HID-overexpressing lines was also noted. These results provide insight into the regulatory mechanism that controls isoflavonoid biosynthesis.  相似文献   

8.
Summary Hairy root cultures of Lycopersicon esculentum L. Mill ev. Pera were established by infection of leaf explants with Agrobacterium rhizogenes LBA 9402. The pattern of peroxidase isoenzymes in these tissues was similar to that of roots excised from tomato plants grown in hydroponic cultures. Hairy root cultures may be an appropriate system to analyze the peroxidase involvement in the response of isolated roots to salt stress, avoiding the problem of wounding or changes in hormone levels observed in roots excised from plants. The cultures of hairy roots allowed the evaluation of changes in peroxidase patterns not only in the tissue but also in the culture medium. Hairy roots were subcultured in Murashige and Skoog liquid medium with or without 100 mM NaCl to investigate the evolution of growth, total peroxidase activity of the tissue and culture medium, and changes in the peroxidase isoenzyme patterns under each condition of growth. Control cultures showed a growth index higher than those reported for other hairy root cultures, and it was even higher in the presence of 100 mM NaCl. The total peroxidase activity in the tissue was similar for control and salt-treated roots. Even when the total peroxidase activity of the medium decreased under salt treatment, NaCl induced secretion of a highly basic peroxidase and inhibition of the secretion of some acidic isoenzymes. These changes may explain the physiological role of these enzymes in the response to salt stress that we will possibly establish through a future study of the biochemical properties of those peroxidases.  相似文献   

9.
Fusarium solani f. sp. glycines (FSG; syn. F. virguliforme Akoi, O'Donnell, Homma & Lattanzi) is a soil-borne fungus that infects soybean roots and causes sudden death syndrome (SDS), a widespread and destructive soybean disease. The goal of this study was to develop and use a real-time quantitative polymerase chain reaction (QPCR) assay to compare the accumulation of genomic DNA among 30 FSG isolates in inoculated soybean roots. Isolates differed significantly (P < or = 0.05) in their DNA accumulation on a susceptible soybean cultivar when detected and quantified using a FSG-specific probe/primers set derived from the sequences of the nuclear-encoded, mitochondrial small subunit ribosomal RNA gene. QPCR results that were normalized as the fold change over the sample collection times after inoculation were significantly (P < or = 0.001) correlated with the log(10) transformed colony-forming unit (CFU) values of FSG obtained from plating of inoculated ground roots on FSG semi-selective agar medium. Several isolates were identified that accumulated more FSG DNA and had higher CFU values than the reference isolate FSG1 (Mont-1). Compared to other isolates, FSG5 was the most aggressive root colonizer based on DNA accumulation and CFU values in infested roots. The described QPCR assay should provide more specificity, greater sensitivity, and less variability than alternatives to the culturing-dependent and time-consuming plating assays. Evaluation of isolate relative DNA differences on host plants using the QPCR approach provides useful information for evaluating isolates based on the extent and/or degree of colonization on soybean roots and for selecting isolates for breeding SDS-resistant soybean lines.  相似文献   

10.
Ngo Le-Van 《Phytochemistry》1984,23(5):1204-1205
A new coumestrol glycoside, coumestrin, has been isolated from soybean roots together with its aglycone, coumestrol, and the known isoflavones genistin, genistein, daidzin and daidzein. Their structures were determined by spectroscopic technique (1H NMR, UV, IR, EIMS, CIMS and FDMS) and by some chemical transformations.  相似文献   

11.
Hairy root cultures were established after inoculation of Genista tinctoria in vitro shoots with Agrobacterium rhizogenes, strain ATCC 15834. In transformed roots of G. tinctoria grown in Schenk-Hildebrandt medium without growth regulators the biosynthesis of isoflavones, derivatives of genistein and daidzein, and flavones, derivatives of luteolin and apigenin, characteristic for the intact plant, was completely inhibited. The only compound synthesized in G. tinctoria hairy roots was isoliquiritigenin (2.3 g/100 g DW), a daidzein precursor absent in the intact plant. This compound was stored entirely within cells and it was not until abscisic acid was added (37.8 microM supplement on day 42) that approx. 80% of it was released into the experimental medium. The paper discusses the effect of abscisic acid on the growth of G. tinctoria hairy root cultures, the biosynthesis of isoliquiritigenin and the way it is stored. A prototype basket-bubble bioreactor was designed and built to upgrade the scale of the G. tinctoria hairy root cultures. With immobilized roots and a new aeration system, large amounts of biomass were obtained (FWmax 914.5 g l(-1)) which produced high contents of isoliquiritigenin (2.9 g/100 g DW). The abscisic acid-induced release of the metabolite from the tissue into the growth medium greatly facilitated subsequent extraction and purification of isoliquiritigenin.  相似文献   

12.
Legume iso/flavonoids have been implicated in the nodulation process, but questions remain as to their specific role(s), and no unequivocal evidence exists showing that these compounds are essential for nodulation. Two hypotheses suggest that the primary role of iso/flavonoids is their ability to induce rhizobial nod gene expression and/or their ability to modulate internal root auxin concentrations. The present work provides direct, genetic evidence that isoflavones are essential for nodulation of soybean roots because of their ability to induce the nodulation genes of Bradyrhizobium japonicum. Expression of isoflavone synthase (IFS), a key enzyme in the biosynthesis of isoflavones, is specifically induced by B. japonicum. When IFS was silenced using RNA interference in soybean hairy root composite plants, these plants had severely reduced nodulation. Surprisingly, pre-treatment of B. japonicum or exogenous application to the root system of either of the major soybean isoflavones, daidzein or genistein, failed to restore normal nodulation. Silencing of chalcone reductase led to very low levels of daidzein and increased levels of genistein, but did not affect nodulation, suggesting that the endogenous production of genistein was sufficient to support nodulation. Consistent with a role for isoflavones as endogenous regulators of auxin transport in soybean roots, silencing of IFS resulted in altered auxin-inducible gene expression and auxin transport. However, use of a genistein-hypersensitive B. japonicum strain or purified B. japonicum Nod signals rescued normal nodulation in IFS-silenced roots, indicating that the ability of isoflavones to modulate auxin transport is not essential to nodulation.  相似文献   

13.
Hairy root cultures of Pharbitis nil treated with CuSO4 and methyl jasmonate (MeJA) produced umbelliferone (1) and scopoletin (2) in the culture medium, and skimmin (3), a beta-D-glucopyranoside of 1, was isolated from the hairy roots. While 1 in the medium increased and reached a maximal level 16 h after the treatment with CuSO4, the amount of 3 in the hairy roots decreased, reaching a minimal level after 8 h, before recovering to a level higher than the basal level after 24 h and then continuously increasing. These observations suggest that 1 was released by the hydrolysis of 3. Umbelliferone (1) inhibited hairy root growth, while skimmin (3) did not. This result suggests that, after the release of 1 as a phytoalexin, the hairy roots glycosylated 1 for the detoxification and re-use of 3 as a source of phytoalexin.  相似文献   

14.
Isoflavonoids, some of which are highly fluorescent, are produced by soybean [Glycine max (L.) Merr.] and serve as chemical signals for certain aspects of nitrogen fixation and microbial resistance. This study was conducted to determine whether soybean mutants with nonfluorescent roots contained abnormal concentrations of isoflavonoids. Isoflavonoids were extracted from the root and hypocotyl of 4-d-old wild-type soybean seedlings (cv. Hark) having fluorescent roots and from four nonallelic mutant, near isogenic lines of Hark having nonfluorescent roots. In addition, isoflavonoids were extracted from the root and hypocotyl of 4-d-old seedlings of near isogenic lines of Hark harboring two pairs of the mutant alleles for nonfluorescent roots. Malonyl daidzin, daidzin, malonyl genistin, and genistein were the most abundant isoflavonoids extracted from either the root or hypocotyl of seedlings with either fluorescent or nonfluorescent roots. Extracted malonyl daidzin, malonyl genistin, and malonyl glycitin decomposed readily, yielding daidzin, genistin, and glycitin, respectively. The concentrations of malonyl genistin and genistein, two highly fluorescent compounds, were similar in both fluorescent and nonfluorescent roots. Thus, root fluorescence was not correlated with abundance per se of fluorescent isoflavonoids in roots. In addition, the abundance of isoflavonoids extractable from the hypocotyl did not correlate with root fluorescence.  相似文献   

15.
Using several explants of Pueraria candollei Grah. ex Benth. var. candollei and two strains of Agrobacterium rhizogenes (ATCC 15834 and 43057), hairy root cultures were established. Including 100???M acetosyringone in the culture medium enhanced frequency of hairy root induction by up to 58?%. Subsequently, effects of inoculum size (IS) and temperature on growth and production of isoflavonoids in hairy roots were determined. Conditions of 1?%?IS and 32?°C promoted the highest accumulation of total isoflavonoid content, up to 31.0?±?22.6?mg/g dry weight (DW), in hairy roots. Moreover, culture of hairy roots at 32?°C decreased browning of hairy roots. Furthermore, this temperature promoted accumulation of the secondary metabolite daidzein; whereas, hairy root cultures at the stationary phase accumulated higher amounts of the isoflavonoid puerarin rather than daidzein.  相似文献   

16.
Summary Some polyphenolic compounds have been identified in root exudates of two species of legumes (both cultivated in sterile conditions): for lentil, three desoxy-5 flavones (4′,7-dihydroxy, 3′,4′,7-trihydroxy and 4′,7-dihydroxy, 3′-methoxyflavones) and for soybean: two isoflavonoids, coumestrol and daidzein (or 4′,7-dihydroxyisoflavone). Identified compounds are polyphenolic aglycones whereas roots contain the corresponding glycosides, showing that a hydrolysis takes place at the time of exudation. Compounds are observed in plantlet exudates as soon as the first day after planting. Their daily quantitative variations parallel those of total phenolic compounds. Exudated coumestrol and 4′,7-dihydroxyflavone amounts are estimated at about 20% of root content in these molecules.  相似文献   

17.
野葛毛状根离体培养与异黄酮生产   总被引:11,自引:0,他引:11  
用发根农杆菌(Agrobacterium rhizogenes)R1601菌株感染野葛(Pueraria lobata(Willd.)Ohwi)叶片外植体后获得的毛状根,经连续4次继代培养,鲜重增加到最初的6.2倍。PH为5.5的1/2SH液体培养基较适合野葛毛状根的生长。与自然根相比,毛状根在无激素的1/2SH液体培养基中离体培养20d后,鲜重增加22.6倍,释放入培养液中的异黄酮量增加10.6倍。毛状根生产异黄酮的量略高于自然根,且根中含量明显高于愈伤组织及茎中异黄酮的含量。培养液体积影响毛状根的离体生长及异黄酮的释放。  相似文献   

18.
Cho MJ  Harper JE 《Plant physiology》1991,95(2):435-442
The isoflavones, daidzein and genistein, have been isolated and identified as the major inducers of nod genes of Bradyrhizobium japonicum. The common nod genes of rhizobia are in turn responsible for stimulating root hair curling and cortical root cell division, the earliest steps in the host response. This study evaluated whether there was a relationship between root isoflavonoid production and the hypernodulation phenotype of selected soybean (Glycine max [L.] Merr.) mutants. Three independently selected hypernodulating soybean mutants (NOD1-3, NOD2-4, and NOD3-7) and a nonnodulating mutant (NN5) were compared with the Williams parent for isoflavonoid concentrations. High performance liquid chromatographic analyses of soybean root extracts showed that all lines increased in daidzein, genistein, and coumestrol concentrations throughout the 12-day growth period after transplanting of both inoculated and noninoculated plants; transplanting and inoculation were done 6 days after planting. No significant differences were detected in the concentration of these compounds among the three noninoculated hypernodulating mutants and the Williams parent. In response to inoculation, the three hypernodulating mutants had higher isoflavonoid concentrations than did the Williams control at 9 to 12 days after inoculation when grown at 0 millimolar N level. However, the inoculated nonnodulating mutant also had higher isoflavonoid concentrations than did Williams. N application [urea, (NH4)2SO4 and NO3] decreased the concentration of all three isoflavonoid compounds in all soybean lines. Application of NO3 was most inhibitory to isoflavonoid concentrations, and inhibition by NO3 was concentration dependent. These results are consistent with a conclusion that differential NO3 inhibition of nodulation may be partially due to changes in isoflavonoid levels, although the similar response of the nonnodulating mutant brings this conclusion into question. Alternatively, the nodulation control in the NN5 mutant may be due to factors totally unrelated to isoflavonoids, leaving open the possibility that isoflavonoids play a role in differential nodulation of lines genetically competent to nodulate.  相似文献   

19.
20.
Hairy roots and suspension cell cultures are commonly used in deciphering different problems related to the biochemistry and physiology of plant secondary metabolites. Here, we address about the issue of possible differences in the profiles of flavonoid compounds and their glycoconjugates derived from various plant materials grown in a standard culture media. We compared profiles of flavonoids isolated from seedling roots, hairy roots, and suspension root cell cultures of a model legume plant, Medicago truncatula. The analyses were conducted with plant isolates as well as the media. The LC/MS profiles of target natural products obtained from M. truncatula seedling roots, hairy roots, and suspension root cell cultures differed substantially. The most abundant compounds in seedlings roots were mono- and diglucuronides of isoflavones and/or flavones. This type of glycosylation was not observed in hairy roots or suspension root cell cultures. The only recognized glycoconjugates in the latter samples were glucose derivatives of isoflavones. Application of a high-resolution mass spectrometer helped evaluate the elemental composition of protonated molecules, such as [M + H]+. Comparison of collision-induced dissociation MS/MS spectra registered with a quadrupole time-of-flight analyzer for tissue extracts and standards allowed us to estimate the aglycone structure on the basis of the pseudo-MS3 experiment. Structures of these natural products were described according to the registered mass spectra and literature data. The analyses conducted represent an overview of flavonoids and their conjugates in different types of plant material representing the model legume, M. truncatula.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号