首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A protocol has been developed to produce a cholera toxin B subunit (CTB) in tobacco tolerant to the herbicide phosphinothricin (PPT) by means of in vitro selection. The synthetic CTB subunit gene was altered to modify the codon usage to that of tobacco plant genes. The gene was then cloned into a plant expression vector and was under the control of the ubiquitin promoter and transformed into tobacco plants by Agrobacterium-mediated transformation. Transgenic plantlets were selected in a medium supplemented with 5 mg/L PPT. Polymerase chain reaction analysis confirmed stable integration of the synthetic CTB gene into a chromosomal DNA. A high level of CTB (1.8% of total soluble protein) was expressed in transgenic plants, which was 18-fold higher than that under the control of the expressed CaMV 35S promoter with native gene. The transgenic plants when transferred to a greenhouse proved to be resistant to 2% PPT.  相似文献   

2.
Porcine epidemic diarrhea virus (PEDV) causes acute enteritis in pigs of all ages and is often fatal for neonates. A tobacco mosaic virus (TMV)-based vector was utilized for the expression of a core neutralizing epitope of PEDV (COE) for the development of a plant-based vaccine. In this study, the coding sequence of a COE gene was optimized based on the modification of codon usage in tobacco plant genes and the removal of mRNA-destabilizing sequences. The native and synthetic COE genes were cloned into TMV-based vectors and expressed in tobacco plants. The recombinant COE protein constituted up to 5.0% of the total soluble protein in the leaves of tobacco plants infected with the TMV-based vector containing synthetic COE gene, which was approximately 30-fold higher than that in tobacco plants infected with TMV-based vector containing a native COE gene. Therefore, this result indicates that the plant viral expression system with a synthetic gene optimized for plant expression is suitable to produce a large amount of antigen for the development of plant-based vaccine rapidly.  相似文献   

3.
The B subunit of Escherichia coli heat-labile enterotoxin (LTB) has been transformed to plants for use as an edible vaccine. We have developed a simple and reliable Agrobacterium-mediated transformation method to express synthetic LTB gene in N. tabacum using a phosphinothricin acetyltransferase (bar) gene as a selectable marker. The synthetic LTB gene adapted to the coding sequence of tobacco plants was cloned to a plant expression vector under the control of the ubiquitin promoter and transformed to tobacco by Agrobacterium-mediated transformation. Transgenic plants were selected in the medium supplemented with 5 mg l-1 phosphinothricin (PPT). The amount of LTB protein detected in the transgenic tobacco was approximately 3.3% of the total soluble protein, approximately 300-fold higher than in the plants generated using the native LTB gene under the control of the CaMV 35S promoter. The transgenic plants that were transferred to a greenhouse had harvested seeds that proved to be resistant to herbicide. Thus, the described protocol could provide a useful tool for the transformation of tobacco plants.  相似文献   

4.
The 2L21 peptide, which confers protection to dogs against challenge with virulent canine parvovirus (CPV), was expressed in tobacco chloroplasts as a C-terminal translational fusion with the cholera toxin B subunit (CTB) or the green fluorescent protein (GFP). Expression of recombinant proteins was dependent on plant age. A very high-yield production was achieved in mature plants at the time of full flowering (310 mg CTB-2L21 protein per plant). Both young and senescent plants accumulated lower amounts of recombinant proteins than mature plants. This shows the importance of the time of harvest when scaling up the process. The maximum level of CTB-2L21 was 7.49 mg/g fresh weight (equivalent to 31.1% of total soluble protein, TSP) and that of GFP-2L21 was 5.96 mg/g fresh weight (equivalent to 22.6% of TSP). The 2L21 inserted epitope could be detected with a CPV-neutralizing monoclonal antibody, indicating that the epitope is correctly presented at the C-terminus of the fusion proteins. The resulting chimera CTB-2L21 protein retained pentamerization and G(M1)-ganglioside binding characteristics of the native CTB and induced antibodies able to recognize VP2 protein from CPV. To our knowledge, this is the first report of an animal vaccine epitope expression in transgenic chloroplasts. The high expression of antigens in chloroplasts would reduce the amount of plant material required for vaccination (approximately 100 mg for a dose of 500 microg antigen) and would permit encapsulation of freeze-dried material or pill formation.  相似文献   

5.
Trichosanthin (TCS) is an antiviral plant defense protein, classified as a type-I ribosome-inactivating protein, found in the root tuber and leaves of the medicinal plant Trichosanthes kirilowii. It is processed from a larger precursor protein, containing a 23 amino acid amino (N)-terminal sequence (pre sequence) and a 19 amino acid carboxy (C)-terminal extension (pro sequence). Various constructs of the TCS gene were expressed in transgenic tobacco plants to determine the effects of the amino- and carboxy-coding gene sequences on TCS expression and host toxicity in plants. The maximum TCS expression levels of 2.7% of total soluble protein (0.05% of total dry weight) were obtained in transgenic tobacco plants carrying the complete prepro-TCS gene sequence under the Cauliflower mosaic virus 35S RNA promoter. The N-terminal sequence matched the native TCS sequence indicating that the T. kirilowii signal sequence was properly processed in tobacco and the protein translation inhibitory activity of purified rTCS was similar to native TCS. One hundred-fold lower expression levels and phenotypic aberrations were evident in plants expressing the gene constructs without the C-terminal coding sequence. Transgenic tobacco plants expressing recombinant TCS exhibited delayed symptoms of systemic infection following exposure to Cucumber mosaic virus and Tobacco mosaic virus (TMV). Local lesion assays using extracts from the infected transgenic plants indicated reduced levels of TMV compared with nontransgenic controls.  相似文献   

6.
Cholera toxin B subunit (CTB) mature protein was stably expressed in transgenic tobacco plants under the control of the CaMV 35S promoter and TMV Omega fragment. Fusion of the PR1b signal peptide coding sequence to the CTB mature protein gene increased the expression level by 24-fold. The tobacco-synthesized CTB (tCTB) was purified to homogeneity by a single step of immunoaffinity chromatography. The purified tCTB is predominantly in the form of pentamers with molecular weight identical to the native pentameric CTB, indicating that the PR1b-CTB fusion protein has been properly processed in tobacco cells. Furthermore, by immunodiffusion and immunoelectrophoresis, we have shown that the antigenicity of the purified tCTB is indistinguishable from that of the native CTB protein.  相似文献   

7.
The synthetic cholera toxin B subunit (CTB) gene, modified according to the optimized codon usage of plant genes, was introduced into a plant expression vector and expressed under the control of the Bx17 HMW (high molecular weight) wheat endosperm-specific promoter containing an intron of the rice act1. The recombinant vector was transformed into rice plants using a biolistic-mediated transformation method. Stable integration of the synthetic CTB gene into the chromosomal DNA was confirmed by PCR amplification analysis. A high level of CTB (2.1% of total soluble protein) was expressed in the endosperm tissue of the transgenic rice plants. The synthetic CTB produced only in the rice endosperm demonstrated strong affinity for GM1-ganglioside, thereby suggesting that the CTB subunits formed an active pentamer. The successful expression of CTB genes in transgenic plants makes it a powerful tool for the development of a plant-derived edible vaccine.  相似文献   

8.
Expression of cholera toxin B subunit oligomers in transgenic potato plants   总被引:36,自引:0,他引:36  
A gene encoding the cholera toxin B subunit protein (CTB), fused to an endoplasmic reticulum (ER) retention signal (SEKDEL) was inserted adjacent to the bi-directional mannopine synthase P2 promoter in a plant expression vector containing a bacterial luciferase AB fusion gene (luxF) linked to the P1 promoter. Potato leaf explants were transformed by Agrobacterium tumefaciens carrying the vector and kanamycin-resistant plants were regenerated. The CTB-SEKDEL fusion gene was identified in the genomic DNA of bioluminescent plants by polymerase chain reaction amplification. Immunoblot analysis indicated that plant-derived CTB protein was antigenically indistinguishable from bacterial CTB protein, and that oligomeric CTB molecules (Mr 50 kDa) were the dominant molecular species isolated from transgenic potato leaf and tuber tissues. Similar to bacterial CTB, plant-synthesized CTB dissociated into monomers (Mr 15 kDa) during heat or acid treatment. The maximum amount of CTB protein detected in auxin-induced transgenic potato leaf and tuber tissues was approximately 0.3% of total soluble plant protein. Enzyme-linked immunosorbent assay methods indicated that plant-synthesized CTB protein bound specifically to GM1-ganglioside, the natural membrane receptor of cholera toxin. In the presence of the SEKDEL signal, CTB protein accumulates in potato tissues and is assembled into an oligomeric form that retains native biochemical and immunological properties. The expression of oligomeric CTB protein with immunological and biochemical properties identical to native CTB protein in edible plants opens the way for preparation of inexpensive food plant-based oral vaccines for protection against cholera and other pathogens in endemic areas throughout the world  相似文献   

9.
The cholera toxin B subunit (CTB), a nontoxic molecule with potent biological properties, is a powerful mucosal and parenteral adjuvant that induces a strong immune response against co-administered or coupled antigens. A gene encoding CTB, which was modified based on the optimized codon usage in the plant, was synthesized and fused to the endoplasmic reticulum retention signal KDEL to enhance its expression level in plants. The synthetic CTB (sCTB) gene was introduced into a plant expression vector adjacent to the CaMV 35S promoter, and was transformed into tomato using an Agrobacterium-mediated transformation method. The integration of the sCTB gene into the genomic DNA of transgenic plants was confirmed by genomic DNA PCR amplification. The synthesis and assembly of CTB protein in transgenic plants was demonstrated through immunoblot analysis and GM1-ELISA. The highest amount of CTB protein produced in transgenic tomatoes was approximately 0.9% of total soluble fruit protein which was 10-fold greater than the previously 0.081%. GM1-ELISA indicated that plant-synthesized CTB protein bound specifically to GM1-gangliosides, suggesting that the CTB subunits formed active pentamers.  相似文献   

10.
We are examining various plant-based systems to produce enzymes for the treatment of human lysosomal storage disorders. Constitutive expression of the gene encoding the human lysosomal enzyme, alpha-L-iduronidase (IDUA; EC 3.2.1.76) in leaves of transgenic tobacco plants resulted in low-enzyme activity, and the protein appeared to be subject to proteolysis. Toward enhancing production of this recombinant enzyme in vegetative tissues, transgenic tobacco plants were generated to co-express a CaMV35S:Chamaecyparis nootkatensis Abscisic Acid Insensitive3 (CnABI3) gene construct, along with the human gene construct. The latter contained regulatory sequences of the Phaseolus vulgaris arcelin 5-I gene (5'-flanking, signal-peptide-encoding, and 3'-flanking regions). Ectopic synthesis of the CnABI3 protein led to the transactivation of the arcelin promoter and accordingly high activity (e.g., 25,000 pmol/min/mg total soluble protein) and levels of recombinant IDUA mRNA and protein were induced in leaves of transgenic tobacco, particularly in the presence of 150-200 microM S-(+)-ABA. Synthesis of human IDUA containing a carboxy-terminal ER retention (SEKDEL) sequence was also inducible by ABA in leaves co-transformed with the CnABI3 gene. As compared to the natural S-(+)-ABA, two persistent ABA analogues, (+)-8' acetylene ABA and (+)-8'methylene ABA, led to greater levels of beta-glucuronidase (GUS) reporter activities in leaves co-expressing the CnABI3 gene and a vicilin:GUS chimeric gene. In contrast, (+)-8' acetylene ABA and natural ABA appeared to be equally effective in stimulating the CnABI3-induced expression of an arcelin:GUS gene, and of the human IDUA gene, the latter also driven by arcelin-gene-regulatory sequences. Various stress-related treatments, particularly high concentrations of NaCl, had an even greater effect than ABA in promoting accumulation of human IDUA in co-transformed tobacco leaves. This strategy provides the means of enhancing the yields of recombinant proteins in transgenic plant vegetative tissues and potentially in cultured plant cells. The human recombinant protein can be readily induced in the presence of chemicals such as NaCl that can be added to cell cultures or even whole plants without a significant increase in production costs.  相似文献   

11.
本文首次报道疟疾多表位抗原基因在转基因烟草中表达成功。疟疾是当今最需要研究有效疫苗的主要传染病之一。过去的研究表明,AWTE基因编码的疟疾多种抗原表位是有效的抗疟表位,CTB基因编码的霍乱毒素B亚基,是一种既能引起细胞免疫又能引起体液免疫的免疫载体和佐剂。本研究把AWTE-CTB融合基因构建到植物表达载体pBVG-ny1上,采用共转化的方法,通过基因枪导入转化烟草。经PCR扩增AWTE-CTB基因片段检测,证实了疟疾多表位抗原基因在转基因烟草中的整合。SDS-PAGE蛋白电泳结果显示转基因烟草中表达了AWTE-CTB融合基因分子量相同的特异蛋白。经抗原性分析实验和Western免疫印迹实验结果表明,特异表达的融合蛋白可与CTB和AWTE抗体结合,具有CTB和AWTE抗原性。  相似文献   

12.
13.
The production of plant-derived pharmaceuticals essentially requires stable concentrations of plant constituents, especially recombinant proteins; nonetheless, soil and seasonal variations might drastically interfere with this stability. In addition, variability might depend on the plant organ used for production. Therefore, we investigated the variability in plant constituents and antigen expression in potato plants under greenhouse and field growth conditions and in leaves compared to tubers. Using potatoes expressing VP60, the only structural capsid protein of the rabbit haemorrhagic disease virus (RHDV), CTB, the non-toxic B subunit (CTB) of the cholera toxin (CTA-CTB(5)) and the marker protein NPTII (neomycinphosphotransferase) as a model, we compare greenhouse and field production of potato-derived antigens. The influence of the production organ turned out to be transgene specific. In general, yield, plant quality and transgene expression levels in the field were higher than or similar to those observed in the greenhouse. The variation (CV) of major plant constituents and the amount of transgene-encoded protein was not influenced by the higher variation of soil properties observed in the field. Amazingly, for specific events, the variability in the model protein concentrations was often lower under field than under greenhouse conditions. The changes in gene expression under environmental stress conditions in the field observed in another event do not reduce the positive influence on variability since events like these should excluded from production. Hence, it can be concluded that for specific applications, field production of transgenic plants producing pharmaceuticals is superior to greenhouse production, even concerning the stability of transgene expression over different years. On the basis of our results, we expect equal or even higher expression levels with lower variability of recombinant pharmaceuticals in the field compared to greenhouse production combined with approximately 10?times higher tuber yield in the field.  相似文献   

14.
Cholera toxin B subunit (CTB) has the potential to be an effective adjuvant for mucosal vaccines because of its ability to increase antigen uptake and presentation by antigen-presenting cells through GM1-ganglioside binding. CTB has been produced using different recombinant protein expression systems. This study used the geminiviral replicon system to transiently express CTB in Nicotiana benthamiana. The plant-optimized CTB gene was cloned into a geminiviral vector and infiltrated into N. benthamiana leaves. The highest CTB protein level was observed on day 4 with approximately 4 μg/g fresh weight. The Western blot analysis using anti-CTB suggests assembly of CTB into oligomers. Based on the GM1-ELISA results, this CTB transiently expressed in plants showed biological activity for binding the intestinal epithelial cell membrane glycolipid receptor, GM1-glanglioside, which implies its potential as an adjuvant for mucosal vaccines.  相似文献   

15.
Thrombomodulin is a membrane-bound protein that plays an active role in the blood coagulation system by binding thrombin and initiating the protein C anticoagulant pathway. Solulin™ is a recombinant soluble derivative of human thrombomodulin. It is used for the treatment of thrombotic disorders. To evaluate the production of this pharmaceutical protein in plants, expression vectors were generated using four different N-terminal signal peptides. Immunoblot analysis of transiently transformed tobacco leaves showed that intact Solulin™ could be detected using three of these signal peptides. Furthermore transgenic tobacco plants and BY2 cells producing Solulin™ were generated. Immunoblot experiments showed that Solulin™ accumulated to maximum levels of 115 and 27 μg g−1 plant material in tobacco plants and BY2 cells, respectively. Activity tests performed on the culture supernatant of transformed BY2 cells showed that the secreted Solulin™ was functional. In contrast, thrombomodulin activity was not detected in total soluble protein extracts from BY2 cells, probably due to inhibitory effects of substances in the cell extract. N-terminal sequencing was carried out on partially purified Solulin™ from the BY2 culture supernatant. The sequence was identical to that of Solulin™ produced in Chinese hamster ovary cells, confirming correct processing of the N-terminal signal peptide. We have demonstrated that plants and plant cell cultures can be used as alternative systems for the production of an active recombinant thrombomodulin derivative.  相似文献   

16.
The cDNA encoding N-terminal three immunoglobin-like domains of human M-CSFR was linked to His-tag and endoplasmic reticulum retention sequence (KDEL) before being inserted into the genome of tobacco plant, Nicotiana tabacum cv. NC-89, by Agrobacterium tumefaciens-mediated transformation. The insertion and expression of target gene were confirmed by PCR, ELISA, and Western blot. The recombinant M-CSFsR reached a maximum expression level of 1.92% of total soluble protein in transgenic tobacco plant leaf tissues. The recombinant M-CSFsR could be purified through a one-step IMAC process and its bioactivity was confirmed by the inhibition of colony formation of J6-1 cells. The results suggested that we successfully expressed a high level of bioactive human M-CSFsR in tobacco plants.  相似文献   

17.
霍乱弧菌CTB蛋白具有免疫佐剂活性。本研究根据已发表CTB基因的序列设计一对引物,从一株霍乱弧菌中扩增出CTB基因,测序后发现该基因全长375 bp,与国内分离的六株CTB基因的同源性达96.0%~99.2%。将该基因与pTWIN1连接构建了原核表达载体pTWIN1-CTB,重组表达载体转化BL21(DE3)表达菌株,0.8 mmol/L IPTG诱导4 h后,收获的细菌总蛋白SDS-PAGE电泳显示CTB在原核表达系统中得到表达,融合蛋白大小与理论值符合,蛋白产量占细菌总蛋白的20%左右,主要以包涵体形式存在,western杂交和GM1-ELISA结果表明重组蛋白具有免疫原性和粘膜佐剂活性。  相似文献   

18.
Transgenic plants offer promising alternative for large scale, sustainable production of safe, functional, recombinant proteins of therapeutic and industrial importance. Here, we report the expression of biologically active human alpha-1-antitrypsin in transgenic tomato plants. The 1,182 bp cDNA sequence of human AAT was strategically designed, modified and synthesized to adopt codon usage pattern of dicot plants, elimination of mRNA destabilizing sequences and modifications around 5' and 3' flanking regions of the gene to achieve high-level regulated expression in dicot plants. The native signal peptide sequence was substituted with modified signal peptide sequence of tobacco (Nicotiana tabacum) pathogenesis related protein PR1a, sweet potato (Ipomoea batatas) sporamineA and with dicot-preferred native signal peptide sequence of AAT gene. A dicot preferred translation initiation context sequence, 38 bp alfalfa mosaic virus untranslated region were incorporated at 5' while an endoplasmic reticulum retention signal (KDEL) was incorporated at 3' end of the gene. The modified gene was synthesized by PCR based method using overlapping oligonucleotides. Tomato plants were genetically engineered by nuclear transformation with Agrobacterium tumefaciens harbouring three different constructs pPAK, pSAK and pNAK having modified AAT gene with different signal peptide sequences under the control of CaMV35S duplicated enhancer promoter. Promising transgenic plants expressing recombinant AAT protein upto 1.55% of total soluble leaf protein has been developed and characterized. Plant-expressed recombinant AAT protein with molecular mass of around approximately 50 kDa was biologically active, showing high specific activity and efficient inhibition of elastase activity. The enzymatic deglycosylation established proper glycosylation of the plant-expressed recombinant AAT protein in contrast to unglycosylated rAAT expressed in E. coli ( approximately 45 kDa). Our results demonstrate feasibility for high-level expression of biologically active, glycosylated human alpha-1-antitrypsin in transgenic tomato plants.  相似文献   

19.
Plants offer an alternative inexpensive and convenient technology for large scale production of recombinant proteins especially recombinant antibodies (plantibodies). In this paper, we describe the expression of a model single chain antibody fragment (B6scFv) in transgenic tobacco. Four different gene constructs of B6scFv with different target signals for expression in different compartments of a tobacco plant cell with and without endoplasmic reticulum (ER) retention signal were used. Agrobacterium mediated plant transformation of B6scFv gene was performed with tobacco leaf explants and the gene in regenerated plants was detected using histochemical GUS assay and PCR. The expression of B6scFv gene was detected by western blotting and the recombinant protein was purified from putative transgenic tobacco plants using metal affinity chromatography. The expression level of recombinant protein was determined by indirect enzyme-linked immunosorbent assay. The highest accumulation of protein was found up to 3.28 % of the total soluble protein (TSP) in plants expressing B6scFv 1003 targeted to the ER, and subsequently expression of 2.9 % of TSP in plants expressing B6scFv 1004 (with target to apoplast with ER retention signal). In contrast, lower expression of 0.78 and 0.58 % of TSP was found in plants expressing antibody fragment in cytosol and apoplast, without ER retention signal. The described method/system could be used in the future for diverse applications including expression of other recombinant molecules in plants for immunomodulation, obtaining pathogen resistance against plant pathogens, altering metabolic pathways and also for the expression of different antibodies of therapeutic and diagnostic uses.  相似文献   

20.
A gene encoding VP7, the outer capsid protein of simian rotavirus SA11, was fused to the carboxyl terminus of the cholera toxin B subunit gene. A plant expression vector containing the fusion gene under control of the mannopine synthase P2 promoter was introduced into Solanum tuberosum cells by Agrobacterium tumefaciens-mediated transformation. The CTB::VP7 fusion gene was detected in the genomic DNA of transformed potato leaf cells by polymerase chain reaction (PCR) amplification methods. Immunoblot analysis of transformed potato tuber tissue extracts showed that synthesis and assembly of the CTB::VP7 fusion protein into oligomers of pentameric size occurred in the transformed plant cells. The binding of CTB::VP7 fusion protein pentamers to sialo-sugar containing GM1 ganglioside receptors on the intestinal epithelial cell membrane was quantified by enzyme-linked immunosorbent assay (ELISA). The ELISA results showed that the CTB::VP7 fusion protein made up approx 0.01% of the total soluble tuber protein. Synthesis and assembly of CTB::VP7 monomers into biologically active pentamers in transformed potato tubers demonstrates the feasibility of using edible plants as a mucosal vaccine for the production and delivery system for rotavirus capsid protein antigens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号