首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
The leukemic cell line UT7 is endowed with both megakaryocyte and basophil differentiation potential, as judged by its capacity to respond to PMA by displaying megakaryocytic and basophilic markers and to produce histamine by neosynthesis. Herein, we addressed the question whether the biological activities characteristic of basophil differentiation were still induced when c-mpl-transfected UT7 cells received a specific megakaryocytic differentiation signal delivered by thrombopoietin (TPO). Surprisingly, we found that histamine synthesis did effectively occur in response to the growth factor. This activity was not associated with megakaryopoiesis since it was not detected in megakaryocytes generated from CD34(+) cells cultured in the presence of TPO. Comparing different c-mpl-transfected cell lines, we found that the amount of histamine generated in response to TPO correlated with their responsiveness to PMA, but not with their level of c-mpl expression, thus revealing an intrinsic basophil differentiation potential. Both PMA- and TPO-induced histamine synthesis was reduced by PKC and MEKs inhibitors, indicating that the induction occurred through a common signalling pathway.  相似文献   

2.
It is reported that the stay in the space develops anemia, thrombocytopenia, and altered function and structure of red blood cell. The mechanism of these abnormalities was not clarified yet. Therefore, it is necessary to elucidate the mechanism of the effect of the gravity change on the thrombocytopoiesis, which plays the important role for the hemostasis, using animal models. The cloning of thrombopoietin (TPO), followed by the analysis of TPO and c-mpl (its cellular receptor) knockout mice confirmed its role as the primary regulator of thrombopoiesis. TPO has been shown to stimulate both megakaryocyte colony growth from marrow progenitor cells and the maturation of immature megakaryocyte to form functional platelet. This process includes the massive cytoskeletal rearrangement, such as proplatelet formation and fragmentation of proplatelet. In this study we have focused on the thrombopoiesis in mice those were exposed to gravity change by parabolic flight (PF).  相似文献   

3.
It is reported that the stay in the space develops anemia, thrombocytopenia, and altered function and structure of red blood cell. The mechanism of these abnormalities was not clarified yet. The cloning of the thrombopoietin (TPO), followed by the analysis of TPO and c-mpl (its cellular receptor) knockout mice confirmed its role as the primary regulator of thrombopoiesis. TPO has been shown to stimulate both megakaryocyte colony growth from marrow progenitor cells and the maturation of immature megakaryocyte to form functional platelet. This process includes the massive cytoskeletal rearrangement, such as proplatelet formation and fragmentation of proplatelet. In this study we have focused on the production of thrombopoietic growth factors in mice those were exposed to gravity change by parabolic flight (PF).  相似文献   

4.
We have isolated and characterized a thrombopoietin (TPO)-dependent BF-TE22 cell line endogenously expressing murine Mpl, which is a subclone of murine pro-B Ba/F3 cells. TPO stimulated the proliferation of BF-TE22 cells in a dose-dependent manner, and also induced the expression of megakaryocyte lineage-specific AP-51 and CD61 cell surface antigens. The results indicate that the murine Mpl on BF-TE22 cells can transmit both proliferation and megakaryocyte lineage-specific differentiation signals to cells. Furthermore, it was shown that IL-3 inhibits the TPO-induced differentiation signals of BF-TE22 cells. These results suggest that the signals mediated by IL-3 predominate over those of TPO in BF-TE22 cells. Thus, BF-TE22 cells will be useful for the biological and biochemical studies of the TPO-Mpl signal transduction mechanism. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
At the late phase of megakaryocytopoiesis, megakaryocytes undergo endomitosis, which is characterized by DNA replication without cell division. Although a number of cell cycle regulatory molecules have been identified, the precise roles of these molecules in megakaryocytic endomitosis are largely unknown. In a human interleukin-3-dependent cell line transfected with the thrombopoietin (TPO) receptor c-mpl (F-36P-mpl), either treatment with TPO or the overexpression of activated ras (Ha-Ras(G12V)) induced megakaryocytic maturation with polyploid formation. We found that TPO stimulation or Ha-Ras(G12V) expression led to up-regulation of cyclin D1, cyclin D2, and cyclin D3 expression. In addition, expression levels of cyclin A and cyclin B were reduced during the total course of both TPO- and Ha-Ras(G12V)-induced megakaryocytic differentiation, thereby leading to decreased cdc2 kinase activity. Neither the induced expression of cyclin D1, cyclin D2, or cyclin D3 nor the expression of a dominant negative form of cdc2 alone could induce megakaryocytic differentiation of F-36P-mpl cells. In contrast, overexpression of dominant negative cdc2 together with cyclin D1, cyclin D2, or cyclin D3 facilitated megakaryocytic differentiation in the absence of TPO. These results suggest that both D-type cyclin expression and decreased cdc2 kinase activity may participate in megakaryocytic differentiation.  相似文献   

6.
The cytokine thrombopoietin (TPO) controls the formation of megakaryocytes and platelets from hematopoietic stem cells. TPO exerts its effect through activation of the c-Mpl receptor and of multiple downstream signal transduction pathways. While the membrane-proximal half of the cytoplasmic domain appears to be required for the activation of signaling molecules that drive proliferation, the distal half and activation of the mitogen-activated protein kinase pathway have been implicated in mediating megakaryocyte maturation in vitro. To investigate the contribution of these two regions of c-Mpl and the signaling pathways they direct in mediating the function of TPO in vivo, we used a knock-in (KI) approach to delete the carboxy-terminal 60 amino acids of the c-Mpl receptor intracellular domain. Mice lacking the C-terminal 60 amino acids of c-Mpl (Delta60 mice) have normal platelet and megakaryocyte counts compared to wild-type mice. Furthermore, platelets in the KI mice are functionally normal, indicating that activation of signaling pathways connected to the C-terminal half of the receptor is not required for megakaryocyte differentiation or platelet production. However, Delta60 mice have an impaired response to exogenous TPO stimulation and display slower recovery from myelosuppressive treatment, suggesting that combinatorial signaling by both ends of the receptor intracellular domain is necessary for an appropriate acute response to TPO.  相似文献   

7.
8.
Congenital amegakaryocytic thrombocytopenia (CAMT) without physical anomalies is a rare disease, presenting isolated thrombocytopenia and megakaryocytopenia in infancy, which can evolve into aplastic anemia and leukemia. Recently, two heterozygous truncating mutations of the thrombopoietin (TPO) receptor MPL, coded by the c-mpl gene, were identified in a 10-year-old Japanese patient with CAMT transmitted in an autosomal recessive manner. Here, we report for the first time two different MPL amino-acid substitutions in a 2-year-old Italian boy with CAMT and compound heterozygosis for two (c-mpl point mutations. C-to-T transitions were detected on exons 5 and 12 at the 769 and 1904 cDNA nucleotide positions, respectively. The mutation in exon 5 substitutes an arginine with a cysteine (R257C) in the extracellular domain, 11 amino acids distant from the WSXWS motif conserved in the cytokine-receptor superfamily. The mutation in exon 12 substitutes a proline with a leucine (P635L) in the last amino acid of the C-terminal intracellular domain, responsible for signal transduction. As in the Japanese family, the mutations were both transmitted from the parents. TPO plasma levels were highly increased in the patient. The patient's 7-year-old brother, who was a candidate donor for allografting, turned out to be an asymptomatic heterozygous carrier of P635L and showed defective megakaryocyte colony formation from bone-marrow progenitor cells. The present study provides important confirmation that CAMT can be associated with (c-mpl) mutations.  相似文献   

9.
A novel series of oxoindolin-3-ylidene ethyl benzohydrazides were designed, synthesized, and identified as small molecule agonists of thrombopoietin (TPO) receptor c-mpl. Sulfur–oxygen exchange in oxoindolin-3-ylidene ethyl benzohydrazides was found to improve their agonistic activities. Several oxoindolin-3-ylidene ethyl benzothiohydrazides have been identified as full agonists of c-mpl.  相似文献   

10.
In this report, we compared activation of NH2-terminal FLAG-labelled thrombopoietin receptor (Mpl) by anti-FLAG antibodies and by thrombopoietin (TPO). We found that anti-FLAG monoclonal antibodies M1 dimerize FLAG-labelled receptor and trigger proliferation of BaF3/FLAG-Mpl cells. In UT7/FLAG-Mpl cells, activation of the FLAG-Mpl receptor by low TPO concentrations triggered proliferation, while high concentrations triggered differentiation. Activation of FLAG-Mpl receptors in these cells by all tested concentrations of M1 antibodies induced proliferation but not differentiation. Low TPO concentrations induced similar to M1 antibodies level of Jak2, Stat3, Stat5 and Akt phosphorylation. In contrast, only TPO and not M1 antibodies activated Erks phosphorylation. Since the anti-FLAG antibodies do not react with the TPO binding site of the receptor, we hypothesize that they can trigger a distinct signal by dimerizing Mpl in a manner different from that induced by TPO.  相似文献   

11.
The effects of interleukin-11 (IL-11) and thrombopoietin (TPO) on murine megakaryocytopoiesis were studied using a serum-free culture system. Acting alone, both IL-11 and TPO increased the number of acetylcholinesterase (AchE)(+)cells (megakaryocytes), the latter being more potent than the former. TPO, but not IL-11, increased the mean AchE activity per megakaryocyte (AchE activity/megakaryocyte). TPO increased both the number of megakaryocytes with high ploidy, and of those with low ploidy. In contrast, IL-11 increased only the number of megakaryocytes with high ploidy. The effect of TPO on megakaryocyte ploidy was stronger than that of IL-11. Both IL-11 and TPO increased the proportion of large megakaryocytes, but the latter was more potent than the former. While the stimulatory effects of IL-11 and TPO on the number of megakaryocytes were enhanced by IL-3 or stem cell factor (SCF), synergism of IL-11 or TPO with IL-3 or SCF in stimulating AchE activity/megakaryocyte was inconsistent. IL-11 and TPO stimulated the formation of colony-forming units of megakaryocyte in the presence of IL-3, but not alone, with similar maximum colony numbers for both cytokines. Our findings thus demonstrate that IL-11 principally stimulates megakaryocyte maturation rather than the proliferation of megakaryocytes, whereas TPO stimulates both.  相似文献   

12.
Thrombopoiesis had long been a challenging area of study due to the rarity of megakaryocyte precursors in the bone marrow and the incomplete understanding of its regulatory cytokines. A breakthrough was achieved in the early 1990s with the discovery of the thrombopoietin receptor (TpoR) and its ligand thrombopoietin (TPO). This accelerated research in thrombopoiesis, including the uncovering of the molecular basis of myeloproliferative neoplasms (MPN) and the advent of drugs to treat thrombocytopenic purpura. TpoR mutations affecting its membrane dynamics or transport were increasingly associated with pathologies such as MPN and thrombocytosis. It also became apparent that TpoR affected hematopoietic stem cell (HSC) quiescence while priming hematopoietic stem cells (HSCs) towards the megakaryocyte lineage. Thorough knowledge of TpoR surface localization, dimerization, dynamics and stability is therefore crucial to understanding thrombopoiesis and related pathologies. In this review, we will discuss the mechanisms of TpoR traffic. We will focus on the recent progress in TpoR membrane dynamics and highlight the areas that remain unexplored.  相似文献   

13.
Thrombopoietin (TPO) plays a crucial role in megakaryocyte differentiation and platelet production. c-Mpl, a receptor for TPO, is also expressed in terminally differentiated platelets. We investigated the effects of TPO on activation of p38 mitogen-activated protein kinase in human platelets. Thrombin, a thrombin receptor agonist peptide, a thromboxane A(2) analogue, collagen, crosslinking the glycoprotein VI, ADP, and epinephrine, but not phorbol 12, 13-dibutyrate activated p38. TPO did not activate p38 by itself, whereas TPO pretreatment potentiated the agonist-induced activation of p38. TPO did not promote phosphorylation of Hsp27 and cytosolic phospholipase A(2) by itself, but enhanced thrombin-induced phosphorylation of them. The specific p38 inhibitor SB203580 strongly inhibited such phosphorylation. Thus, TPO possesses the priming effect on p38 activation in human platelets and could affect platelet functions through the p38 pathway.  相似文献   

14.
Both erythropoietin (EPO) and the short-form thrombopoietin (TPO) were expressed at low levels whereas the long-form TPO was expressed at high levels in transgenic animals. To elucidate the role of carboxy-terminal half of the long-form TPO which is absent in the short-form, we generated recombinant TPO or EPO expression vectors which contain or lack the carboxy-terminal half of TPO and examined their expression in the HC11 and 293 cells. The long-form TPO was expressed higher than the short-form regardless of the cell types, transfection modes, and promoters. When 3'-half of the long-form TPO cDNA was placed downstream of the EPO cDNA to act as a 3'-untranslated region, expression of EPO was moderately increased at the RNA level, however, no remarkable increase was observed at the protein level. These results suggest that the low expression of EPO, as like as the short-form TPO, is due to absence of the 3'-half in the full-length TPO that confers stability both at the RNA and protein levels.  相似文献   

15.
Recently our laboratory reported evidence showing that hNUDC acts as an additional cytokine for thrombopoietin receptor (Mpl). Previously known as the human homolog of a fungal nuclear migration protein, hNUDC plays a critical role in megakaryocyte differentiation and maturation. Here we sought to further clarify the hNUDC-Mpl ligand-receptor relationship by utilizing interference RNA (RNAi) to knockdown Mpl expression in a megakaryocyte cell line. We created U6 promoter driven constructs to express short hairpin RNAs (shRNA) with affinity for different sites on Mpl mRNA. By including Mpl-EGFP fusion protein in these constructs, we were able to effectively screen the shRNA that was most efficient in inhibiting Mpl mRNA expression. This shRNA was subsequently transferred into a lentivirus vector and transduced into Dami cells, a cell line which constitutively expresses endogenous Mpl. This lentiviral vector was also designed to simultaneously express EGFP to monitor transfection efficiency. Our results show that lentivirus can be used to effectively deliver shRNAs into Dami cells and cause specific inhibition of Mpl protein expression after transduction. Furthermore, we show the functional effects of shRNA-mediated Mpl silencing by demonstrating reduced hNUDC stimulated megakaryocyte proliferation and differentiation. Thus, the use of a RNAi knockdown strategy has allowed us to pinpoint the connection of hNUDC with Mpl in the regulation of megakaryocyte maturation.  相似文献   

16.
血小板生成素(TPO)是最近被描述的一种新型细胞因子,相对分子质量在35×103以上,是一种糖蛋白.人和鼠TPO成熟蛋白分别由332和335个氨基酸残基组成.TPO的受体与造血生长因子受体超家族成员c-Mpl相关.TPO不仅对巨核系祖细胞的增殖、分化具有明显的调控作用,而巨对血小板的生成同样具有促进作用.  相似文献   

17.
Thrombopoietin (TPO) is the cytokine that is chiefly responsible for megakaryocyte production but increasingly attention has turned to its role in maintaining hematopoietic stem cells (HSCs). HSCs are required to initiate the production of all mature hematopoietic cells, but this differentiation needs to be balanced against self-renewal and quiescence to maintain the stem cell pool throughout life. TPO has been shown to support HSC quiescence during adult hematopoiesis, with the loss of TPO signaling associated with bone marrow failure and thrombocytopenia. Recent studies have shown that constitutive activation mutations in Mpl contribute to myeloproliferative disease. In this review, we will discuss TPO signaling pathways, regulation of TPO levels and the role of TPO in normal hematopoiesis and during myeloproliferative disease.Key words: thrombopoietin, TPO, Mpl, hematopoietic stem cell, hematopoiesis, Jak2, MPLW515K, MPLW515L  相似文献   

18.
以人HEL细胞总RNA为模板,采用RT-PCR方法扩增了人促血小板生成素受体c-Mpl编码区全长1.9kb cDNA,测序结果表明与已报道的序列一致。然后构建了c-mpl的pcDNA3表达载体pcMPL,转染不表达cmpl的K562细胞后,经G418抗性筛选,Northern blot和Southern blot检测证实获得稳定表达cmpl的细胞株。为进一步研究cMpl的生物学功能提供有用的实验材料。  相似文献   

19.
20.
The Janus family of tyrosine kinases (JAKs) plays a critical role in signal transduction by members of the cytokine receptor superfamily. In response to ligand-receptor interaction, these nonreceptor tyrosine kinases are rapidly phosphorylated and activated, triggering tyrosine phosphorylation and activation of downstream signaling intermediates. Upon binding to its receptor, the product of the proto-oncogene c-mpl, thrombopoietin (TPO) activates both JAK2 and TYK2 in multiple cell lines as well as megakaryocytes and platelets. To study whether one or both of these kinases are essential for TPO signal transduction, we engineered a parental human sarcoma cell line (2C4) as well as sarcoma cell lines that are deficient in JAK2 expression (gamma2A) or TYK2 expression (U1A) to express the wild-type Mpl receptor. The ability of TPO to induce tyrosine phosphorylation of Mpl and multiple intracellular substrates in each cell line was then examined. Our results demonstrate that JAK2-deficient cells (gamma2A-Mpl) are unable to initiate TPO-mediated signaling. In contrast, cells that are TYK2-deficient (U1A-Mpl) are able to induce tyrosine phosphorylation of Mpl, JAK2, STAT3, and Shc as efficiently as parental cells (2C4-Mpl). These data indicate that JAK2 is an essential component of Mpl signaling and that, in the absence of JAK2, TYK2 is incapable of initiating TPO-induced tyrosine phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号