首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Kajantie E 《Hormone research》2003,60(Z3):124-130
Small preterm infants experience a unique postnatal period characterized by slow growth, inadequate nutrition and growth inhibiting treatments. Many have already been growth-restricted in utero. Studying this period is important when developing growth optimizing strategies for these infants and, in a broader context, as a model of extreme conditions that restrict growth. By following short-term growth of 48 very-low-birth-weight (VLBW; birth weight <1,500 g) infants for 9 postnatal weeks, we found that circulating insulin-like growth factor (IGF)-I and IGF binding protein (IGFBP)-3 levels are low and reflect rigorously measured (knemometry and weight) concurrent growth velocity. Moreover, weight growth velocity is correlated with the ratio of lesser to highly phosphorylated IGFBP-1 but not with absolute IGFBP-1 concentrations. Thus, IGF-I, IGFBP-3 and the phosphorylation status of IGFBP-1 in circulation are likely to be involved in growth regulation during the postnatal period in VLBW infants.  相似文献   

2.
The binding characteristics of [(125) I]insulin-like growth factor (IGF)-I were studied in human brain and pituitary gland. Competition binding studies with DES(1-3)IGF-I and R(3) -IGF-I, which display high affinity for the IGF-I receptor and low affinity for IGF binding proteins (IGFBPs), were performed to distinguish [(125) I]IGF-I binding to IGF-I receptors and IGFBPs. Specific [(125) I]IGF-I binding in brain regions and the posterior pituitary was completely displaced by DES(1-3)IGF-I and R(3) -IGF-I, indicating binding to IGF-I receptors. In contrast, [(125) I]IGF-I binding in the anterior pituitary was not displaced by DES(1-3)IGF-I and R(3) -IGF-I, suggesting binding to an IGF-binding site that is different from the IGF-I receptor. Binding affinity of IGF-I to this site was about 10-fold lower than for the IGF-I receptor. Using western immunoblotting we were also unable to detect IGF-I receptors in human anterior pituitary. Instead, western immunoblotting and immunoprecipitation experiments showed a 150-kDa IGFBP-3-acid labile subunit (ALS) complex in the anterior pituitary and not in the posterior pituitary and other brain regions. RT-PCR experiments showed the expression of ALS mRNA in human anterior pituitary indicating that the anterior pituitary synthesizes ALS. In the brain regions and posterior pituitary, IGFBP-3 was easily washed away during pre-incubation procedures as used in the [(125) I]IGF-I binding experiments. In contrast, the IGFBP-3 complex in the anterior pituitary could not be removed by these washing procedures. Our results indicate that the human anterior pituitary contains a not previously described tightly cell membrane-bound 150-kDa IGFBP-3-ALS complex that is absent in brain and posterior pituitary.  相似文献   

3.
4.
Schwann cells (SCs) are the myelin producing cells of the peripheral nervous system. During development, SCs cease proliferation and differentiate into either a myelin-forming or non-myelin forming mature phenotype. We are interested in the role of insulin-like growth factor-I (IGF-I) in SC development. We have shown previously SCs proliferate in response to IGF-I in vitro. In the current study, we investigated the role of IGF-I in SC differentiation. SC differentiation was determined by morphological criteria and expression of myelin proteins. Addition of 1 mM 8-bromo cyclic AMP (cAMP) or growth on Matrigel matrix decreased proliferation and induced differentiation of SCs. IGF-I enhanced both cAMP and Matrigel matrix-induced SC differentiation, as assessed by both morphological criteria and myelin gene expression. Cultured SCs also express IGF binding protein-5 (IGFBP-5), which can modulate the actions of IGF-I. We examined the expression of IGFBP-5 during SC differentiation. Both cAMP and Matrigel matrix treatment enhanced IGFBP-5 protein expression and cAMP increased IGFBP-5 gene expression five fold. These findings suggest IGF-I potentiates SC differentiation. The concomitant up-regulation of IGFBP-5 may play a role in targeting IGF-I to SCs and thus increase local IGF-I bioavailability. J. Cell. Physiol. 171:161–167, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

5.
While extracellular acidification within solid tumors is well-documented, how reduced pH impacts regulation of insulin-like growth factor-I (IGF-I) has not been studied extensively. Because IGF-I receptor binding is affected by IGF binding proteins (IGFBPs), we examined how pH impacted IGFBP-3 regulation of IGF-I. IGF-I binding in the absence of IGFBP-3 was diminished at reduced pH. Addition of IGFBP-3 reduced IGF-I cell binding at pH 7.4 but increased surface association at pH 5.8. This increase in IGF-I binding at pH 5.8 corresponded with an increase in IGFBP-3 cell association. This, however, was not due to an increase in affinity of IGFBP-3 for heparin at reduced pH although both heparinase III treatment and heparin addition reduced IGFBP-3 enhancement of IGF-I binding. An increase in IGF-I binding to IGFBP-3, though, was seen at reduced pH using a cell-free assay. We hypothesize that the enhanced binding of IGF-I at pH 5.8 is facilitated by increased association of IGFBP-3 at this pH and that the resulting cell associated IGF-I is IGFBP-3 and not IGF-IR bound. Increased internalization and nuclear association of IGF-I at pH 5.8 in the presence of IGFBP-3 was evident, yet cell proliferation was reduced by IGFBP-3 at both pH 5.8 and 7.4 indicating that IGFBP-3-cell associated IGF-I does not signal the cell to proliferate and that the resulting transfer of bound IGF-I from IGF-IR to IGFBP-3 results in diminished proliferation. Solution binding of IGF-I by IGFBP-3 is one means by which IGF-I-induced proliferation is inhibited. Our work suggests that an alternative pathway exists by which IGF-I and IGFBP-3 both associate with the cell surface and that this association inhibits IGF-I-induced proliferation.  相似文献   

6.
Insulin-like growth factor binding protein (IGFBP)-3 effects proliferation and differentiation of numerous cell types by binding to insulin-like growth factors (IGF) and attenuating their activity or by directly affecting cells in an IGF-independent manner. Consequently, IGFBPs produced by specific cells may affect their differentiation and proliferation. In this study we show that embryonic porcine myogenic cells, unlike murine muscle cell lines, produce significant quantities of a binding protein immunologically identified as IGFBP-3. Nonfusing cells subcultured from highly fused porcine myogenic cell cultures do not produce detectable IGFBP-3 protein or mRNA, thus suggesting the IGFBP-3 is produced by muscle cells in the porcine myogenic cell cultures. Treatment of porcine myogenic cultures with 20 ng of IGF-I or 20 ng of Des (1-3) IGF-I/ml serum-free media for 24 h results in a threefold reduction in the level of IGFBP-3 in conditioned media. This reduction is not affected by cell density over a sixfold range. Additionally, treatment for 24 h with 20 ng of IGF-I/ml media results in a sevenfold decrease in the steady-state level of IGFBP-3 mRNA. This IGF-I-induced decrease in IGFBP-3 mRNA level appears to be relatively unique to myogenic cells. IGF-I treatment also causes a fourfold increase in the steady-state level of myogenin mRNA. This increase in myogenin mRNA suggests that, as expected, IGF-I treatment accelerates differentiation of myogenic cells. The simultaneous decrease in IGFBP-3 mRNA and protein that accompanies IGF-I-induced myogenin expression suggests that differentiation of myogenic cells may be preceded or accompanied by decreased production of IGFBP-3.  相似文献   

7.
The insulin-like growth factors (IGFs) I and II exert pleiotropic effects on diverse cell types through interaction with specific high affinity cell surface receptors and with locally produced binding proteins. In skeletal muscle and in myoblast cell lines, the functions of IGF-I and -II are complex. Both growth factors appear capable of stimulating cellular proliferation and differentiation, as well as exerting insulin-like effects on intermediary metabolism. We have demonstrated recently that the expression of IGF-II and its receptor is induced during the terminal differentiation of the myoblast cell line, C2, and have suggested that IGF-II may be an autocrine growth factor in these cells (Tollefsen, S.E., Sadow, J.L., and Rotwein, P. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 1543-1547). We now have examined this cell line for expression of other components involved in IGF signaling. The synthesis of IGF-I is low during myoblast proliferation; IGF-I mRNA can be detected only through use of a sensitive solution hybridization assay. Typical IGF-I receptors can be measured in myoblasts, whereas IGF binding proteins cannot be detected in proliferating cells or in conditioned culture medium. During myogenic differentiation, IGF-I mRNA levels increase transiently by 6-10-fold within 48-72 h. The expression of IGF-I mRNA is accompanied by a 2.5-fold accumulation of IGF-I in the culture medium. IGF-I receptors also increase transiently, doubling by 48 h after the onset of differentiation. By contrast, secretion of a Mr 29,000 IGF binding protein is induced 30-fold to 100 ng/ml within 16 h and continues to increase throughout differentiation. These studies demonstrate that several components critical to IGF action are produced in a fusing skeletal muscle cell line in a differentiation-dependent manner and suggest that both IGF-I and IGF-II may be autocrine factors for muscle.  相似文献   

8.
Signaling through the IGF-I receptor by locally produced IGF-I or -II is critical for normal skeletal muscle development and repair after injury. In most tissues, IGF action is modulated by IGF binding proteins (IGFBPs). IGFBP-5 is produced by muscle cells, and previous studies have suggested that when overexpressed it may either facilitate or inhibit IGF actions, and thus potentially enhance or diminish IGF-mediated myoblast differentiation or survival. To resolve these contradictory observations and discern the mechanisms of action of IGFBP-5, we studied its effects in cultured muscle cells. Purified wild-type (WT) mouse IGFBP-5 or a variant with diminished extracellular matrix binding (C domain mutant) each prevented differentiation at final concentrations as low as 3.5 nm, whereas analogs with reduced IGF binding (N domain mutant) were ineffective even at 100 nm. None of the IGFBP-5 variants altered cell number. An IGF-I analog (R(3)IGF-I) with diminished affinity for IGFBPs promoted full muscle differentiation in the presence of IGFBP-5(WT), showing that IGFBP-5 interferes with IGF-dependent signaling pathways in myoblasts. When IGFBP-5(WT) or variants were overexpressed by adenovirus-mediated gene transfer, concentrations in muscle culture medium reached 500 nm, and differentiation was inhibited, even by IGFBP-5(N). As 200 nm of purified IGFBP-5(N) prevented activation of the IGF-I receptor by 10 nm IGF-II as effectively as 2 nm of IGFBP-5(WT), our results not only demonstrate that IGFBP-5 variants with reduced IGF binding affinity impair muscle differentiation by blocking IGF actions, but underscore the need for caution when labeling effects of IGFBPs as IGF independent because even low-affinity analogs may potently inhibit IGF-I or -II if present at high enough concentrations in biological fluids.  相似文献   

9.
The ovarian insulin-like growth factor (IGF)/IGF binding protein (IGFBP) system operates to permit maximal stimulation of steroidogenesis in the dominant follicle. In atretic follicles, the predominant IGFBPs are IGFBP-2 and IGFBP-4, which appear to be selectively cleaved in healthy follicles. We have recently demonstrated potent inhibition by IGFBP-4 of both theca and granulosa cell steroid production. The degree to which the inhibition occurred suggested that it was greater than might be expected by sequestration of IGF alone. Our study was designed to test this idea. Granulosa cells were harvested from follicles dissected intact from patients undergoing total abdominal hysterectomy and bilateral salpingoophorectomy. Granulosa cells were incubated with or without gonadotropins and IGFBP-4 in the presence or absence of either the IGF type I receptor blocker alphaIR3 or excess IGFBP-3 to remove the effects of endogenous IGF action. Steroid accumulation in the medium was assessed. IGFBP-4 continued to exert potent inhibitory effects when the action of endogenous IGF was removed from the system, demonstrating that its actions are independent of IGF binding. There was no effect on cell metabolism, and the effects on steroidogenesis were reversible after IGFBP-4 removal from the culture medium. No similar effects were seen with IGFBP-2. These reasults are the first evidence of IGF-independent IGFBP-4 actions and the first evidence of IGF-independent actions of any IGFBPs in the ovary.  相似文献   

10.
IGF-I is mitogenic for the bovine mammary epithelial cell line MAC-T. In addition, IGF-I specifically upregulates IGFBP-3 synthesis in these cells. To investigate this effect on cell growth and IGF-I responsiveness, cell lines were developed that constitutively express IGFBP-3. MAC-T cells transfected with IGFBP-3 (+BP3) or vector alone (Mock) grew similarly over 7 days in 10 or 1% fetal calf serum. Basal DNA synthesis was lower (70%) in +BP3 cells compared to Mock cells. However, DNA synthesis was increased by IGF-I (1-50 ng/ml) relative to untreated controls to a greater extent in +BP3 cells compared to Mock cells. IGF-I (20 ng/ml) increased DNA synthesis 11- and threefold in +BP3 and Mock cells, respectively. Additionally, +BP3 cells were more sensitive to the lower concentrations of IGF-I (1-5 ng/ml). In contrast, preincubation of Mock cells with exogenous IGFBP-3 did not enhance responsiveness or sensitivity to IGF-I. Basal DNA synthesis was unaffected by either an IGF neutralizing antibody or exogenous IGFBP3, indicating the differences observed between +BP3 and Mock cells were not attributable to sequestration of endogenous IGF-I by IGFBP-3. There were no differences between +BP3 and Mock cells in IGF-I receptor number or affinity. DNA synthesis was also increased in +BP3 cells, compared to controls, in response to 5 microg/ml insulin and 2.5 ng/ml Long R(3)IGF-I, indicating that the potentiated response did not require an interaction with IGFBP-3. These results suggest that IGF-I regulation of IGFBP-3 represents a regulatory loop, the function of which is to increase IGF-I bioactivity, using a mechanism that does require an IGF-I-IGFBP-3 interaction.  相似文献   

11.
Prostaglandin F2alpha was specifically bound by a particulate fraction from bovine corpora lutea. The rate constants for the association (7.5 X 10(3) M-1 S-1) and dissociation (2.1 X 10-4 S-1) reactions gave a dissociation constant of 2.8 X 10(-8) M which is similar to that determined from a Scatchard plot of binding data at equilibrium (5 X 10(-8) M). The receptor was stable for several hours at 23 degrees C but was rapidly destroyed at 37 degrees C. The pH optimum for the binding reaction was 6.3. The receptor had high specificity for prostaglandin F2alpha and had much lower affinities for other prostaglandins. Luteinizing and follicle-stimulating hormones had no effect on the prostaglandin F2alpha-receptor interaction.  相似文献   

12.
Insulin-like growth factor(IGF)-binding activity were characterized in sera normal, fast growing, and very fast growing chicken strains. In contrast to a previous report, specific IGF-binding activity was observed in this nonmammalian species. Age-related IGF-binding activity levels did not differ between strains. IGF-I levels were significantly higher for the normal as compared to the 2 fast growing strains. Chromatographic studies show that IGF-I is associated with acid-dissociable high MW complexes in chicken serum, and the MW patterns are similar to human serum. Circulating levels of IGF-I or IGF-binding activity do not account for accelerated somatic growth in inbred large-bodied chicken strains.  相似文献   

13.
IGFs are required for normal prenatal and postnatal growth. Although actions of IGFs can be modulated by a family of IGF-binding proteins (IGFBPs) in vitro, these studies have identified a complicated pattern of stimulatory and inhibitory IGFBP effects, so that understanding relevant aspects of IGFBP action in vivo has been limited. Here we have produced a null mutation of one specific IGFBP, IGFBP-4, which is coexpressed with IGF-II early in development. Surprisingly, mutation of IGFBP-4, believed from in vitro studies to be exclusively inhibitory, leads to a prenatal growth deficit that is apparent from the time that the IGF-II growth deficit first arises, which strongly suggests that IGFBP-4 is required for optimal IGF-II-promoted growth during fetal development. Mice encoding a mutant IGFBP-4 protease (pregnancy-associated plasma protein-A), which facilitates IGF-II release from an inactive IGF-II/IGFBP-4 complex in vitro, are even smaller than IGFBP-4 mutant mice. However, the more modest IGFBP-4 growth deficit is completely restored in double IGFBP-4/pregnancy-associated plasma protein-A-deficient mice. Taken together these results indicate not only that IGFBP-4 functions as a local reservoir to optimize IGF-II actions needed for normal embryogenesis, but also establish that IGFBP-4 proteolysis is required to activate most, if not all, IGF-II mediated growth-promoting activity.  相似文献   

14.
In blood, circulating IGFs are bound to six high-affinity IGFBPs, which modulate IGF delivery to target cells. Serum IGFs and IGFBP-3, the main carrier of IGFs, are upregulated by GH. The functional role of serum IGFBP-3-bound IGFs is not well understood, but they constitute the main reservoir of IGFs in the circulation. We have used an equation derived from the law of mass action to estimate serum IGFBP-3-bound IGF-I and IGFBP-3-bound IGF-II, as well as serum free IGF-I and free IGF-II, in 129 control children and adolescents (48 girls and 81 boys) and in 13 patients with GHD. Levels of serum total IGF-I, total IGF-II, IGFBP-1, IGFBP-2 and IGFBP-3 were determined experimentally, while those of IGFBP-4, IGFBP-5 and IGFPB-6, as well as the 12 affinity constants of association of the two IGFs with the six IGFBPs, were taken from published values. A correction for in vivo proteolysis of serum IGFBP-3 was also considered. In controls, serum total IGF-I, total IGF-II, IGFBP-3, IGFBP-3-bound IGF-I, IGFBP-3-bound IGF-II and free IGF-I increased linearly with age, from less than 1 to 15 years, in the two sexes. The concentrations of serum free IGF-I and free IGF-II were approximately two orders of magnitude below published values, as well as below the affinity constant of association of IGF-I with the type-1 IGF receptor. Therefore, it is unlikely that these levels can interact with the receptor. In the 13 patients with GHD, mean (+/- SD) SDS of serum IGFBP-3-bound IGF-I was -2.89 +/- 0.97. It was significantly lower than serum total IGF-I, free IGF-I or IGFBP-3 SDSs (-2.35 +/- 0.83, -1.12 +/- 0.78 and -2.55 +/- 1.07, respectively, p = 0.0001). The mean SDS of serum total IGF-II, IGFBP-3-bound IGF-II and free IGF-II were -1.25 +/- 0.68, -2.03 +/- 0.87 and 0.59 +/- 1.10, respectively, in GHD. In control subjects, 89.8 +/- 4.47% of serum total IGF-I and 77.3 +/- 9.4% of serum total IGF-II were bound to serum IGFBP-3. In patients with GHD, the mean serum IGFBP-3-bound IGF-I and IGFBP-3-bound IGF-II were 8.63 +/- 8. 53 and 19.1 +/- 14.7% below the respective means of control subjects (p < 0.02). In conclusion, in GHD there was a relative change in the distribution of serum IGFs among IGFBPs, due to the combined effects of the decrease in both total IGF-I and IGFBP-3. As a result, serum IGFBP-3-bound IGF-I and IGFBP-3 bound IGF-II, the main reservoirs of serum IGFs, were severely affected. This suggests that the decrease in serum IGFPB-3-bound IGF-I and IGFBP-3-bound IGF-II might have a negative effect for growth promotion and other biological effects of IGF-I and IGF-II. Finally, the estimation of serum IGFBP-3-bound IGF-I, or the percentage of total IGF-I and IGF-II bound to IGFBP-3, might be useful markers in the diagnosis of GHD.  相似文献   

15.
16.
Fasting or caloric restriction causes substantial reductions in serum IGF-I in normal weight humans and animals, and reductions of liver IGF-I and IGFBP-3 mRNAs in animals. Obese humans, however, have attenuated and delayed decrements in IGF-I in serum when subjected to caloric restriction. Obese Zucker rats show a clear tendency to preserve body protein during fasting. To determine whether obesity opposes the effects of fasting on IGF-I and IGFBP-3, and thereby contributes to preservation of lean tissue, we have examined the effect of 72 h of fasting on IGF-I and IGFBP-3 in lean and obese Zucker rats. We observe that between lean and obese animals, fasting for 72 h produces similar decrements in body weight, serum IGF-I, liver IGF-I mRNA, serum IGFBP-3 and liver IGFBP-3 mRNA. Our finding that the reduction of IGF-I and IGFBP-3 in liver that results from 72 h of fasting is not attenuated in obese Zucker rats raises the possibility that conservation of lean tissue in these animals during fasting is not related to the hepatic production of IGF-I and IGFBP-3.  相似文献   

17.
18.
The influence of a human insulin-like growth factor binding protein, hIGFBP-1, on the action of IGFs on human osteosarcoma cells was examined. hIGFBP-1 was found to block binding of IGFs to their receptors on MG-63 cells and subsequent IGF stimulation of DNA synthesis. Concurrent incubation of hIGFBP-1 with either 125I-IGF-I or 125I-IGF-II prevented the binding of both 125I-IGFs to cells in a dose-dependent manner. hIGFBP-1 inhibition of IGF binding occurred similarly under both 4 degrees and 37 degrees C conditions. Additionally, hIGFBP-1 facilitated the dissociation of IGFs bound to cells. The inhibitory effect of hIGFBP-1 on IGF-1 mediated 3H-thymidine incorporation into DNA was dose dependent. hIGFBP-1 did not inhibit binding to or stimulation of growth in MG-63 cells by des3-IGF-1, an IGF-I analog with a 100-fold less affinity for hIGFBP-I. This confirmed that hIGFBP-1 competed for IGF receptor binding sites on MG-63. Since hIGFBP-1 did not bind to cells, inhibition of IGF action was indirect, presumably through the formation of extracellular soluble bioinactive IGF-BP complexes.  相似文献   

19.
A growth hormone-dependent insulin-like growth factor (IGF) binding protein (IGFBP) purified from porcine serum specifically blocked the acute insulin-like effects of IGF-I on lipogenesis and glucose oxidation in porcine adipose tissue. This inhibition was dose dependent with half-maximal effective concentrations of IGFBP of 530 ng/ml for lipogenesis and 590 ng/ml for glucose oxidation in the presence of 10(-8) M IGF-I. The IGFBP also caused decreased rates of lipogenesis following a 1-hr preincubation of tissue with IGF-I (10(-8) M). The IGFBP had no effect on insulin action on porcine adipose tissue. These findings demonstrate the inhibitory effects of a highly purified porcine serum IGFBP on the biologic effects of IGF-I in vitro, and provide evidence that the growth hormone-dependent IGFBP blocks the acute insulin-like actions of IGF-I in vivo.  相似文献   

20.
To reveal growth factor and its signal pathway to CCAAT/enhancer binding protein alpha (C/EBPalpha) in hepatocyte differentiation, we used Huh-6 and HepG2, human hepatoblastoma (HBL) cell lines that maintain the expression of genes in hepatoblasts and remain at that stage of differentiation. Insulin-like growth factor (IGF)-II, hepatocyte growth factor (HGF), and dexamethasone (Dex) stimulated HBL cells for Northern blot analysis. Bromodeoxyuridine (BrdU) up-take assay and Western blot analysis on albumin was performed to unveil proliferation and differentiation activity of IGF-II. C/EBPalpha and phosphorylation of Akt were analyzed by Western blot analysis. LY294002 and wortmannin, specific inhibitors of PI3 kinase, and PD98059, a specific inhibitor of mitogen-activated protein (MAP) kinase, were used to examine the signaling pathway of C/EBPalpha upregulated by IGF-II. Luciferase assay was performed to study the promoter activity of C/EBPalpha. Actinomycin D was used to analyze half-life of C/EBPalpha mRNA. IGF-II up-regualted C/EBPalpha by Northern blot and Western blot while HGF and Dex did not by Northern blot. IGF-II promoted proliferation and differentiation by BrdU up-take assay and Western blot analysis on albumin. Akt phosphorylated by IGF-II, suggested that phosphatidyl-inositol (PI) 3 kinase mediated the signaling pathway of IGF-II. LY294002 and wortmannin suppressed expression of C/EBPalpha. IGF-II activated the promoter activity and prolonged half-life of mRNA, suggesting that IGF-II activated promoter and stabilized mRNA. LY294002 and wortmannin suppressed the promoter activity of C/EBPalpha while PD98059 did not, suggesting that activation of the promoter was mediated by PI3 kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号