首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Because of the significant industrial, agricultural and biotechnological importance of serine protease proteinase K, it has been extensively investigated using experimental approaches such as X-ray crystallography, site-directed mutagenesis and kinetic measurement. However, detailed aspects of enzymatic mechanism such as substrate binding, release and relevant regulation remain unstudied. Molecular dynamics (MD) simulations of the proteinase K alone and in complex with the peptide substrate AAPA were performed to investigate the effect of substrate binding on the dynamics/molecular motions of proteinase K. The results indicate that during simulations the substrate-complexed proteinase K adopt a more compact and stable conformation than the substrate-free form. Further essential dynamics (ED) analysis reveals that the major internal motions are confined within a subspace of very small dimension. Upon substrate binding, the overall flexibility of the protease is reduced; and the noticeable displacements are observed not only in substrate-binding regions but also in regions opposite the substrate-binding groove/pockets. The dynamic pockets caused by the large concerted motions are proposed to be linked to the substrate recognition, binding, orientation and product release; and the significant displacements in regions opposite the binding groove/pockets are considered to play a role in modulating the dynamics of enzyme-substrate interaction. Our simulation results complement the biochemical and structural studies, highlighting the dynamic mechanism of the functional properties of proteinase K.  相似文献   

2.
The native serine protease proteinase K binds two calcium cations. It has been reported that Ca2+ removal decreased the enzyme’s thermal stability and to some extent the substrate affinity, but has discrepant effects on catalytic activity of the enzyme. Molecular dynamics simulations were performed on the Ca2+-bound and Ca2+-free proteases to investigate the mechanism by which the calciums affect the structural stability, molecular motions, and catalytic activity of proteinase K. Very similar structural properties were observed between these two forms of proteinase K during simulations; and several long-lived hydrogen bonds and salt bridges common to both forms of proteinase K were found to be crucial in maintaining the local conformations around these two Ca2+ sites. Although Ca2+ removal enhanced the overall flexibility of proteinase K, the flexibility in a limited number of segments surrounding the substrate-binding pockets decreased. The largest differences in the equilibrium structures of the two simulations indicate that, upon the removal of Ca2+, the large concerted motion originating from the Ca1 site can transmit to the substrate-binding regions but not to the catalytic triad residues. In conjunction with the large overlap of the essential subspaces between the two simulations, these results not only provide insight into the dynamics of the underlying molecular mechanism responsible for the unchanged enzymatic activity as well as the decreased thermal stability and substrate affinity of proteinase K upon Ca2+ removal, but also complement the experimentally determined structural and biochemical data.  相似文献   

3.
Proteins are dynamic entities in cellular solution with functions governed essentially by their dynamic personalities. We review several dynamics studies on serine protease proteinase K and HIV-1 gp120 envelope glycoprotein to demonstrate the importance of investigating the dynamic behaviors and molecular motions for a complete understanding of their structure–function relationships. Using computer simulations and essential dynamic (ED) analysis approaches, the dynamics data obtained revealed that: (i) proteinase K has highly flexible substrate-binding site, thus supporting the induced-fit or conformational selection mechanism of substrate binding; (ii) Ca2+ removal from proteinase K increases the global conformational flexibility, decreases the local flexibility of substrate-binding region, and does not influence the thermal motion of catalytic triad, thus explaining the experimentally determined decreased thermal stability, reduced substrate affinity, and almost unchanged catalytic activity upon Ca2+ removal; (iii) substrate binding affects the large concerted motions of proteinase K, and the resulting dynamic pocket can be connected to substrate binding, orientation, and product release; (iv) amino acid mutations 375 S/W and 423 I/P of HIV-1 gp120 have distinct effects on molecular motions of gp120, facilitating 375 S/W mutant to assume the CD4-bound conformation, while 423 I/P mutant to prefer for CD4-unliganded state. The mechanisms underlying protein dynamics and protein–ligand binding, including the concept of the free energy landscape (FEL) of the protein–solvent system, how the ruggedness and variability of FEL determine protein’s dynamics, and how the three ligand-binding models, the lock-and-key, induced-fit, and conformational selection are rationalized based on the FEL theory are discussed in depth.  相似文献   

4.
Cuticle-degrading serine protease Ver112, which derived from a nematophagous fungus Lecanicillium psalliotae, has been exhibited to have high cuticle-degrading and nematicidal activities. We have performed molecular dynamics (MD) simulation based on the crystal structure of Ver112 to investigate its dynamic properties and large-scale concerted motions. The results indicate that the structural core of Ver112 shows a small fluctuation amplitude, whereas the substrate binding sites, and the regions close to and opposite the substrate binding sites experience significant conformational fluctuations. The large concerted motions obtained from essential dynamics (ED) analysis of MD trajectory can lead to open or close of the substrate binding sites, which are proposed to be linked to the functional properties of Ver112, such as substrate binding, orientation, catalytic, and release. The significant motion in the loop regions that is located opposite the binding sites are considered to play an important role in modulating the dynamics of the substrate binding sites. Furthermore, the bottom of free energy landscape (FEL) of Ver112 are rugged, which is mainly caused by the fluctuations of substrate binding regions and loops located opposite the binding site. In addition, the mechanism underlying the high flexibility and catalytic activity of Ver112 was also discussed. Our simulation study complements the biochemical and structural studies, and provides insight into the dynamics-function relationship of cuticle-degrading serine protease Ver112.  相似文献   

5.
To date, 22 mitochondrial carrier subfamilies have been functionally identified based on substrate specificity. Structural, functional and bioinformatics studies have pointed to the existence in the mitochondrial carrier superfamily of a substrate-binding site in the internal carrier cavity, of two salt-bridge networks or gates that close the cavity alternatively on the matrix or the cytosolic side of the membrane, and of conserved prolines and glycines in the transmembrane α-helices. The significance of these properties in the structural changes occurring during the catalytic substrate translocation cycle are discussed within the context of a transport mechanism model. Most experimentally produced and disease-causing missense mutations concern carrier regions corresponding to the substrate-binding site, the two gates and the conserved prolines and glycines.  相似文献   

6.
Solá RJ  Griebenow K 《The FEBS journal》2006,273(23):5303-5319
Although the chemical nature of the catalytic mechanism of the serine protease alpha-chymotrypsin (alpha-CT) is largely understood, the influence of the enzyme's structural dynamics on its catalysis remains uncertain. Here we investigate whether alpha-CT's structural dynamics directly influence the kinetics of enzyme catalysis. Chemical glycosylation [Solá RJ & Griebenow K (2006) FEBS Lett 580, 1685-1690] was used to generate a series of glycosylated alpha-CT conjugates with reduced structural dynamics, as determined from amide hydrogen/deuterium exchange kinetics (k(HX)). Determination of their catalytic behavior (K(S), k(2), and k(3)) for the hydrolysis of N-succinyl-Ala-Ala-Pro-Phe p-nitroanilide (Suc-Ala-Ala-Pro-Phe-pNA) revealed decreased kinetics for the catalytic steps (k(2) and k(3)) without affecting substrate binding (K(S)) at increasing glycosylation levels. Statistical correlation analysis between the catalytic (DeltaG( not equal)k(i)) and structurally dynamic (DeltaG(HX)) parameters determined revealed that the enzyme acylation and deacylation steps are directly influenced by the changes in protein structural dynamics. Molecular modelling of the alpha-CT glycoconjugates coupled with molecular dynamics simulations and domain motion analysis employing the Gaussian network model revealed structural insights into the relation between the protein's surface glycosylation, the resulting structural dynamic changes, and the influence of these on the enzyme's collective dynamics and catalytic residues. The experimental and theoretical results presented here not only provide fundamental insights concerning the influence of glycosylation on the protein biophysical properties but also support the hypothesis that for alpha-CT the global structural dynamics directly influence the kinetics of enzyme catalysis via mechanochemical coupling between domain motions and active site chemical groups.  相似文献   

7.
The analysis of the dynamic behavior of enzymes is fundamental to structural biology. A direct relationship between protein flexibility and biological function has been shown for bovine pancreatic ribonuclease (RNase A) (Rasmussen et al., Nature 1992;357:423-424). More recently, crystallographic studies have shown that functional motions in RNase A involve the enzyme beta-sheet regions that move concertedly on substrate binding and release (Vitagliano et al., Proteins 2002;46:97-104). These motions have been shown to correspond to intrinsic dynamic properties of the native enzyme by molecular dynamics (MD) simulations. To unveil the occurrence of these collective motions in other members of pancreatic-like superfamily, we carried out MD simulations on human angiogenin (Ang). Essential dynamics (ED) analyses performed on the trajectories reveal that Ang exhibits collective motions similar to RNase A, despite the limited sequence identity (33%) of the two proteins. Furthermore, we show that these collective motions are also present in ensembles of experimentally determined structures of both Ang and RNase A. Finally, these subtle concerted beta-sheet motions were also observed for other two members of the pancreatic-like superfamily by comparing the ligand-bound and ligand-free structures of these enzymes. Taken together, these findings suggest that pancreatic-like ribonucleases share an evolutionary conserved dynamic behavior consisting of subtle beta-sheet motions, which are essential for substrate binding and release.  相似文献   

8.
Carboxylesterases (CEs) are ubiquitous enzymes responsible for the detoxification of xenobiotics. In humans, substrates for these enzymes are far-ranging, and include the street drug heroin and the anticancer agent irinotecan. Hence, their ability to bind and metabolize substrates is of broad interest to biomedical science. In this study, we focused our attention on dynamic motions of a CE from B. subtilis (pnbCE), with emphasis on the question of what individual domains of the enzyme might contribute to its catalytic activity. We used a 10 ns all-atom molecular dynamics simulation, normal mode calculations, and enzyme kinetics to understand catalytic consequences of structural changes within this enzyme. Our results shed light on how molecular motions are coupled with catalysis. During molecular dynamics, we observed a distinct C-C bond rotation between two conformations of Glu310. Such a bond rotation would alternately facilitate and impede protonation of the active site His399 and act as a mechanism by which the enzyme alternates between its active and inactive conformation. Our normal mode results demonstrate that the distinct low-frequency motions of two loops in pnbCE, coil_5 and coil_21, are important in substrate conversion and seal the active site. Mutant CEs lacking these external loops show significantly reduced rates of substrate conversion, suggesting this sealing motion prevents escape of substrate. Overall, the results of our studies give new insight into the structure-function relationship of CEs and have implications for the entire family of α/β fold family of hydrolases, of which this CE is a member.  相似文献   

9.
Ma W  Tang C  Lai L 《Biophysical journal》2005,89(2):1183-1193
Trypsin and chymotrypsin are both serine proteases with high sequence and structural similarities, but with different substrate specificity. Previous experiments have demonstrated the critical role of the two loops outside the binding pocket in controlling the specificity of the two enzymes. To understand the mechanism of such a control of specificity by distant loops, we have used the Gaussian network model to study the dynamic properties of trypsin and chymotrypsin and the roles played by the two loops. A clustering method was introduced to analyze the correlated motions of residues. We have found that trypsin and chymotrypsin have distinct dynamic signatures in the two loop regions, which are in turn highly correlated with motions of certain residues in the binding pockets. Interestingly, replacing the two loops of trypsin with those of chymotrypsin changes the motion style of trypsin to chymotrypsin-like, whereas the same experimental replacement was shown necessary to make trypsin have chymotrypsin's enzyme specificity and activity. These results suggest that the cooperative motions of the two loops and the substrate-binding sites contribute to the activity and substrate specificity of trypsin and chymotrypsin.  相似文献   

10.
A long-term molecular dynamics simulation (1.1 ns), at 300 K, of fully hydrated azurin has been performed to put into relationship the protein dynamics to functional properties with particular attention to those structural elements involved in the electron transfer process. A detailed analysis of the root mean square deviations and fluctuations and of the intraprotein H-bonding pattern has allowed us to demonstrate that a rigid arrangement of the beta-stranded protein skeleton is maintained during the simulation run, while a large mobility is registered in the solvent-exposed connecting regions (turns) and in the alpha-helix. Moreover, the structural elements, likely involved in the electron transfer path, show a stable H-bonding arrangement and low fluctuations. Analysis of the dynamical cross-correlation map has revealed the existence of correlated motions among residues connected by hydrogen bonds and of correlated and anti-correlated motions between regions which are supposed to be involved in the functional process, namely the hydrophobic patch and the regions close to the copper reaction center. The results are briefly discussed also in connection to the current through-bond tunneling model for the electron transfer process. Finally, a comparison with the structural and the dynamical behaviour of plastocyanin, whose structure and functional role are very similar to those of azurin, has been performed.  相似文献   

11.

Background

Xylanases (EC 3.2.1.8) hydrolyze xylan, one of the most abundant plant polysaccharides found in nature, and have many potential applications in biotechnology.

Methods

Molecular dynamics simulations were used to investigate the effects of temperature between 298 to 338 K and xylobiose binding on residues located in the substrate-binding cleft of the family 11 xylanase from Bacillus circulans (BcX).

Results

In the absence of xylobiose the BcX exhibits temperature dependent movement of the thumb region which adopts an open conformation exposing the active site at the optimum catalytic temperature (328 K). In the presence of substrate, the thumb region restricts access to the active site at all temperatures, and this conformation is maintained by substrate/protein hydrogen bonds involving active site residues, including hydrogen bonds between Tyr69 and the 2′ hydroxyl group of the substrate. Substrate access to the active site is regulated by temperature dependent motions that are restricted to the thumb region, and the BcX/substrate complex is stabilized by extensive intermolecular hydrogen bonding with residues in the active site.

General significance

These results call for a revision of both the “hinge-bending” model for the activity of group 11 xylanases, and the role of Tyr69 in the catalytic mechanism.  相似文献   

12.
2',3'-Cyclic-nucleotide 3'-phosphodiesterase (CNP), a member of the 2H phosphoesterase superfamily, is firmly bound to brain white matter and found mainly in the central nervous system of vertebrates, and it catalyzes the hydrolysis of 2',3'-cyclic nucleotide to produce 2'-nucleotide. Recent studies on CNP-knockout mice have revealed that the absence of CNP causes axonal swelling and neuronal degeneration. Here, the crystal structure of the catalytic fragment (CF) of human CNP (hCNP-CF) is solved at 1.8A resolution. It is an alpha+beta type structure consisting of three alpha-helices and nine beta-strands. The structural core of the molecule is comprised of two topologically equivalent three-stranded antiparallel beta-sheets that are related by a pseudo 2-fold symmetry. Each beta-sheet contains an H-X-T-X motif, which is strictly conserved among members of the 2H phosphoesterase superfamily. The phosphate ion is bound to the side-chains of His and Thr from each of the two motifs. Structural comparison of hCNP-CF with plant 1',2'-cyclic nucleotide phosphodiesterase (CPDase) and bacterial 2'-5' RNA ligase reveals that the H-X-T-X motifs are structurally conserved among these enzymes, but the surface properties of the active site are quite different among the enzymes, reflecting the differences in their substrates. On the basis of the present crystal structure of the hCNP-CF/phosphate complex, the available structure of the CPDase/cyclic-nucleotide analogue complex, and the recent functional studies of rat CNP-CF, we propose a possible substrate-binding mode and catalytic mechanism of CNP, which employs the nucleophilic water molecule activated by His310. The proposed mechanism is basically equivalent to the second step of the well-accepted reaction mechanism of RNase A. Since the overall structure of hCNP-CF differs considerably from that of RNase A, it is likely that the similar active sites with two catalytic histidine residues in these enzymes arose through convergent evolution.  相似文献   

13.
Aminoacyl-tRNA synthetases (AARSs) are an important family of enzymes that catalyze tRNA aminoacylation reaction (Ibba and Soll in Annu Rev Biochem 2000, 69:617–650) [1]. AARSs are grouped into two broad classes (class I and II) based on sequence/structural homology and mode of their interactions with the tRNA molecule (Ibba and Soll in Annu Rev Biochem 2000, 69:617–650) [1]. As protein dynamics play an important role in enzyme function, we explored the intrinsic dynamics of these enzymes using normal mode analysis and investigated if the two classes and six subclasses (Ia–c and IIa–c) of AARSs exhibit any distinct patterns of motion. The present study found that the intrinsic dynamics-based classification of these enzymes is similar to that obtained based on sequence/structural homology for most enzymes. However, the classification of seryl-tRNA synthetase was not straightforward; the internal mobility patterns of this enzyme are comparable to both IIa and IIb AARSs. This study revealed only a few general mobility patterns in these enzymes—(1) the insertion domain is generally engaged in anticorrelated motion with respect to the catalytic domain for both classes of AARSs and (2) anticodon binding domain dynamics are partly correlated and partly anticorrelated with respect to other domains for class I enzymes. In most of the class II AARSs, the anticodon binding domain is predominately engaged in anticorrelated motion with respect to the catalytic domain and correlated to the insertion domain. This study supports the notion that dynamic-based classification could be useful for functional classification of proteins.  相似文献   

14.
Comparison and multiple alignments of amino acid sequences of a representative number of related enzymes demonstrate the existence of certain positions of amino acid residues which are permanently reproducible in all members of the whole family. The use of the bioinformatic approach revealed conservative residues in each of the related enzymes and ranked amino acid conservatism for the overall enzymatic catalysis. Glycine and aspartic acid residues were shown to be the most essential for structure and catalytic activity of enzymes. Amino acid residues forming catalytic subsite of the active site of enzymes are always highly conservative. Analysis revealed that aspartic acid carboxyl group is the most frequently employed nucleophilic (in deprotonated form) and electrophilic (in protonated form) agent involved in activation of molecules by the mechanism of general base and acidic catalyses in the catalytic sites of enzymes. Glycine is a unique amino acid possessing the highest possibilities for rotation along C–C and C–N bonds of the polypeptide chain. The conservative fixation of the glycine residue in polypeptide chains of related enzymes provides a possibility for directed assembly of amino acid residues into the catalytic subsite structure. It is possible that the conservative glycines provide known conformational mobility of the protein and the active site. Methods of molecular modeling were used for analysis of structural substitutions of conservative and non-conservative glycines and their effects on geometry of catalytic site of typical hydrolases. The substitution of glycine(s) for alanine significantly altered the catalytic site structures.  相似文献   

15.
The ubiquitin-specific protease (USP) structural class represents the largest and most diverse family of deubiquitinating enzymes (DUBs). Many USPs assume important biological roles and emerge as potential targets for therapeutic intervention. A clear understanding of USP catalytic mechanism requires a functional evaluation of the proposed key active site residues. Crystallographic data of ubiquitin aldehyde adducts of USP catalytic cores provided structural details on the catalytic triad residues, namely the conserved Cys and His, and a variable putative third residue, and inferred indirect structural roles for two other conserved residues (Asn and Asp), in stabilizing via a bridging water molecule the oxyanion of the tetrahedral intermediate (TI). We have expressed the catalytic domain of USP2 and probed by site-directed mutagenesis the role of these active site residues in the hydrolysis of peptide and isopeptide substrates, including a synthetic K48-linked diubiquitin substrate for which a label-free, mass spectrometry based assay has been developed to monitor cleavage. Hydrolysis of ubiquitin-AMC, a model substrate, was not affected by the mutations. Molecular dynamics simulations of USP2, free and complexed with the TI of a bona fide isopeptide substrate, were carried out. We found that Asn271 is structurally poised to directly stabilize the oxyanion developed in the acylation step, while being structurally supported by the adjacent absolutely conserved Asp575. Mutagenesis data functionally confirmed this structural role independent of the nature (isopeptide vs peptide) of the bond being cleaved. We also found that Asn574, structurally located as the third member of the catalytic triad, does not fulfill this role functionally. A dual supporting role is inferred from double-point mutation and structural data for the absolutely conserved residue Asp575, in oxyanion hole formation, and in maintaining the correct alignment and protonation of His557 for catalytic competency.  相似文献   

16.
Subtilases are members of the family of subtilisin-like serine proteases. Presently, greater than 50 subtilases are known, greater than 40 of which with their complete amino acid sequences. We have compared these sequences and the available three-dimensional structures (subtilisin BPN', subtilisin Carlsberg, thermitase and proteinase K). The mature enzymes contain up to 1775 residues, with N-terminal catalytic domains ranging from 268 to 511 residues, and signal and/or activation-peptides ranging from 27 to 280 residues. Several members contain C-terminal extensions, relative to the subtilisins, which display additional properties such as sequence repeats, processing sites and membrane anchor segments. Multiple sequence alignment of the N-terminal catalytic domains allows the definition of two main classes of subtilases. A structurally conserved framework of 191 core residues has been defined from a comparison of the four known three-dimensional structures. Eighteen of these core residues are highly conserved, nine of which are glycines. While the alpha-helix and beta-sheet secondary structure elements show considerable sequence homology, this is less so for peptide loops that connect the core secondary structure elements. These loops can vary in length by greater than 150 residues. While the core three-dimensional structure is conserved, insertions and deletions are preferentially confined to surface loops. From the known three-dimensional structures various predictions are made for the other subtilases concerning essential conserved residues, allowable amino acid substitutions, disulphide bonds, Ca(2+)-binding sites, substrate-binding site residues, ionic and aromatic interactions, proteolytically susceptible surface loops, etc. These predictions form a basis for protein engineering of members of the subtilase family, for which no three-dimensional structure is known.  相似文献   

17.
Bovine pancreatic ribonuclease (RNase A) forms two 3-dimensional domain-swapped dimers with different quaternary structures. One dimer is characterized by the swapping of the C-terminal region (C-Dimer) and presents a rather loose structure. The other dimer (N-Dimer) exhibits a very compact structure with exchange of the N-terminal helix. Here we report the results of a molecular dynamics/essential dynamics (MD/ED) study carried out on the N-Dimer. This investigation, which represents the first MD/ED analysis on a three-dimensional domain-swapped enzyme, provides information on the dynamic properties of the active site residues as well as on the global motions of the dimer subunits. In particular, the analysis of the flexibility of the active site residues agrees well with recent crystallographic and site-directed mutagenesis studies on monomeric RNase A, thus indicating that domain swapping does not affect the dynamics of the active sites. A slight but significant rearrangement of N-Dimer quaternary structure, favored by the formation of additional hydrogen bonds at subunit interface, has been observed during the MD simulation. The analysis of collective movements reveals that each subunit of the dimer retains the functional breathing motion observed for RNase A. Interestingly, the breathing motion of the two subunits is dynamically coupled, as they open and close in phase. These correlated motions indicate the presence of active site intercommunications in this dimer. On these bases, we propose a speculative mechanism that may explain negative cooperativity in systems preserving structural symmetry during the allosteric transitions.  相似文献   

18.
Enzymes from cold-adapted species are significantly more active at low temperatures, even those close to zero Celsius, but the rationale of this adaptation is complex and relatively poorly understood. It is commonly stated that there is a relationship between the flexibility of an enzyme and its catalytic activity at low temperature. This paper gives the results of a study using molecular dynamics simulations performed for five pairs of enzymes, each pair comprising a cold-active enzyme plus its mesophilic or thermophilic counterpart. The enzyme pairs included α-amylase, citrate synthase, malate dehydrogenase, alkaline protease and xylanase. Numerous sites with elevated flexibility were observed in all enzymes; however, differences in flexibilities were not striking. Nevertheless, amino acid residues common in both enzymes of a pair (not present in insertions of a structure alignment) are generally more flexible in the cold-active enzymes. The further application of principle component analysis to the protein dynamics revealed that there are differences in the rate and/or extent of opening and closing of the active sites. The results indicate that protein dynamics play an important role in catalytic processes where structural rearrangements, such as those required for active site access by substrate, are involved. They also support the notion that cold adaptation may have evolved by selective changes in regions of enzyme structure rather than in global change to the whole protein. Figure Collective motions in Cα atoms of the active site of cold-active xylanase Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

19.
Protein dynamics and the underlying networks of intramolecular interactions and communicating residues within the three-dimensional (3D) structure are known to influence protein function and stability, as well as to modulate conformational changes and allostery. Acylaminoacyl peptidase (AAP) subfamily of enzymes belongs to a unique class of serine proteases, the prolyl oligopeptidase (POP) family, which has not been thoroughly investigated yet. POPs have a characteristic multidomain three-dimensional architecture with the active site at the interface of the C-terminal catalytic domain and a β-propeller domain, whose N-terminal region acts as a bridge to the hydrolase domain. In the present contribution, protein dynamics signatures of a hyperthermophilic acylaminoacyl peptidase (AAP) of the prolyl oligopeptidase (POP) family, as well as of a deletion variant and alanine mutants (I12A, V13A, V16A, L19A, I20A) are reported. In particular, we aimed at identifying crucial residues for long range communications to the catalytic site or promoting the conformational changes to switch from closed to open ApAAP conformations. Our investigation shows that the N-terminal α1-helix mediates structural intramolecular communication to the catalytic site, concurring to the maintenance of a proper functional architecture of the catalytic triad. Main determinants of the effects induced by α1-helix are a subset of hydrophobic residues (V16, L19 and I20). Moreover, a subset of residues characterized by relevant interaction networks or coupled motions have been identified, which are likely to modulate the conformational properties at the interdomain interface.  相似文献   

20.
F Fraternali 《Biopolymers》1990,30(11-12):1083-1099
Molecular dynamics simulations on the transmembrane antibiotic peptide alamethicin have been performed in the NVT ensemble (i.e., the number of particles N, the volume V, and the temperature T of the system are kept constant). Results on the structure and conformational flexibility of this molecule are discussed and compared with previous experimental CD, x-ray, nmr data and theoretical computations on fragments analogues. An extensive study of structural and dynamic properties from H-bonding pattern analysis is presented. Evidences for a largely alpha-helix structure with some extent of freedom in the C-terminal region are found. Further, a partition of the molecule into three regions on the base of structural features and dynamic behavior has been proposed, and the correlation among the motions of the three regions is described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号