首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
The orphan nuclear receptor estrogen-related receptor-α (ERRα) has been reported to have both a positive and a negative regulatory role in osteoblastic and adipocytic differentiation. We have studied the role of ERRα in osteoblastic and adipogenic differentiation of mesenchymal stem cells. Bone marrow mesenchymal stem cells were isolated from ERRα deficient mice and their differentiation capacities were compared to that of the wild-type cells. ERRα deficient cultures displayed reduced cellular proliferation, osteoblastic differentiation, and mineralization. In the complementary experiment, overexpression of ERRα in MC3T3-E1 cells increased the expression of osteoblastic markers and mineralization. Alterations in the expression of bone sialoprotein (BSP) may at least partially explain the effects on mineralization as BSP expression was reduced in ERRα deficient MSCs and enhanced upon ERRα overexpression in MC3T3-E1 cells. Furthermore, a luciferase reporter construct driven by the BSP promoter was efficiently transactivated by ERRα. Under adipogenic conditions, ERRα deficient cultures displayed reduced adipocytic differentiation. Our data thus propose a positive role for ERRα in osteoblastic and adipocytic differentiation. The variability in the results yielded in the different studies implies that ERRα may play different roles in bone under different physiological conditions.  相似文献   

2.
Mesenchymal stem cells (MSCs) are capable of self-renewing and differentiating into multiple tissues; they are expected to become a source of cells for regenerative therapy. Compared to allogeneic MSCs, autologous MSCs from patients needing cell-based therapy may be an ideal alternative stem cell source. However, characterizations of MSCs from a disease state remains extremely limited. Therefore, we have isolated and characterized MSCs from Parkinson's disease (PD) patients and compared them with MSCs derived from normal adult bone marrow. Our results show that PD-derived MSCs are similar to normal MSCs in phenotype, morphology, and multidifferentiation capacity. Moreover, PD-derived MSCs are capable of differentiating into neurons in a specific medium with up to 30% having the characteristics of dopamine cells. At last, PD-derived MSCs could inhibit T-lymphocyte proliferation induced by mitogens. These findings indicate that MSCs derived from PD patients' bone marrow may be a promising cell type for cellular therapy and somatic gene therapy applications.  相似文献   

3.
《Cytotherapy》2014,16(9):1197-1206
Background aimsThe aim of the study was to evaluate the effect of mesenchymal stromal cells (MSCs) on tumor cell growth in vitro and in vivo and to elucidate the apoptotic and anti-proliferative mechanisms of MSCs on a hepatocellular carcinoma (HCC) murine model.MethodsThe growth-inhibitory effect of MSCs on the Hepa 1–6 cell line was tested by means of methyl thiazolyl diphenyl-tetrazolium assay. Eighty female mice were randomized into four groups: group 1 consisted of 20 mice that received MSCs only by intrahepatic injection; group 2 consisted of 20 HCC mice induced by inoculation of Hepa 1–6 cells into livers without MSC treatment; group 3 consisted of 20 mice that received MSCs after induction of liver cancer; group 4 consisted of 20 mice that received MSCs after induction of liver cancer on top of induced biliary cirrhosis.ResultsMSCs exhibited a growth-inhibitory effect on Hepa 1–6 murine cell line in vitro. Concerning in vivo study, decreases of serum alanine transaminase, aspartate transaminase and albumin levels after MSC transplantation in groups 2 and 3 were found. Gene expression of α-fetoprotein was significantly downregulated after MSC injection in the HCC groups. We found that gene expression of caspase 3, P21 and P53 was significantly upregulated, whereas gene expression of Bcl-2 and survivin was downregulated in the HCC groups after MSC injection. Liver specimens of the HCC groups confirmed the presence of dysplasia. The histopathological picture was improved after administration of MSCs to groups 2 and 3.ConclusionsMSCs upregulated genes that help apoptosis and downregulated genes that reduce apoptosis. Therefore, MSCs could inhibit cell division of HCC and potentiate their death.  相似文献   

4.
Multipotential bone marrow mesenchymal stem cells (BMSCs) are important in maintaining the microenvironment of the bone marrow (BM). Sympathetic nerves histologically innervate the BM; however, their role remains unclear. In this study, the effects of norepinephrine on DNA synthesis and the related signaling molecules involved in rBMSCs were examined.mRNA levels of the α1-adrenergic receptor subtypes increased following norepinephrine stimulation (10−5 M for 30 min). DNA synthesis increased in dose- and time-dependent manners as determined by [3H]thymidine incorporation. Intracellular Ca2+ concentration and translocation of protein kinase C from the cytosol to the membrane were also found to be elevated in rBMSCs. Phentolamine was able to suppress translocation of PKC. Norepinephrine also induced phosphorylation of ERK1/2, which was prevented by staurosporine treatment. Pretreatment with PD98059 inhibited ERK1/2 phosphorylation and DNA synthesis in rBMSCs.These findings indicate that norepinephrine stimulates DNA synthesis via α1-adrenergic receptors and downstream Ca2+/PKC and ERK1/2 activation in rBMSCs.  相似文献   

5.

Background

Mesenchymal stem/stromal cells (MSC) display a range of immunoregulatory properties which can be enhanced by the exposure to cytokines such interferon γ (IFN-γ). However the compositional changes associated with the ‘licensing’ of these cells have not been clearly defined. The present study was undertaken to provide a detailed comparative proteomic analysis of the compositional changes that occur in human bone marrow derived MSC following 20 h treatment with IFN-γ.

Methods

2D LC MSMS analysis of control and IFN-γ treated cells from 5 different healthy donors provided confident identification of more than 8400 proteins.

Results

In total 210 proteins were shown to be significantly altered in their expression levels (≥|2SD|) following IFN-γ treatment. The changes for several of these proteins were confirmed by flow cytometry. STRING analysis determined that approximately 30% of the altered proteins physically interacted in described interferon mediated processes. Comparison of the list of proteins that were identified as changed in the proteomic analysis with data for the same proteins in the Interferome DB indicated that ~35% of these proteins have not been reported to be IFN-γ responsive in a range of cell types.

Conclusions

This data provides an in depth analysis of the proteome of basal and IFN-γ treated human mesenchymal stem cells and it identifies a number of novel proteins that may contribute to the immunoregulatory capacity if IFN-γ licensed cells.
  相似文献   

6.
In recent years, great interest has been aroused by the discovery of the ability of adult stem cells to contribute to regeneration processes and repair of damaged tissues. In particular, bone marrow derived stem cells (BMSCs), the most well known population of multipotent stem cells in adults, have been shown to be able to generate many different committed cellular types. In this review, we systematically organize the numerous hypotheses emerging from the most recent studies, in animal and humans, which evaluated the potentiality of BMSCs to contribute to tissue repair in different types of liver damage. Our aim is to give scientists and clinicians who are interested in regenerative medicine the rational basis for planning future studies on stem cell therapy for liver diseases.  相似文献   

7.
The aim of this study was to explore the ability for chondrogenic differentiation of bone marrow mesenchymal stems cells (BMSCs) induced by either cartilage-derived morphogenetic protein 1 (CDMP-1) alone or in the presence of transforming growth factor-β1 (TGF-β1) in vivo and in vitro. BMSCs and poly-lactic acid/glycolic acid copolymer (PLGA) scaffold were analyzed for chondrogenic capacity induced by CDMP-1 and TGF-β1 in vivo and in vitro. Chondrogenic differentiation of BMSCs into chondrocytes using a high density pellet culture system was tested, whether they could be maintained in 3-D PLGA scaffold instead of pellet culture remains to be explored. Under the culture of high-density cell suspension and PLGA frame, BMSCs were observed the ability to repair cartilage defects by either CDMP-1 alone or in the presence of TGF-β1 in vitro. Then the cell-scaffold complex was implanted into animals for 4 and 8 weeks for in vivo test. The content of collagen type II and proteoglycan appeared to increase over time in the constructs of the induced groups (CDMP in the presence of TGF-β1), CDMP group and TGF group. However, the construct of the control group did not express them during the whole culture time. At 4 and 8 weeks, the collagen type II expression of the induced group was higher than the sum of TGF group and CDMP group by SSPS17.0 analysis. BMSCs and PLGA complex induced by CDMP-1 and TGF- β1 can repair cartilage defects more effectively than that induced by CDMP-1 or TGF-β1 only.  相似文献   

8.
Placenta-derived stem cells (PDSCs) have gained interest as an alternative source of stem cells for regenerative medicine because of their potential for self-renewal and differentiation and their immunomodulatory properties. Although many studies have characterized various PDSCs biologically, the properties of the self-renewal and differentiation potential among PDSCs have not yet been directly compared. We consider the characterization of chorionic-plate-derived mesenchymal stem cells (CP-MSCs) and Wharton’s jelly-derived mesenchymal stem cells (WJ-MSCs) among various PDSCs and the assessment of their differentiation potential to be important for future studies into the applicability and effectiveness of PDSCs in cell therapy. In the present study, the capacities for self-renewal and multipotent differentiation of CP-MSCs and WJ-MSC isolated from normal term placentas were compared. CP-MSCs and WJ-MSCs expressed mRNAs for the pluripotent stem cell markers Oct-4, Nanog, and Sox-2. Additionally, HLA-G for immunomodulatory effects was found to be expressed at both the mRNA and protein levels in both cell types. The CP-MSCs and WJ-MSCs also had the capacities to differentiate into cells of mesodermal (adipogenic and osteogenic) and endodermal (hepatogenic) lineages. Expression of adipogenesis-related genes was higher in CP-MSCs than in WJ-MSCs, whereas WJ-MSCs accumulated more mineralized matrix than CP-MSCs. The WJ-MSCs expressed more of CYP3A4 mRNA, a marker for mature hepatocytes, than CP-MSCs. Thus, we propose that CP-MSCs and WJ-MSCs are useful sources of cells for appropriate clinical applications in the treatment of various degenerative diseases.  相似文献   

9.
Adipose tissue is an attractive source of mesenchymal stem cells (at-MSCs), but their low osteogenic potential limits their use in bone regeneration. Adipose tissue plays a role in pro-inflammatory diseases by releasing cytokines with a catabolic effect on bone, such as tumor necrosis factor-alpha (TNF-α). Thus, we hypothesized that endogenous TNF-α could have a negative effect on at-MSC differentiation into osteoblasts. Short interfering RNAs (siRNAs) targeting TNF-α receptors (siR1, siR2, and si1R/R2) were transfected into at-MSCs, and cell differentiation was assessed by measuring the expression of bone markers, ALP activity, and mineralized matrix. Scrambled was used as Control. Knockout at-MSCs (KOR1/R2) was injected in mice calvaria defects, and bone formation was evaluated by microtomography and histological analysis. Data were compared by Kruskal–Wallis or analysis of variance (5%). The expression of bone markers confirmed that at-MSCs differentiate less than bone marrow MSCs. In silenced cells, the expression of Alp, Runx2, and Opn was generally higher compared to Control. ALP, RUNX2, and OPN were expressed at elevated levels in silenced groups, most notably at-MSCs-siR1/R2. ALP was detected at high levels in at-MSCs-siR1/R2 and in-MSCs-siR1, followed by an increase in mineralized nodules in at-MSCs-siR1/R2. As the morphometric parameters increased, the groups treated with KOR1/R2 exhibited slight bone formation near the edges of the defects. Endogenous TNF-α inhibits osteoblast differentiation and activity in at-MSCs, and its disruption increases bone formation. While opening a path of investigation, that may lead to the development of new treatments for bone regeneration using at-MSC-based therapies.  相似文献   

10.

Objectives

To investigate the effect of the combination of LMP-1 and HIF-1α delivered by adipose-derived stem cells (ADSCs) on osteogenesis in vitro and in vivo.

Results

Cells expressing both LMP-1 and HIF-1α genes had elevated mRNA expression of BMP-2, RunX2, alkaline phosphatase, osteocalcin, collagen I and alkaline phosphatase activity compared to cells from other groups. Furthermore, mineralization at day 14 in the cells expressing both LMP-1 and HIF-1α was significantly higher than in all the other groups. In vivo, H&E staining and immunohistochemical analysis of the cell-scaffolds also showed more ectopic bone formation at 4 weeks compared to other groups. More new vessel formation was apparent in the pLVX-rHIF-1α and pLVX-rLMP-1-rHIF-1α groups.

Conclusion

LMP-1 and HIF-1α gene delivery synergistically enhanced the osteo-differentiation of ADSCs in vitro and promoted osteogenesis in vivo compared with LMP-1 alone or HIF-1α alone.
  相似文献   

11.
Recent publications have suggested the existence of germ stem cells in the mouse at postnatal stages. The mechanism of de novo oocyte formation is proposed to involve a contribution from the bone marrow to the germ cell pool, via the bloodstream. Critical examination of the data underpinning these contentious claims is under way from a reproductive biology perspective but little has been said about the nature of this elusive bone marrow population with germ cell potential. Furthermore, whereas the prospect of marrow-derived germ cells may appear propitious for fertility applications, its wider impact on transplantation medicine remains to be considered. This paper examines the evidence leading to the current debate and considers the implications of such findings for the field of bone marrow transplantation. The author is indebted to the Anne McLaren Fellowship Scheme of the University of Nottingham and to the Alzheimer’s Society for their support.  相似文献   

12.
13.
《Cytotherapy》2014,16(10):1361-1370
Background aimsBone marrow–derived mesenchymal stromal cells (BMSCs) are being extensively investigated as cellular therapeutics for many diseases, including cardiovascular diseases. Although preclinical studies indicated that BMSC transplantation into infarcted hearts improved heart function, there are problems to be resolved, such as the low survival rate of BMSCs during the transplantation process and in the ischemic region with extreme oxidative stress. Autophagy plays pivotal roles in maintaining cellular homeostasis and defending against environmental stresses. However, the precise roles of autophagy in BMSCs under oxidative stress remain largely uncharacterized.MethodsBMSCs were treated with H2O2, and autophagic flux was examined by means of microtubule-associated protein 1A/1B-light chain 3 II/I ratio (LC3 II/I), autophagosome formation and p62 expression. Cytotoxicity and cell death assays were performed after co-treatment of BMSCs by autophagy inhibitor (3-methyladenine) or autophagy activator (rapamycin) together with H2O2.ResultsWe show that short exposure (1 h) of BMSCs to H2O2 dramatically elevates autophagic flux (2- to 4-fold), whereas 6-h prolonged oxidative treatment reduces autophagy but enhances caspase-3 and caspase-6–associated apoptosis. Furthermore, we show that pre- and co-treatment with rapamycin ameliorates H2O2-induced caspase-3 and caspase-6 activation and cell toxicity but that 3-methyladenine exacerbates H2O2-induced cell apoptotic cell death.ConclusionsOur results demonstrate that autophagy is critical for the survival of BMSCs under oxidative conditions. Importantly, we also suggest that the early induction of autophagic flux is possibly a self-defensive mechanism common in oxidant-tolerant cells.  相似文献   

14.
Bone marrow stromal stem cells (BMSCs) are fibroblastic in shape and capable of self-renewal and have the potential for multi-directional differentiation. Nerve growth factor (NGF), a homodimeric polypeptide, plays an important role in the nervous system by supporting the survival and growth of neural cells, regulating cell growth, promoting differentiation into neuron, and neuron migration. Adenoviral vectors are DNA viruses that contain 36 kb of double-stranded DNA allowing for transmission of the genes to the host nucleus but not inserting them into the host chromosome. The present study aimed to investigate the induction efficiency and differentiation of neural cells from BMSCs by β-NGF gene transfection with recombinant adenoviral vector (Ad-β-NGF) in vitro. The results of immunochemical assay confirmed the induced cells as neuron cells. Moreover, flow cytometric analysis, Annexin-V-FITC/PI, and BrdU assay revealed that chemical inducer β-mercaptoethanol (β-met) triggered apoptosis of BMSCs, as evidenced by inhibition of DNA fragmentation, nuclear condensation, translocation of phospholipid phosphatidylserine, and activation of caspase-3. Furthermore, the results of western blotting showed that β-met suppressed AKT signaling pathway and regulated the MAPKs during differentiation of BMSCs. In contrast, Ad-β-NGF effectively induced the differentiation of BMSCs without causing any cytopathic phenomenon and apoptotic cell death. Moreover, Ad-β-NGF recovered the expression level of phosphorylated AKT and MAPKs in cells exposed to chemical reagents. Taken together, these results suggest that β-NGF gene transfection promotes the differentiation of BMSCs into neurons through regulation of AKT and MAPKs signaling pathways.  相似文献   

15.
16.
Background aimsA medium supplemented with fetal bovine serum (FBS) is of common use for the expansion of human mesenchymal stromal cells (MSCs). However, its use is discouraged by regulatory authorities because of the risk of zoonoses and immune reactions. Human platelet lysate (PL) obtained by freezing/thawing disruption of platelets has been proposed as a possible substitute of FBS. The process is time-consuming and not well standardized. A new method for obtaining PL that is based on the use of ultrasound is proposed.MethodsPlatelet sonication was performed by submerging platelet-containing plastic bags in an ultrasonic bath. To evaluate platelet lysis we measured platelet-derived growth factor-AB release. PL efficiency was tested by expanding bone marrow (BM)-MSCs, measuring population doubling time, differentiation capacity and immunogenic properties. Safety was evaluated by karyotyping expanded cells.ResultsAfter 30 minutes of sonication, 74% of platelet derived growth factor-AB was released. PL enhanced BM-MSC proliferation rate compared with FBS. The mean cumulative population doubling (cPD) of cells growth in PL at 10%, 7.5% and 5% was better compared with cPD obtained with 10% FBS. PD time (hours) of MSCs with PL obtained by sonication was shorter than for cPD with PL obtained by freezing/thawing (18.9 versus 17.4, P < 0.01). BM mononucleated cells expressed MSC markers and were able to differentiate into adipogenic, osteogenic and chondrogenic lineages. When BM-MSCs and T cells were co-cultured in close contact, immunosuppressive activity of BM-MSCs was maintained. Cell karyotype showed no genetic alterations.ConclusionsThe proposed method for the production of PL by sonication could be a safe, efficient and fast substitute of FBS, without the potential risks of FBS.  相似文献   

17.

Background

Chronic venous leg ulcers (VLUs) are a common problem in clinical practice and available treatments are not satisfactory. The use of adjuvant therapies in combination with lower limb compression may lead to improved healing rates. Chronic wounds are candidates for new strategies in the emergent field of regenerative medicine. Bone marrow–derived cells (BMDCs) contain cells and secrete cytokines known to participate in wound healing. Thus, BMDC therapy seems a logical strategy for the treatment of chronic wounds. Our objective was to evaluate feasibility, safety and initial clinical outcome of autologous BMDC therapy associated with standard treatment in patients with VLUs.

Methods

We conducted an open-label, single-arm, prospective pilot clinical trial in four patients with six chronic VLUs. The study protocol was approved by the institutional and national review boards and ethics committees. Bone marrow was harvest, processed and then administered by multiple injections into the ulcers. All patients received standard treatment and non-healing characteristics of the VLUs were confirmed at study entry.

Results

Ulcer size and wound pain evaluated 12 months after BMDC treatment were significantly reduced (P < 0.05). BMDC treatment was safe and well tolerated in long-term follow-up.

Discussion

Despite the low number of patients studied, our results showed that autologous BMDC treatment could be a useful, feasible and safe procedure to enhance ulcer healing. However, randomized controlled trials with more patients are needed to address this question and translate this approach into clinical practice.  相似文献   

18.
19.

Glycosaminoglycans (GAGs) are major components of cartilage extracellular matrix (ECM), which play an important role in tissue homeostasis not only by providing mechanical load resistance, but also as signaling mediators of key cellular processes such as adhesion, migration, proliferation and differentiation. Specific GAG types as well as their disaccharide sulfation patterns can be predictive of the tissue maturation level but also of disease states such as osteoarthritis. In this work, we used a highly sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to perform a comparative study in terms of temporal changes in GAG and disaccharide composition between tissues generated from human bone marrow- and synovial-derived mesenchymal stem/stromal cells (hBMSC/hSMSC) after chondrogenic differentiation under normoxic (21% O2) and hypoxic (5% O2) micromass cultures. The chondrogenic differentiation of hBMSC/hSMSC cultured under different oxygen tensions was assessed through aggregate size measurement, chondrogenic gene expression analysis and histological/immunofluorescence staining in comparison to human chondrocytes. For all the studied conditions, the compositional analysis demonstrated a notable increase in the average relative percentage of chondroitin sulfate (CS), the main GAG in cartilage composition, throughout MSC chondrogenic differentiation. Additionally, hypoxic culture conditions resulted in significantly different average GAG and CS disaccharide percentage compositions compared to the normoxic ones. However, such effect was considerably more evident for hBMSC-derived chondrogenic aggregates. In summary, the GAG profiles described here may provide new insights for the prediction of cartilage tissue differentiation/disease states and to characterize the quality of MSC-generated chondrocytes obtained under different oxygen tension culture conditions.

  相似文献   

20.
TGF-β1 plays a necessary and important role in the induction of chondrogenic differentiation of bone marrow stromal cells (BMSCs). In this study, porcine BMSCs were infected with a replication-deficient adenovirus expression vector carrying the hTGF-β1 gene. The transduced BMSCs were cultured as pelleted micromasses in vitro for 21 days, seeded onto disk-shaped PGA scaffolds for 3 days and subsequently implanted into the subcutaneous tissue of mice. BMSCs transduced with AdhTGF-β1 expressed and secreted more hTGF-β1 protein in vitro than those of the control group. Histological and immunohistological examination of the pellets revealed robust chondrogenic differentiation. Tissues made from cells transduced with AdhTGF-β1 exhibited neocartilage formation after 3 weeks in vivo. The neocartilage occupied 42 ± 5% of the total tissue volume which was significantly greater than that of the control group. Furthermore, there was extensive staining for sulfated proteoglycans and type II collagen in the AdhTGF-β1 group compared to controls, and quantification of GAG content showed significantly greater amounts of GAG in experimental groups. The results demonstrate that transfer of hTGF-β1 into BMSCs via adenoviral transduction can induce chondrogenic differentiation in vitro and enhance chondrogenesis in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号