首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In photosynthetic organisms, thioredoxin-dependent redox regulation is a well established mechanism involved in the control of a large number of cellular processes, including the Calvin-Benson cycle. Indeed, 4 of 11 enzymes of this cycle are activated in the light through dithiol/disulfide interchanges controlled by chloroplastic thioredoxin. Recently, several proteomics-based approaches suggested that not only four but all enzymes of the Calvin-Benson cycle may withstand redox regulation. Here, we characterized the redox features of the Calvin-Benson enzyme phosphoglycerate kinase (PGK1) from the eukaryotic green alga Chlamydomonas reinhardtii, and we show that C. reinhardtii PGK1 (CrPGK1) activity is inhibited by the formation of a single regulatory disulfide bond with a low midpoint redox potential (−335 mV at pH 7.9). CrPGK1 oxidation was found to affect the turnover number without altering the affinity for substrates, whereas the enzyme activation appeared to be specifically controlled by f-type thioredoxin. Using a combination of site-directed mutagenesis, thiol titration, mass spectrometry analyses, and three-dimensional modeling, the regulatory disulfide bond was shown to involve the not strictly conserved Cys227 and Cys361. Based on molecular mechanics calculation, the formation of the disulfide is proposed to impose structural constraints in the C-terminal domain of the enzyme that may lower its catalytic efficiency. It is therefore concluded that CrPGK1 might constitute an additional light-modulated Calvin-Benson cycle enzyme with a low activity in the dark and a TRX-dependent activation in the light. These results are also discussed from an evolutionary point of view.  相似文献   

2.
Glutathionylation is the major form of S-thiolation in cells. This reversible redox post-translational modification consists of the formation of a mixed disulfide between a free thiol on a protein and a molecule of glutathione. This recently described modification, which is considered to occur under oxidative stress, can protect cysteine residues from irreversible oxidation, and alter positively or negatively the activity of diverse proteins. This modification and its targets have been mainly studied in non-photosynthetic organisms so far. We report here the first proteomic approach performed in vivo on photosynthetically competent cells, using the eukaryotic unicellular green alga Chlamydomonas reinhardtii with radiolabeled [(35)S]cysteine to label the glutathione pool and diamide as oxidant. This method allowed the identification of 25 targets, mainly chloroplastic, involved in various metabolic processes. Several targets are related to photosynthesis, such as the Calvin cycle enzymes phosphoglycerate kinase and ribose-5-phosphate isomerase. A number of targets, such as chaperones and peroxiredoxins, are related to stress responses. The glutathionylation of HSP70B, chloroplastic 2-Cys peroxiredoxin and isocitrate lyase was confirmed in vitro on purified proteins and the targeted residues were identified.  相似文献   

3.
Post-translational modification of proteins by the addition of methyl groups to the side chains of Lys and Arg residues is proposed to play important roles in many cellular processes. In plants, identification of non-histone methylproteins at a cellular or subcellular scale is still missing. To gain insights into the extent of this modification in chloroplasts we used a bioinformatics approach to identify protein methyltransferases targeted to plastids and set up a workflow to specifically identify Lys and Arg methylated proteins from proteomic data used to produce the Arabidopsis chloroplast proteome. With this approach we could identify 31 high-confidence Lys and Arg methylation sites from 23 chloroplastic proteins, of which only two were previously known to be methylated. These methylproteins are split between the stroma, thylakoids and envelope sub-compartments. They belong to essential metabolic processes, including photosynthesis, and to the chloroplast biogenesis and maintenance machinery (translation, protein import, division). Also, the in silico identification of nine protein methyltransferases that are known or predicted to be targeted to plastids provided a foundation to build the enzymes/substrates relationships that govern methylation in chloroplasts. Thereby, using in vitro methylation assays with chloroplast stroma as a source of methyltransferases we confirmed the methylation sites of two targets, plastid ribosomal protein L11 and the β-subunit of ATP synthase. Furthermore, a biochemical screening of recombinant chloroplastic protein Lys methyltransferases allowed us to identify the enzymes involved in the modification of these substrates. The present study provides a useful resource to build the methyltransferases/methylproteins network and to elucidate the role of protein methylation in chloroplast biology.  相似文献   

4.
Phosphoribulokinase (PRK) is one of several chloroplastic enzymes whose activity is regulated by thiol-disulfide exchange via thioredoxin. Activation entails reduction of an active-site disulfide bond between Cys16 and Cys55. Bifunctional cross-linking reagents have been used to approximate the interresidue distance between Cys16 and Cys55, an issue which impinges on the relative conformational states of the activated and deactivated forms of the enzyme. Spinach PRK is rapidly inactivated by stoichiometric levels of 4,4'-difluoro-3,3'-dinitrodiphenyl sulfone (FNPS) or 1,5-difluoro-2,4-dinitrobenzene (DFNB), which span 9 and 3.5 A, respectively. ATP, but not ribulose 5-phosphate, retards the rate of inactivation, suggesting that modification has occurred at the nucleotide binding domain of the active site. Sulfhydryl modification is indicated by partial reversibility of inactivation as effected by exogenous thiols. Tryptic mapping by reverse-phase chromatography of [14C]carboxymethylated enzyme, subsequent to its reaction with either FNPS or DFNB, demonstrates modification of Cys16 and Cys55 by both reagents, and formation of only one major chromophoric peptide in each case. On the basis of the sequence analysis of the purified chromophoric peptides, Cys16 and Cys55 are cross-linked by both FNPS and DFNB. Thus, the intrasubunit distance between the beta-sulfhydryls of Cys16 and Cys55 is dynamic rather than static. Diminished conformational flexibility upon oxidation of the regulatory sulfhydryls to a disulfide may be partially responsible for the concomitant loss of enzymatic activity.  相似文献   

5.
Sunlight provides the energy source for the assimilation of carbon dioxide by photosynthesis, but it also provides regulatory signals that switch on specific sets of enzymes involved in the alternation of light and dark metabolisms in chloroplasts. Capture of photons by chlorophyll pigments triggers redox cascades that ultimately activate target enzymes via the reduction of regulatory disulfide bridges by thioredoxins. Here we report the structure of the oxidized, low-activity form of chloroplastic fructose-1, 6-bisphosphate phosphatase (FBPase), one of the four enzymes of the Calvin cycle whose activity is redox-regulated by light. The regulation is of allosteric nature, with a disulfide bridge promoting the disruption of the catalytic site across a distance of 20 A. Unexpectedly, regulation of plant FBPases by thiol-disulfide interchange differs in every respect from the regulation of mammalian gluconeogenic FBPases by AMP. We also report a second crystal form of oxidized FBPase whose tetrameric structure departs markedly from D(2) symmetry, a rare event in oligomeric structures, and the structure of a constitutively active mutant that is unable to form the regulatory disulfide bridge. Altogether, these structures provide a structural basis for redox regulation in the chloroplast.  相似文献   

6.
Despite little supportive data, differential target protein susceptibility to redox regulation by thioredoxin (Trx) f and Trx m has been invoked to account for two distinct Trxs in chloroplasts. However, this postulate has not been rigorously tested with phosphoribulokinase (PRK), a fulcrum for redox regulation of the Calvin cycle. Prerequisite to Trx studies, the activation of spinach PRK by dithiothreitol, 2-mercaptoethanol, and glutathione was examined. Contrary to prior reports, each activated PRK, but only dithiothreitol supported Trx-dependent activation. Comparative kinetics of activation of PRK showed Trx m to be more efficient than Trx f because of its 40% higher V(max) but similar S(0.5). Activations were insensitive to ribulosebisphosphate carboxylase, which may complex with PRK in vivo. To probe the basis for superiority of Trx m, we characterized site-directed mutants of Trx f, in which unique residues in conserved regions were replaced with Trx m counterparts or deleted. These changes generally resulted in V(max) enhancements, the largest (6-fold) of which occurred with T105I, reflective of substitution in a hydrophobic region that opposes the active site. Inclusive of the present study, activation kinetics of several different Trx-regulated enzymes indicate redundancy in the functions of the chloroplastic Trxs.  相似文献   

7.
The sequencing of the genome of Arabidopsis thaliana revealed that this plant contained numerous isoforms of thioredoxin (Trx), a protein involved in thiol-disulfide exchanges. On the basis of sequence comparison, seven putative chloroplastic Trxs have been identified, four belonging to the m-type, two belonging to the f-type, and one belonging to a new x-type. In the present work, these isoforms were produced and purified as recombinant proteins without their putative transit peptides. Their activities were tested with two known chloroplast thioredoxin targets: NADP-malate dehydrogenase and fructose-1,6-bisphosphatase and also with a chloroplastic 2-Cys peroxiredoxin. The study confirms the strict specificity of fructose-bisphosphatase for Trx f, reveals that some Trxs are unable to activate NADP-malate dehydrogenase, and shows that the new x-type is the most efficient substrate for peroxiredoxin while being inactive toward the two other targets. This suggests that this isoform might be specifically involved in resistance against oxidative stress. Three-dimensional modeling shows that one of the m-type Trxs, Trx m3, which has no activity with any of the three targets, exhibits a negatively charged surface surrounding the active site. A green fluorescent protein approach confirms the plastidial localization of these Trxs.  相似文献   

8.
Yoo KS  Ok SH  Jeong BC  Jung KW  Cui MH  Hyoung S  Lee MR  Song HK  Shin JS 《The Plant cell》2011,23(10):3577-3594
Plant thioredoxins (Trxs) participate in two redox systems found in different cellular compartments: the NADP-Trx system (NTS) in the cytosol and mitochondria and the ferredoxin-Trx system (FTS) in the chloroplast, where they function as redox regulators by regulating the activity of various target enzymes. The identities of the master regulators that maintain cellular homeostasis and modulate timed development through redox regulating systems have remained completely unknown. Here, we show that proteins consisting of a single cystathionine β-synthase (CBS) domain pair stabilize cellular redox homeostasis and modulate plant development via regulation of Trx systems by sensing changes in adenosine-containing ligands. We identified two CBS domain-containing proteins in Arabidopsis thaliana, CBSX1 and CBSX2, which are localized to the chloroplast, where they activate all four Trxs in the FTS. CBSX3 was found to regulate mitochondrial Trx members in the NTS. CBSX1 directly regulates Trxs and thereby controls H(2)O(2) levels and regulates lignin polymerization in the anther endothecium. It also affects plant growth by regulating photosynthesis-related [corrected] enzymes, such as malate dehydrogenase, via homeostatic regulation of Trxs. Based on our findings, we suggest that the CBSX proteins (or a CBS pair) are ubiquitous redox regulators that regulate Trxs in the FTS and NTS to modulate development and maintain homeostasis under conditions that are threatening to the cell.  相似文献   

9.
Thioredoxins (Trxs) are ubiquitous disulphide reductases that play important roles in the redox regulation of many cellular processes. However, some redox-independent functions, such as chaperone activity, have also been attributed to Trxs in recent years. The focus of our study is on the putative chaperone function of the well-described plastid Trxs f and m. To that end, the cDNA of both Trxs, designated as NtTrxf and NtTrxm, was isolated from Nicotiana tabacum plants. It was found that bacterially expressed tobacco Trx f and Trx m, in addition to their disulphide reductase activity, possessed chaperone-like properties. In vitro, Trx f and Trx m could both facilitate the reactivation of the cysteine-free form of chemically denatured glucose-6 phosphate dehydrogenase (foldase chaperone activity) and prevent heat-induced malate dehydrogenase aggregation (holdase chaperone activity). Our results led us to infer that the disulphide reductase and foldase chaperone functions prevail when the proteins occur as monomers and the well-conserved non-active cysteine present in Trx f is critical for both functions. By contrast, the holdase chaperone activity of both Trxs depended on their oligomeric status: the proteins were functional only when they were associated with high molecular mass protein complexes. Because the oligomeric status of both Trxs was induced by salt and temperature, our data suggest that plastid Trxs could operate as molecular holdase chaperones upon oxidative stress, acting as a type of small stress protein.  相似文献   

10.
We provide here an exhaustive overview of the glutathione (GSH) peroxidase (Gpx) family of poplar (Populus trichocarpa). Although these proteins were initially defined as GSH dependent, in fact they use only reduced thioredoxin (Trx) for their regeneration and do not react with GSH or glutaredoxin, constituting a fifth class of peroxiredoxins. The two chloroplastic Gpxs display a marked selectivity toward their electron donors, being exclusively specific for Trxs of the y type for their reduction. In contrast, poplar Gpxs are much less specific with regard to their electron-accepting substrates, reducing hydrogen peroxide and more complex hydroperoxides equally well. Site-directed mutagenesis indicates that the catalytic mechanism and the Trx-mediated recycling process involve only two (cysteine [Cys]-107 and Cys-155) of the three conserved Cys, which form a disulfide bridge with an oxidation-redox midpoint potential of -295 mV. The reduction/formation of this disulfide is detected both by a shift on sodium dodecyl sulfate-polyacrylamide gel electrophoresis or by measuring the intrinsic tryptophan fluorescence of the protein. The six genes identified coding for Gpxs are expressed in various poplar organs, and two of them are localized in the chloroplast, with one colocalizing in mitochondria, suggesting a broad distribution of Gpxs in plant cells. The abundance of some Gpxs is modified in plants subjected to environmental constraints, generally increasing during fungal infection, water deficit, and metal stress, and decreasing during photooxidative stress, showing that Gpx proteins are involved in the response to both biotic and abiotic stress conditions.  相似文献   

11.
E J Stewart  F Aslund    J Beckwith 《The EMBO journal》1998,17(19):5543-5550
Cytoplasmic proteins do not generally contain structural disulfide bonds, although certain cytoplasmic enzymes form such bonds as part of their catalytic cycles. The disulfide bonds in these latter enzymes are reduced in Escherichia coli by two systems; the thioredoxin pathway and the glutathione/glutaredoxin pathway. However, structural disulfide bonds can form in proteins in the cytoplasm when the gene (trxB) for the enzyme thioredoxin reductase is inactivated by mutation. This disulfide bond formation can be detected by assessing the state of the normally periplasmic enzyme alkaline phosphatase (AP) when it is localized to the cytoplasm. Here we show that the formation of disulfide bonds in cytoplasmic AP in the trxB mutant is dependent on the presence of two thioredoxins in the cell, thioredoxins 1 and 2, the products of the genes trxA and trxC, respectively. Our evidence supports a model in which the oxidized forms of these thioredoxins directly catalyze disulfide bond formation in cytoplasmic AP, a reversal of their normal role. In addition, we show that the recently discovered thioredoxin 2 can perform many of the roles of thioredoxin 1 in vivo, and thus is able to reduce certain essential cytoplasmic enzymes. Our results suggest that the three most effective cytoplasmic disulfide-reducing proteins are thioredoxin 1, thioredoxin 2 and glutaredoxin 1; expression of any one of these is sufficient to support aerobic growth. Our results help to explain how the reducing environment in the cytoplasm is maintained so that disulfide bonds do not normally occur.  相似文献   

12.
Peroxiredoxins (Prxs) are ubiquitous thiol-dependent peroxidases capable of eliminating a variety of peroxides through reactive catalytic cysteines, which are regenerated by reducing systems. Based on amino acid sequences and their mode of catalysis, five groups of thiol peroxidases have been distinguished in plants, and type II Prx is one of them with representatives in many sub-cellular compartments. The mature form of poplar chloroplastic Prx IIE was expressed as a recombinant protein in Escherichia coli . The protein is able to reduce H2O2 and tert-butyl hydroperoxide and is regenerated by both glutaredoxin (Grx) and thioredoxin (Trx) systems. Nevertheless, compared with Trxs, Grxs, and more especially chloroplastic Grx S12, are far more efficient reductants towards Prx IIE. The expression of Prx IIE at both the mRNA and protein levels as a function of organ type and abiotic stress conditions was investigated. Western blot analysis revealed that Prx IIE gene is constitutively expressed in Arabidopsis thaliana , mostly in young and mature leaves and in flowers. Under photo-oxidative treatment and water deficit, almost no change was observed in the abundance of Prx IIE in A.   thaliana , while the level of Prx Q (one of the two other chloroplastic Prxs with 2-Cys Prx) increased in response to both stresses, indicating that plastidic members of the Prx family exhibit specific patterns of expression under stress.  相似文献   

13.
14.
15.

Redox regulation of chloroplast proteins is necessary to adjust photosynthetic performance with changes in light. The thioredoxin (Trx) system plays a central role in this process. Chloroplast-localized classical Trx is a small redox-active protein that regulates many target proteins by reducing their disulfide bonds in a light-dependent manner. Arabidopsis thaliana mutants lacking f-type Trx (trx f1f2) or m-type Trx (trx m124-2) have been reported to show delayed reduction of Calvin cycle enzymes. As a result, the trx m124-2 mutant exhibits growth defects. Here, we characterized a quintuple mutant lacking both Trx f and Trx m to investigate the functional complementarity of Trx f and Trx m. The trx f1f2 m124-2 quintuple mutant was newly obtained by crossing, and is analyzed here for the first time. The growth defects of the trx m124-2 mutant were not enhanced by the lack of Trx f. In contrast, deficiencies of both Trxs additively suppressed the reduction of Calvin cycle enzymes, resulting in a further delay in the initiation of photosynthesis. Trx f appeared to be necessary for the rapid activation of the Calvin cycle during the early induction of photosynthesis. To perform effective photosynthesis, plants seem to use both Trxs in a coordinated manner to activate carbon fixation reactions. In contrast, the PROTON GRADIENT REGULATION 5 (PGR5)-dependent cyclic electron transport around photosystem I was regulated by Trx m, but not by Trx f. Lack of Trx f did not affect the activity and regulation of the PGR5-dependent pathway. Trx f may have a higher specificity for target proteins, whereas Trx m has a variety of target proteins to regulate overall photosynthesis and other metabolic reactions in the chloroplasts.

  相似文献   

16.
Natural resistance associated macrophage proteins (NRAMPs) are evolutionarily conserved metal transporters involved in the transport of essential and nonessential metals in plants. Fifty protein interactors of a Brassica juncea NRAMP protein was identified by a Split-Ubiquitin Yeast-Two-Hybrid screen. The interactors were predicted to function as components of stress response, signaling, development, RNA binding and processing. BjNRAMP4.1 interactors were particularly enriched in proteins taking part in photosynthetic or light regulated processes, or proteins predicted to be localized in plastid/chloroplast. Further, many interactors also had a suggested role in cellular redox regulation. Among these, the interaction of a photosynthesis-related thioredoxin, homologous to Arabidopsis HCF164 (High-chlorophyll fluorescence164) was studied in detail. Homology modeling of BjNRAMP4.1 suggested that it could be redox regulated by BjHCF164. In yeast, the interaction between the two proteins was found to increase in response to metal deficiency; Mn excess and exogenous thiol. Excess Mn also increased the interaction in planta and led to greater accumulation of the complex at the root apoplast. Network analysis of Arabidopsis homologs of BjNRAMP4.1 interactors showed enrichment of many protein components, central to chloroplastic/cellular ROS signaling. BjNRAMP4.1 interacted with BjHCF164 at the root membrane and also in the chloroplast in accordance with its proposed function related to photosynthesis, indicating that this interaction occurred at different sub-cellular locations depending on the tissue. This may serve as a link between metal homeostasis and chloroplastic/cellular ROS through protein–protein interaction.  相似文献   

17.
Reduced glutathione (GSH) is critical for many cellular processes, and both its intracellular and extracellular concentrations are tightly regulated. Intracellular GSH levels are regulated by two main mechanisms: by adjusting the rates of synthesis and of export from cells. Some of the proteins responsible for GSH export from mammalian cells have recently been identified, and there is increasing evidence that these GSH exporters are multispecific and multifunctional, regulating a number of key biological processes. In particular, some of the multidrug resistance-associated proteins (Mrp/Abcc) appear to mediate GSH export and homeostasis. The Mrp proteins mediate not only GSH efflux, but they also export oxidized glutathione derivatives (e.g., glutathione disulfide (GSSG), S-nitrosoglutathione (GS-NO), and glutathione-metal complexes), as well as other glutathione S-conjugates. The ability to export both GSH and oxidized derivatives of GSH, endows these transporters with the capacity to directly regulate the cellular thiol-redox status, and therefore the ability to influence many key signaling and biochemical pathways. Among the many processes that are influenced by the GSH transporters are apoptosis, cell proliferation, and cell differentiation. This report summarizes the evidence that Mrps contribute to the regulation of cellular GSH levels and the thiol-redox state, and thus to the many biochemical processes that are influenced by this tripeptide.  相似文献   

18.
The plant plastidial thioredoxins (Trx) are involved in the light-dependent regulation of many enzymatic activities, owing to their thiol-disulfide interchange activity. Three different types of plastidial Trx have been identified and characterized so far: the m-, f-, and x-types. Recently, a new putative plastidial type, the y-type, was found. In this work the two isoforms of Trx y encoded by the nuclear genome of Arabidopsis (Arabidopsis thaliana) were characterized. The plastidial targeting of Trx y has been established by the expression of a TrxGFP fusion protein. Then both isoforms were produced as recombinant proteins in their putative mature forms and purified to characterize them by a biochemical approach. Their ability to activate two plastidial light-regulated enzymes, NADP-malate dehydrogenase (NADP-MDH) and fructose-1,6-bisphosphatase, was tested. Both Trx y were poor activators of fructose-1,6-bisphosphatase and NADP-MDH; however, a detailed study of the activation of NADP-MDH using site-directed mutants of its regulatory cysteines suggested that Trx y was able to reduce the less negative regulatory disulfide but not the more negative regulatory disulfide. This property probably results from the fact that Trx y has a less negative redox midpoint potential (-337 mV at pH 7.9) than thioredoxins f and m. The y-type Trxs were also the best substrate for the plastidial peroxiredoxin Q. Gene expression analysis showed that Trx y2 was mainly expressed in leaves and induced by light, whereas Trx y1 was mainly expressed in nonphotosynthetic organs, especially in seeds at a stage of major accumulation of storage lipids.  相似文献   

19.
20.
The eukaryotic processes of nucleosome assembly and disassembly govern chromatin dynamics, in which histones exchange in a highly regulated manner to promote genome accessibility for all DNA-dependent processes. This regulation is partly carried out by histone chaperones, which serve multifaceted roles in co-ordinating the interactions of histone proteins with modification enzymes, nucleosome remodellers, other histone chaperones and nucleosomal DNA. The molecular details of the processes by which histone chaperones promote delivery of histones among their many functional partners are still largely undefined, but promise to offer insights into epigenome maintenance. In the present paper, we review recent findings on the histone chaperone interactions that guide the assembly of histones H3 and H4 into chromatin. This evidence supports the concepts of histone post-translational modifications and specific histone chaperone interactions as guiding principles for histone H3/H4 transactions during chromatin assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号