首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background  

Multiclass classification of microarray data samples with a reduced number of genes is a rich and challenging problem in Bioinformatics research. The problem gets harder as the number of classes is increased. In addition, the performance of most classifiers is tightly linked to the effectiveness of mandatory gene selection methods. Critical to gene selection is the availability of estimates about the maximum number of genes that can be handled by any classification algorithm. Lack of such estimates may lead to either computationally demanding explorations of a search space with thousands of dimensions or classification models based on gene sets of unrestricted size. In the former case, unbiased but possibly overfitted classification models may arise. In the latter case, biased classification models unable to support statistically significant findings may be obtained.  相似文献   

2.
The pathway for novel lead drug discovery has many major deficiencies, the most significant of which is the immense size of small molecule diversity space. Methods that increase the search efficiency and/or reduce the size of the search space, increase the rate at which useful lead compounds are identified. Artificial neural networks optimized via evolutionary computation provide a cost and time-effective solution to this problem. Here, we present results that suggest preclustering of small molecules prior to neural network optimization is useful for generating models of quantitative structure-activity relationships for a set of HIV inhibitors. Using these methods, it is possible to prescreen compounds to separate active from inactive compounds or even actives and mildly active compounds from inactive compounds with high predictive accuracy while simultaneously reducing the feature space. It is also possible to identify "human interpretable" features from the best models that can be used for proposal and synthesis of new compounds in order to optimize potency and specificity.  相似文献   

3.
Phylogenetic analyses of large data sets pose special challenges, including the apparent tendency for the bootstrap support for a clade to decline with increased taxon sampling of that clade. We document this decline in data sets with increasing numbers of taxa in Astragalus, the most species-rich angiosperm genus. Support for one subclade, Neo-Astragalus, declined monotonically with increased sampling of taxa inside Neo-Astragalus, irrespective of whether parsimony or neighbor-joining methods were used or of which particular heuristic search algorithm was used (although more stringent algorithms tended to yield higher support). Three possible explanations for this decline were examined, including (1) mistaken assignment of the most recent common ancestor of the taxon sample (and its bootstrap support) with the most recent common ancestor of the clade from which it was sampled; (2) computational limitations of heuristic search strategies; and (3) statistical bias in bootstrap proportions, especially that from random homoplasy distributed among taxa. The best explanation appears to be (3), although computational shortcomings (2) may explain some of the problem. The bootstrap proportion, as currently used in phylogenetic analysis, does not accurately capture the classical notion of confidence assessments on the null hypothesis of nonmonophyly, especially in large data sets. More accurate assessments of confidence as type I error levels (relying on iterated bootstrap methods) remove most of the monotonic decline in confidence with increasing numbers of taxa.  相似文献   

4.
Ensemble clustering methods have become increasingly important to ease the task of choosing the most appropriate cluster algorithm for a particular data analysis problem. The consensus clustering (CC) algorithm is a recognized ensemble clustering method that uses an artificial intelligence technique to optimize a fitness function. We formally prove the existence of a subspace of the search space for CC, which contains all solutions of maximal fitness and suggests two greedy algorithms to search this subspace. We evaluate the algorithms on two gene expression data sets and one synthetic data set, and compare the result with the results of other ensemble clustering approaches.  相似文献   

5.
In animals, competition for space and resources often results in territorial behaviour. The size of a territory is an important correlate of fitness and is primarily determined by the spatial distribution of resources and by interactions between competing individuals. Both of these determinants, alone or in interaction, could lead to spatial non-independence of territory size (i.e. spatial autocorrelation). We investigated the presence and magnitude of spatial autocorrelation (SAC) in territory size using Monte Carlo simulations of the most widely used territory measures. We found significant positive SAC in a wide array of competition-simulated conditions. A meta-analysis of territory size data showed that SAC is also a feature of territories mapped based on behavioural observations. Our results strongly suggest that SAC is an intrinsic trait of any territory measure. Hence, we recommend that appropriate statistical methods should be employed for the analysis of data sets where territory size is either a dependent or an explanatory variable.  相似文献   

6.
Yang X  Belin TR  Boscardin WJ 《Biometrics》2005,61(2):498-506
Across multiply imputed data sets, variable selection methods such as stepwise regression and other criterion-based strategies that include or exclude particular variables typically result in models with different selected predictors, thus presenting a problem for combining the results from separate complete-data analyses. Here, drawing on a Bayesian framework, we propose two alternative strategies to address the problem of choosing among linear regression models when there are missing covariates. One approach, which we call "impute, then select" (ITS) involves initially performing multiple imputation and then applying Bayesian variable selection to the multiply imputed data sets. A second strategy is to conduct Bayesian variable selection and missing data imputation simultaneously within one Gibbs sampling process, which we call "simultaneously impute and select" (SIAS). The methods are implemented and evaluated using the Bayesian procedure known as stochastic search variable selection for multivariate normal data sets, but both strategies offer general frameworks within which different Bayesian variable selection algorithms could be used for other types of data sets. A study of mental health services utilization among children in foster care programs is used to illustrate the techniques. Simulation studies show that both ITS and SIAS outperform complete-case analysis with stepwise variable selection and that SIAS slightly outperforms ITS.  相似文献   

7.
Temporal modeling and analysis and more specifically, temporal ordering are very important problems within the fields of bioinformatics and computational biology, as the temporal analysis of the events characterizing a certain biological process could provide significant insights into its development and progression. Particularly, in the case of cancer, understanding the dynamics and the evolution of this disease could lead to better methods for prediction and treatment. In this paper we tackle, from a computational perspective, the temporal ordering problem, which refers to constructing a sorted collection of multi-dimensional biological data, collection that reflects an accurate temporal evolution of biological systems. We introduce a novel approach, based on reinforcement learning, more precisely, on Q-learning, for the biological temporal ordering problem. The experimental evaluation is performed using several DNA microarray data sets, two of which contain cancer gene expression data. The obtained solutions are correlated either to the given correct ordering (in the cases where this is provided for validation), or to the overall survival time of the patients (in the case of the cancer data sets), thus confirming a good performance of the proposed model and indicating the potential of our proposal.  相似文献   

8.
Determining the structure of data without prior knowledge of the number of clusters or any information about their composition is a problem of interest in many fields, such as image analysis, astrophysics, biology, etc. Partitioning a set of n patterns in a p-dimensional feature space must be done such that those in a given cluster are more similar to each other than the rest. As there are approximately Kn/K! possible ways of partitioning the patterns among K clusters, finding the best solution is very hard when n is large. The search space is increased when we have no a priori number of partitions. Although the self-organizing feature map (SOM) can be used to visualize clusters, the automation of knowledge discovery by SOM is a difficult task. This paper proposes region-based image processing methods to post-processing the U-matrix obtained after the unsupervised learning performed by SOM. Mathematical morphology is applied to identify regions of neurons that are similar. The number of regions and their labels are automatically found and they are related to the number of clusters in a multivariate data set. New data can be classified by labeling it according to the best match neuron. Simulations using data sets drawn from finite mixtures of p-variate normal densities are presented as well as related advantages and drawbacks of the method.  相似文献   

9.
Zhang X  Huang S  Sun W  Wang W 《Genetics》2012,190(4):1511-1520
Genome-wide expression quantitative trait loci (eQTL) studies have emerged as a powerful tool to understand the genetic basis of gene expression and complex traits. In a typical eQTL study, the huge number of genetic markers and expression traits and their complicated correlations present a challenging multiple-testing correction problem. The resampling-based test using permutation or bootstrap procedures is a standard approach to address the multiple-testing problem in eQTL studies. A brute force application of the resampling-based test to large-scale eQTL data sets is often computationally infeasible. Several computationally efficient methods have been proposed to calculate approximate resampling-based P-values. However, these methods rely on certain assumptions about the correlation structure of the genetic markers, which may not be valid for certain studies. We propose a novel algorithm, rapid and exact multiple testing correction by resampling (REM), to address this challenge. REM calculates the exact resampling-based P-values in a computationally efficient manner. The computational advantage of REM lies in its strategy of pruning the search space by skipping genetic markers whose upper bounds on test statistics are small. REM does not rely on any assumption about the correlation structure of the genetic markers. It can be applied to a variety of resampling-based multiple-testing correction methods including permutation and bootstrap methods. We evaluate REM on three eQTL data sets (yeast, inbred mouse, and human rare variants) and show that it achieves accurate resampling-based P-value estimation with much less computational cost than existing methods. The software is available at http://csbio.unc.edu/eQTL.  相似文献   

10.
Phylogenetic methods for the analysis of species data are widely used in evolutionary studies. However, preliminary data transformations and data reduction procedures (such as a size‐correction and principal components analysis, PCA) are often performed without first correcting for nonindependence among the observations for species. In the present short comment and attached R and MATLAB code, I provide an overview of statistically correct procedures for phylogenetic size‐correction and PCA. I also show that ignoring phylogeny in preliminary transformations can result in significantly elevated variance and type I error in our statistical estimators, even if subsequent analysis of the transformed data is performed using phylogenetic methods. This means that ignoring phylogeny during preliminary data transformations can possibly lead to spurious results in phylogenetic statistical analyses of species data.  相似文献   

11.
Relaxation dispersion spectroscopy is one of the most widely used techniques for the analysis of protein dynamics. To obtain a detailed understanding of the protein function from the view point of dynamics, it is essential to fit relaxation dispersion data accurately. The grid search method is commonly used for relaxation dispersion curve fits, but it does not always find the global minimum that provides the best-fit parameter set. Also, the fitting quality does not always improve with increase of the grid size although the computational time becomes longer. This is because relaxation dispersion curve fitting suffers from a local minimum problem, which is a general problem in non-linear least squares curve fitting. Therefore, in order to fit relaxation dispersion data rapidly and accurately, we developed a new fitting program called GLOVE that minimizes global and local parameters alternately, and incorporates a Monte-Carlo minimization method that enables fitting parameters to pass through local minima with low computational cost. GLOVE also implements a random search method, which sets up initial parameter values randomly within user-defined ranges. We demonstrate here that the combined use of the three methods can find the global minimum more rapidly and more accurately than grid search alone.  相似文献   

12.
Many of the steps in phylogenetic reconstruction can be confounded by “rogue” taxa—taxa that cannot be placed with assurance anywhere within the tree, indeed, whose location within the tree varies with almost any choice of algorithm or parameters. Phylogenetic consensus methods, in particular, are known to suffer from this problem. In this paper, we provide a novel framework to define and identify rogue taxa. In this framework, we formulate a bicriterion optimization problem, the relative information criterion, that models the net increase in useful information present in the consensus tree when certain taxa are removed from the input data. We also provide an effective greedy heuristic to identify a subset of rogue taxa and use this heuristic in a series of experiments, with both pathological examples from the literature and a collection of large biological data sets. As the presence of rogue taxa in a set of bootstrap replicates can lead to deceivingly poor support values, we propose a procedure to recompute support values in light of the rogue taxa identified by our algorithm; applying this procedure to our biological data sets caused a large number of edges to move from “unsupported” to “supported” status, indicating that many existing phylogenies should be recomputed and reevaluated to reduce any inaccuracies introduced by rogue taxa. We also discuss the implementation issues encountered while integrating our algorithm into RAxML v7.2.7, particularly those dealing with scaling up the analyses. This integration enables practitioners to benefit from our algorithm in the analysis of very large data sets (up to 2,500 taxa and 10,000 trees, although we present the results of even larger analyses).  相似文献   

13.
Phylogenetic comparative methods may fail to produce meaningful results when either the underlying model is inappropriate or the data contain insufficient information to inform the inference. The ability to measure the statistical power of these methods has become crucial to ensure that data quantity keeps pace with growing model complexity. Through simulations, we show that commonly applied model choice methods based on information criteria can have remarkably high error rates; this can be a problem because methods to estimate the uncertainty or power are not widely known or applied. Furthermore, the power of comparative methods can depend significantly on the structure of the data. We describe a Monte Carlo-based method which addresses both of these challenges, and show how this approach both quantifies and substantially reduces errors relative to information criteria. The method also produces meaningful confidence intervals for model parameters. We illustrate how the power to distinguish different models, such as varying levels of selection, varies both with number of taxa and structure of the phylogeny. We provide an open-source implementation in the pmc ("Phylogenetic Monte Carlo") package for the R programming language. We hope such power analysis becomes a routine part of model comparison in comparative methods.  相似文献   

14.
Haplotype information plays an important role in many genetic analyses. However, the identification of haplotypes based on sequencing methods is both expensive and time consuming. Current sequencing methods are only efficient to determine conflated data of haplotypes, that is, genotypes. This raises the need to develop computational methods to infer haplotypes from genotypes.Haplotype inference by pure parsimony is an NP-hard problem and still remains a challenging task in bioinformatics. In this paper, we propose an efficient ant colony optimization (ACO) heuristic method, named ACOHAP, to solve the problem. The main idea is based on the construction of a binary tree structure through which ants can travel and resolve conflated data of all haplotypes from site to site. Experiments with both small and large data sets show that ACOHAP outperforms other state-of-the-art heuristic methods. ACOHAP is as good as the currently best exact method, RPoly, on small data sets. However, it is much better than RPoly on large data sets. These results demonstrate the efficiency of the ACOHAP algorithm to solve the haplotype inference by pure parsimony problem for both small and large data sets.  相似文献   

15.
This paper describes a novel anytime branch-and-bound or best-first threading search algorithm for gapped block protein sequence-structure alignment with general sequence residue pair interactions. The new algorithm (1) returns a good approximate answer quickly, (2) iteratively improves that answer to the global optimum if allowed more time, (3) eventually produces a proof that the final answer found is indeed the global optimum, and (4) always terminates correctly within a bounded number of steps if allowed sufficient space and time. It runs in polynomial space, which is asymptotically dominated by the theta(m2?2) space required by the lower bound computation. Using previously published data sets and the Bryant-Lawrence (1993) objective function, the algorithm found the true (proven) global optimum in less than 5 min in all search spaces size 10(25) or smaller (sequences to 478 residues), and a putative (not guaranteed) optimum in less than 5 hr in all search spaces size 10(60) or smaller (sequences to 793 residues, cores to 42 secondary structure segments). The threading in the largest case studied was eventually proven to be globally optimal; the corresponding search speed in that case was the equivalent of 1.5 x 10(56) threadings/sec, a speed-up exceeding 10(25) over previously published batch branch-and-bound speeds, and exceeding 10(50) over previously published exhaustive search speeds, using the same objective function and threading paradigm. Implementation-independent measures of search efficiency are defined for equivalent branching factor, depth, and probability of success per draw; empirical data on these measures are given. The general approach should apply to other alignment methodologies and search methods that use a divide-and-conquer strategy.  相似文献   

16.
Until recently, numerous feature selection techniques have been proposed and found wide applications in genomics and proteomics. For instance, feature/gene selection has proven to be useful for biomarker discovery from microarray and mass spectrometry data. While supervised feature selection has been explored extensively, there are only a few unsupervised methods that can be applied to exploratory data analysis. In this paper, we address the problem of unsupervised feature selection. First, we extend Laplacian linear discriminant analysis (LLDA) to unsupervised cases. Second, we propose a novel algorithm for computing LLDA, which is efficient in the case of high dimensionality and small sample size as in microarray data. Finally, an unsupervised feature selection method, called LLDA-based Recursive Feature Elimination (LLDA-RFE), is proposed. We apply LLDA-RFE to several public data sets of cancer microarrays and compare its performance with those of Laplacian score and SVD-entropy, two state-of-the-art unsupervised methods, and with that of Fisher score, a supervised filter method. Our results demonstrate that LLDA-RFE outperforms Laplacian score and shows favorable performance against SVD-entropy. It performs even better than Fisher score for some of the data sets, despite the fact that LLDA-RFE is fully unsupervised.  相似文献   

17.
18.
19.
The problem of ascertainment in segregation analysis arises when families are selected for study through ascertainment of affected individuals. In this case, ascertainment must be corrected for in data analysis. However, methods for ascertainment correction are not available for many common sampling schemes, e.g., sequential sampling of extended pedigrees (except in the case of "single" selection). Concerns about whether ascertainment correction is even required for large pedigrees, about whether and how multiple probands in the same pedigree can be taken into account properly, and about how to apply sequential sampling strategies have occupied many investigators in recent years. We address these concerns by reconsidering a central issue, namely, how to handle pedigree structure (including size). We introduce a new distinction, between sampling in such a way that observed pedigree structure does not depend on which pedigree members are probands (proband-independent [PI] sampling) and sampling in such a way that observed pedigree structure does depend on who are the probands (proband-dependent [PD] sampling). This distinction corresponds roughly (but not exactly) to the distinction between fixed-structure and sequential sampling. We show that conditioning on observed pedigree structure in ascertained data sets obtained under PD sampling is not in general correct (with the exception of "single" selection), while PI sampling of pedigree structures larger than simple sibships is generally not possible. Yet, in practice one has little choice but to condition on observed pedigree structure. We conclude that the problem of genetic modeling in ascertained data sets is, in most situations, literally intractable. We recommend that future efforts focus on the development of robust approximate approaches to the problem.  相似文献   

20.
We investigated protein sequence/structure correlation by constructing a space of protein sequences, based on methods developed previously for constructing a space of protein structures. The space is constructed by using a representation of the amino acids as vectors of 10 property factors that encode almost all of their physical properties. Each sequence is represented by a distribution of overlapping sequence fragments. A distance between any two sequences can be calculated. By attaching a weight to each factor, intersequence distances can be varied. We optimize the correlation between corresponding distances in the sequence and structure spaces. The optimal correlation between the sequence and structure spaces is significantly better than that which results from correlating randomly generated sequences, having the overall composition of the data base, with the structure space. However, sets of randomly generated sequences, each of which approximates the composition of the real sequence it replaces, produce correlations with the structure space that are as good as that observed for the actual protein sequences. A connection is proposed with previous studies of the protein folding code. It is shown that the most important property factors for the correlation of the sequence and structure spaces are related to helix/bend preference, side chain bulk, and beta-structure preference.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号