首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Predation by small mammals is thought to be one of the main regulators of outbreaking sawfly species. It has been suggested that predation may be lower in poor and dryish forests, and this is the reason why outbreaks often begin from this type of environment. We studied experimentally how fertility of the forest site affects cocoon predation experienced by two sawfly species, the common pine sawfly Diprion pini (Linnaeus) and the European pine sawfly Neodiprion sertifer (Geoffroy). We applied a fertilization treatment to selected pine-dominated barren forest sites in Finland, and 2–4 years later monitored predation on the sawfly cocoons in fertilized and control areas. The results did not support the idea that forest fertility was related to cocoon predation. We also could not verify that small mammal abundance was related to fertility of the forest. The most obvious pattern we observed was that the two sawfly species differed dramatically in predation experienced. N. sertifer has its cocoon phase in mid-summer and experienced only moderate predation (37%) whereas D. pini, with its cocoon phase in autumn, suffered from very heavy predation (96%). Our observations suggest that if predation is important in controlling the population dynamics of the species, its impact depends more on the sawfly species and season than on the fertility of the forest site. Received: 1 March 1998 / Accepted: 25 May 1998  相似文献   

2.
Predation of tree seeds can be a major factor structuring plant communities. We present a three year study on tree seed survival on experimental dishes in an old‐growth forest in central Europe in Austria. We addressed species specific, spatial and temporal aspects of post‐dispersal seed predation. Seeds of Norway spruce Picea abies, European beech Fagus sylvatica, and silver fir Abies alba were exposed on dishes in different types of exclosures which allowed access only to specific guilds of seed predators. Removal experiments were carried out in two old‐growth forests and a managed forest (macro‐sites), including micro‐sites with and without cover of ground vegetation. We conducted the experiment in three consecutive years with a mast year of beech and spruce before the first year of the study. The seed removal experiments were combined with live trapping of small mammals being potential seed predators. Our experiments showed a distinctly different impact of different predator guilds on seed survival on the dishes with highest removal rates of seeds from dishes accessible for small mammals. We observed differing preferences of small mammals for the different tree species. Seed survival in different macro‐ and micro‐habitats were highly variable with lower seed survival in old growth forests. In contrast to our assumption, and in contrast to the satiation hypothesis which assumes higher seed survival in and directly after mast years, seed survival was lower in the year following the mast year of beech when a population peak of small mammals occurred and higher in intermast periods when subsequently small mammal population crashed. This suggests a higher importance of sporadic masting shortly after mast years in intermast periods for establishment of forest trees provided that pollination efficiency is high enough in such years. Combined with the high seed mortality observed after the mast year, this corroborates the important role of seed predation for forest dynamics. An altered synchrony or asynchrony of masting of different tree species and changed masting frequencies through climate change may thus lead to strong and non‐linear effects on forest dynamics.  相似文献   

3.

Many mammalian species decline on forest sites that are harvested by clearcutting because of a loss of food, cover, and other components of stand structure. Small mustelids are impacted negatively as is the southern red-backed vole (Myodes gapperi), a principal prey species, that disappears from clearcuts within a year of harvest. These effects may be potentially ameliorated by aggregated retention harvests that leave unlogged patches on clearcuts. We tested three hypotheses (H) that (H1) abundance, reproduction, and survival of M. gapperi populations, (H2) total abundance, species richness, and diversity of the forest-floor small mammal community, and (H3) the presence of small mustelids would be greater in large than small patches of retention forest on new clearcuts. We measured demographic responses of M. gapperi, total small mammals, and the presence of small mustelids (American marten, Martes americana, and small weasels (Mustela spp.)) from 2014 to 2016 in replicated treatments of four sizes (ha) of retention patches (means of 0.53, 1.50, 4.13, and 18.73) near Elkhart in south-central British Columbia, Canada. Mean abundance, reproduction, and survival attributes of M. gapperi were similar among treatment sites over the 3-year study. Overall mean abundance ranged from 3.5 to 5.3 voles per line in patches while this microtine was extirpated on clearcut sites (i.e., no forest patches). The similarity in population dynamics among the various forest patches across a gradient of increasing patch size of 4.5 to 35.3 times did not support H1. Mean abundance, species richness, and diversity of total forest-floor small mammals were similar among treatment sites, and hence did not support H2. Although not formally significant, mean species diversity did show a consistent increase from the largest (0.82) to the smallest (1.11) patch size, owing primarily to the presence of several generalist species such as Neotamias amoenus, Microtus, and Sorex in nearby early successional habitat. Small mustelids were present at similar levels among patch sizes, presumably in response to abundance of small mammal prey, and hence did not support H3. Although our results were relatively short-term, the detailed assessment of population dynamics of M. gapperi indicated that habitat quality was sufficient to maintain this species regardless of patch sizes, ranging from 0.3 to 20.0 ha. Similarly, the total forest-floor small mammal community and presence of small mustelids also followed this pattern. All sizes of forest patches have conservation value and will help to maintain abundance and diversity of forest mammals, both predator and prey species, on clearcuts. Longer-term studies (e.g., at 5- to 10-year intervals) are essential to determine if our results are sustainable in augmenting forest restoration.

  相似文献   

4.
Aim The effects of logging and habitat degradation on the richness and abundance of small mammals in Asian rain forests are largely unknown. This work compares the species richness, dominance and evenness of small non‐volant mammals between logged and unlogged forests, and assesses whether assemblage variability (β‐diversity) is similar between forest types. Location Southeast Asia, northern Borneo (Sabah, Malaysia), Sunda‐shelf. Methods We surveyed species‐rich assemblages of small non‐volant mammals in three unlogged and three logged forests for 2 years. At each forest site, we sampled a permanently marked transect and two additional sites in three trapping sessions. All analyses were performed at both levels to include the effects of local abundances and point estimates, separately from the relative abundances of species on a more regional scale. Results We trapped a total of 1218 individuals of 28 species. Eleven common species accounted for 95% of all captures. Species richness and diversity were significantly higher in unlogged forest (27 species) than in logged forest (17 species). This was mainly attributable to the smaller number of rarely recorded species in logged forest (five compared with 16 in unlogged forest, with a total of fewer than 10 captures). However, all common species were present in both logged and unlogged forests, and our analyses revealed similar patterns of dominance, evenness and fluctuations in abundance. Hence overall assemblage composition in multivariate space did not differ greatly between forest types. Assemblages of Muridae and Tupaiidae showed similar population fluctuations in space and time, indicating that the ecology of these taxa may be partially driven by the same environmental factors. Main conclusions Although species were distributed patchily within sites, analyses at local and regional scales revealed similar patterns in diversity and assemblage variability, suggesting that effects of forest modification did not differ extensively locally and regionally, but had a profound effect on rare species. Our results emphasize the importance and conservation value of logged forest stands that are able to hold a large proportion of the small mammals also found in unlogged forests. Rare and more specialized species are more vulnerable to forest degradation than commonly caught species, resulting in the complete loss, or a decrease in numbers, of certain groups, such as arboreal small mammals and Viverridae.  相似文献   

5.
The data on long-term studies (1998–2004) of the population density of preimaginal stages of the taiga tick Ixodes persulcatus Schulze, 1930 collected from small mammals in deforested areas (foresting during 7, 12, and 25 years after forest cutting) in the middle taiga zone of Karelia are given. The lowest population density of I. persulcatus was observed in the most recently deforested area. The territory where forestation lasted for 25 years after deforestation was the most favorable biotope for the taiga tick development. Deforested areas, in comparison with secondary forests, are characterized by significantly higher population density of preimaginal stages of ixodid ticks; this phenomenon is determined first of all by the high population density of small mammals.  相似文献   

6.
<正>小型兽类包括食虫目(Insectivora)、啮齿目(Rodentia)、翼手目(Chiroptera)、兔形目(Lagomorpha)等,物种数量多,分布广,适应能力强,对环境变化敏感,因此其群落组成和种群数量变化可较好地反映生境变化的质量和人类活动的干扰程度(肖治术等,2002;李俊生等,2003;仝磊和路纪琪,2010)。小型兽类多样性一直是生物多样性和生态环境监测与评价的重要指示类群之一(周立志和马勇,2002)。统计动物毛发、粪便、巢穴、叫声、足迹等动物痕迹以及直接观察等方法已被广泛用于兽类物种监测和种群密度估计(Eberhardt and Van Etten,1956;Bider,1968;Gannon  相似文献   

7.
Questions: Do small rocky outcrops favor forest plant colonization and establishment in grasslands? If so, what are the potential mechanisms involved in this process? Location: Araucaria forest and Campos grassland mosaic in southern Brazilian highlands (29°29′S, 50°12′W). Methods: We collected data on the density of forest woody species in plots located on rocky outcrops and in open fields subject to different management regimes. We evaluated the influence of outcrops on the density of forest plants ≤60‐cm tall, and the effects of other environmental variables and of site on plant density; we also used information on diaspore traits of the species to discuss the way in which plants disperse to the outcrops. Results: Rocky outcrops harbored a significantly higher density of forest plants than open fields, irrespective of site effect, and rock height was the best predictor for plant density on outcrops. Diaspores of all recorded species possess characteristics associated with dispersal by birds or mammals or by both. Conclusions: Small rocky outcrops markedly influence forest expansion by acting as perches for vertebrate dispersers and as nurse objects and safe sites for plants. Forest expansion starting in small outcrops possibly occurs as follows: perching of dispersers and increase of seed rain on rocks, promotion of better conditions of establishment for forest plants by nurse rocks, protection of plants sensitive to grazing and fire, and nucleation of forest vegetation.  相似文献   

8.
In 2004 and 2005, we conducted a survey of the small mammals on Mt. Tapulao (=Mt. High Peak, 2037 m) in the Zambales Mountains, Luzon Island, Philippines in order to obtain the first information on the mammals of this newly discovered center of endemism. We also tested two hypotheses regarding the relationship of species richness with elevation and the impact of alien species on native mammals. The survey covered five localities representing habitats from regenerating lowland rain forest at 860 m to mossy rain forest near the peak at 2024 m. We recorded 11 species, including 1 native shrew, 1 alien shrew, 8 native rodents, and 1 alien rodent. Two species of Apomys and one species of Rhynchomys are endemic to Zambales; this establishes the Zambales Mountains as a significant center of mammalian endemism. Species richness of native small mammals increased with elevation, from five species in the lowlands at 925 m to seven species in mossy forest at 2024 m; total relative abundance of native small mammals increased from 925 to 1690 m, then declined at 2024 m. Alien small mammals were restricted to highly disturbed areas. Our results support the prediction that maximum species richness of small mammals would occur in lower mossy forest near the peak, not near the center of the gradient. Our results also support the hypothesis that when a diverse community of native Philippine small mammals is present in either old-growth or disturbed forest habitat, “invasive” alien species are unable to penetrate and maintain significant populations in forest.  相似文献   

9.
Abstract. To evaluate the gap dependency of the subcanopy tree species Styrax obassia, we estimated the demographic parameters of this species in a permanent plot in the Ogawa Forest Reserve, Central Japan, a temperate deciduous forest. From the data collected over eight years, we constructed four transition matrix models of Styrax: a whole population; a shaded subpopulation; a gap-site subpopulation; a compound population of shaded and gap-site subpopulations. The whole-population model suggested that the population structure of Styrax is stable in its present condition. The asymptotic population growth rate of the shaded subpopulation was larger than 1, suggesting that this species can maintain its population even under shaded conditions. The elasticity analyses showed the relative importance of survival of adult individuals that stay mostly under a closed canopy. Since the subpopulation in gaps is very small in a mature forest, the contributions of high seedling survival and high fecundity of adult trees in gaps to the whole population growth were smaller than the survival of adult individuals in the shade. Although we showed that this species has the potential to increase its population in larger disturbances, it actually dominates in the study site where the disturbance scale is relatively small. Styrax should be classified as a typical shade-tolerant species, and it also takes good advantage of small scale disturbance. It can sufficiently maintain its population in a mature forest with small-scale disturbances and has the adaptive characteristics of species that live under a closed canopy.  相似文献   

10.
Disturbance is an integral component in mangrove forest dynamics, influencing forest structure, composition, and function. The impacts of human disturbance, however, threaten mangrove forests throughout the world. Small-scale wood harvesting on the small Pacific island of Kosrae, Federated States of Micronesia, provided an instructive scenario for exploring the dynamics of human disturbance. Natural disturbances on the island are rare, but the growing island population harvests mangrove trees for firewood and construction materials, placing pressure on the forest. In order to determine recent harvest rates, we estimated gap ages by developing a time scale for mangrove wood decomposition and by quantifying growth rates for Rhizophora apiculata and Bruguiera gymnorhiza seedlings. Stump and log decomposition patterns were useful in aging gaps, although some patterns were more reliable than others. Seedlings of both species added approximately 5 nodes/year depending on light conditions. The island-wide harvest rate was 10% over the last 10 years, but the rates varied widely among different parts of the island. Rhizophora apiculata has been harvested preferentially, and a dearth of young trees where harvesting has been heaviest portends a decline of this highly desired species in the forest. Socio-economic data substantiated some but not all of the trends we observed. Even on a small island, local differences in both natural and anthropogenic factors are important to understanding forest dynamics.  相似文献   

11.
We performed a terrestrial small mammal species inventory in the Agoua and Wari‐Maro forest reserves (Benin). Four localities were sampled, and in each locality, three habitats were surveyed: dense forest, open forest or woodland savannah and shrub savannah. This is the first comprehensive inventory for small mammals in central Benin. We captured 794 small mammals representing twenty species (six shrew species, fourteen rodent species). Three new species that need to be described were recorded. We observed a mixture of both true forest species and of species adapted to a wider range of habitats ranging from savannah to forest clearings. Species with either Sudanian or Guinea–Congolian affinities were recorded, as well as a new species endemic to Togo and Benin. This rich biodiversity underlines the urgent need for an effective protection of these forests. The Sudanian species Crocidura cf. foxi was more abundant in Wari‐Maro than in Agoua forest, while the Guineo–Congolian species Praomys misonnei and Hylomyscus sp were only captured in Agoua forest. These results are in agreement with the fact that these two forests belong to two distinct chorological zones.  相似文献   

12.
Long-term assessments of species assemblages are valuable tools for detecting species ecological preferences and their dispersal tracks, as well as for assessing the possible effects of alien species on native communities. Here we report a 50-year-long study on population dynamics of the four species of land flatworms (Platyhelminthes, Tricladida, Terricola) that have colonized or become extinct in a 70-year-old Atlantic Forest regrowth remnant through the period 1955–2006. On the one hand, the two initially most abundant species, which are native to the study site, Notogynaphallia ernesti and Geoplana multicolor have declined over decades and at present do not exist in the forest remnant. The extinction of these species is most likely related with their preference for open vegetation areas, which presently do not exist in the forest remnant. On the other hand, the neotropical Geoplaninae 1 and the exotic Endeavouria septemlineata were detected in the forest only very recently. The long-term study allowed us to conclude that Geoplaninae 1 was introduced into the study area, although it is only known from the study site. Endeavouria septemlineata, an active predator of the exotic giant African snail, is originally known from Hawaii. This land flatworm species was observed repeatedly in Brazilian anthropogenic areas, and this is the first report of the species in relatively well preserved native forest, which may be evidence of an ongoing adaptive process. Monitoring of its geographic spread and its ecological role would be a good practice for preventing potential damaging effects, since it also feeds on native mollusk fauna, as we observed in lab conditions. Júlio Pedroni: Granted by CNPQ–Brazil.  相似文献   

13.
The Janzen–Connell hypothesis proposes that specialized herbivores maintain high numbers of tree species in tropical forests by restricting adult recruitment so that host populations remain at low densities. We tested this prediction for the large timber tree species, Swietenia macrophylla, whose seeds and seedlings are preyed upon by small mammals and a host‐specific moth caterpillar Steniscadia poliophaea, respectively. At a primary forest site, experimental seed additions to gaps – canopy‐disturbed areas that enhance seedling growth into saplings – over three years revealed lower survival and seedling recruitment closer to conspecific trees and in higher basal area neighborhoods, as well as reduced subsequent seedling survival and height growth. When we included these Janzen–Connell effects in a spatially explicit individual‐based population model, the caterpillar's impact was critical to limiting Swietenia's adult tree density, with a > 10‐fold reduction estimated at 300 years. Our research demonstrates the crucial but oft‐ignored linkage between Janzen–Connell effects on offspring and population‐level consequences for a long‐lived, potentially dominant tree species.  相似文献   

14.
Four pine forests (6–10, 11–15, 16–20, and 31–40 year-old) located in the Cangshan Mountain and Erhai Lake National Reserve and 7 pine forests (1–5, 6–10, 11–15, 16–20, 21–30, 31–40, and more than 50 year-old) located in the non-protective area near the national reserve were selected. Three replications of each forest was set and a total of 33 sites were investigated. At each site, we quantified 6 habitat variables (species richness, abundance, and percentage of grasses and shrubs coverage respectively at the bottom layer of forests) within randomly determined 5 m × 5 m areas. One hundred cages were set in five lines at each site to trap small mammals, whose species and numbers were recorded. Dominance of Dremomys pernyi and Callosciurus erythraeus in small mammal communities, time niche breadth, and time niche overlap between the two small mammals were calculated, respectively. Step-wise regression was used to analyze the relationship between small mammals and habitat factors. Our results indicated that D. pernyi occurred earlier than C. erythraeus in protective pine forests. D. pernyi was captured in 6–10 year-old forest initially, and C. erythraeus was captured in 16–20 year-old forest initially. D. pernyi and C. erythraeus were captured in the 31–40 and 21–30 year-old forests initially in the non-protective area, respectively. Populations of D. pernyi and C. erythraeus in the 31–40 year-old protective forests were 3 and 3.75 times of those in the same-aged non-protective forests, respectively. Shrubs significantly influenced the populations of the two small mammals. The population of D. pernyi was positively correlated with the density of shrubs; the population of C. allosciurus erythraeus was positively correlated with the coverage of shrubs, and negatively correlated with the coverage of grasses. D. remomys pernyi and C. allosciurus erythraeus were important for pine forests to scatter pine seeds. Human activities in the nonprotective pine forests decreased the vegetation heterogeneity at the bottom layer of pine forests, postponed the occurrence of D. pernyi and C. erythraeus, and decreased the populations of the two small mammals. __________ Translated from Zoological Research, 2006, 27(1): 29–33 [译自: 动物学 研究]  相似文献   

15.
It is widely believed that only precipitation levels (through increased primary production) determine irruptions of small mammals in semi-arid areas of western South America. Nevertheless, density-dependent factors may also drive population fluctuations. To test statistically these putative effects we analysed 11 years of population records on three sympatric species of small mammals at two different habitat types in north central Chile. We applied the classical diagnostic tools of time series analysis (the autocorrelation function: ACF) to the observed time series of three neotropical small mammals. We also used simple linear autoregressive time series models to reconstruct the endogenous dynamics of these populations. The analysis strongly suggests that population fluctuations of the three species have an important density-dependent component, with the most irruptive species (Phyllotis darwini, Waterhouse 1837) displaying stronger second order population feedbacks than the other two (Akodon olivaceus, Waterhouse 1837 and Thylamys elegans, Waterhouse 1839). The latter two species showed direct density-dependent feedbacks. We hypothesize that the frequent population outbreaks of P. darwini (and perhaps of other species) in semi-arid regions of western South America, may be the result of population-level (direct density- dependence) and community-level processes (delayed density-dependence), interacting with exogenous perturbations (rainfall and associated primary production).  相似文献   

16.
We examined whether the experimental exclusion of large mammalian and small rodent seed predators had differing effects on seedling recruitment under natural seed rain conditions. In both primary and late‐successional secondary forested areas, exclosure experiments using natural seed densities were designed to assess seedling recruitment. To assess the differences in seedling recruitment, we monitored three exclosure treatments (1.2 m radius/1.5 m height) in two forest types (primary vs. late‐successional secondary forest): (1) fenced exclosures that excluded large mammals; (2) fenced exclosures that excluded both large and small mammals; and (3) open controls. Within each exclosure treatment, we marked and identified all seedlings at the beginning of the experiment (February 2001), followed the marked seedlings' fate for a year, and then marked and identified all new seedlings after a year. Two preliminary findings were generated from these data: for some tree species, small rodents and large mammals have differential effects on seedling recruitment, and the effect of excluding mammals did not differ with habitat type (primary vs. late‐successional secondary forest). These preliminary results highlight the need to examine further how the effects of small rodent and large mammal exclusion may affect species‐specific seed predation and seedling recruitment in a variety of habitat/land use types (e.g., primary forest, late‐successional forest, and early‐successional forest).  相似文献   

17.
Predation of annual grass weed seeds in arable field margins   总被引:2,自引:0,他引:2  
Seeds of three species of annual grass weeds (Alopecurus myosuroides, Avena fatua and Bromus sterilis) were placed in field margins around arable fields in a randomised block split-plot design experiment. The field margin vegetation was either sown or naturally regenerated and either cut or uncut. The seeds were either placed in cages designed to exclude small mammals and birds or were uncaged. The proportion of seeds removed was monitored on 10 occasions and mean seed loss was analysed. In general, a greater proportion of weed seeds was removed from uncaged trays in uncut swards, suggesting predation by small mammals, which inhabit tall grass. This effect was mainly due to removal of seeds of the two large-seeded species (A. fatua and B. sterilis), with A. fatua being especially favoured. It is therefore likely that small mammals play a role in the population dynamics of major crop weeds by feeding on their seeds in field margins, especially when these are dense and uncut.  相似文献   

18.
We examined the Zanzibar red colobus' (Procolobus kirkii) social structure and population dynamics in relation to the density, diversity and dispersion of food resources in ground-water forest and agricultural land, which we characterized in terms of red colobus food species density, diversity, basal area and dispersion. We used transect sampling and group follows to describe population dynamics and social systems. Two agricultural areas, SJF Shamba and Pete Village, had higher densities and more uniformly dispersed red colobus food tree species than those of the ground-water forest. Red colobus at these two sites had greater population densities and natality, and smaller home ranges than red colobus in the ground-water forest. However, these findings apply to a very small area of agricultural land (approximately 18 ha) that is contiguous with an area of the forest reserve having a high density of red colobus. It is not representative of agricultural areas elsewhere on Zanzibar which support much lower densities or no red colobus. Although agricultural areas contiguous with the forest reserve had high densities of red colobus, they appear to be very unstable. Within the agricultural areas, we observed higher intergroup variation in group size and composition, study groups that decreased dramatically in size and disappeared from the study site, significantly lower levels of juvenile recruitment, and red colobus food trees that exhibited definite signs of overbrowsing. This apparent instability in the subpopulation of red colobus utilizing agricultural systems probably reflects the lower basal area of food trees and the greater fragmentation of suitable habitat and floristic dynamics due to human activities in these areas. A fusion-fission social system occurred only in the ground-water forest subpopulation, which we hypothesize to be due to highly clumped food resources.  相似文献   

19.
Abstract. To assess the effects of site type, forest initiation periods and fire regimes on the dynamics of Pinus banksiana (Jack pine), the age structure of 69 populations of the species was analyzed. Two landscapes with different fire regimes were selected in the southern part of the Canadian boreal forest in Québec: the ‘mainland landscape’ is characterized by a fire regime of large lethal fires, the ‘island landscape’ is affected by a complex fire regime including lethal and non-lethal fires. Age structure was compared between forest initiation periods and site types (mesic mainland, xeric mainland and xeric island) using the Shannon regularity index. An even-aged population structure was found within the first 100 yr following a lethal fire, while after that period the population structure becomes more uneven-aged. Under mesic conditions, populations tend to have an even-aged structure, under xeric conditions an uneven-aged structure. Natural openings present in xeric sites allow for recruitment in the absence of fire. This permits the self-maintenance of Pinus banksiana. Xeric island populations show more uneven-aged structures than xeric mainland populations. The occurrence of non-lethal fires on the islands creates uneven-aged structures. Further, the results suggest that the selection pressure of the island fire regime, favouring non-serotinous and mixed P. banksiana individuals, is one of the factors responsible for a higher recruitment in the absence of fire on islands than on the mainland.  相似文献   

20.
Urban forests are generally fragmented in small isolated remnants, embedded in an inhospitable human-used matrix, and incur strong anthropogenic pressures (recreational activities, artificialization, pollution and eutrophication). These lead to particularly high constraints even for common forest herbs, whose genetic response may depend on life-history traits and population demographic status. This study investigated genetic variation and structure for 20 allozyme loci in 14 populations of Primula elatior, a self-incompatible long-lived perennial herb, occurring in forest fragments of Brussels urban zone (Belgium), in relation to population size and young plants recruitment rate. Urban populations of P. elatior were not genetically depauperate, but the small populations showed reduced allelic richness. Small populations showing high recruitment rates—and therefore potential rejuvenation—revealed lower genetic diversity (H o and H e) than those with low or no recruitment. No such pattern was observed for the large populations. There was a significant genetic differentiation among populations within forest fragments (F SC = 0.052, P < 0.001), but not between fragments (F CT = 0.002, P > 0.10). These findings suggest restricted gene flow among populations within fragments and local processes (genetic drift, inbreeding) affecting small populations, strengthened when there is recruitment. Urban forest populations of long-lived perennial herbs can be of conservation value. However, restoration of small populations by increasing population size through regeneration by seedling recruitment may lead to negative genetic consequences. Additional management, aiming to restore gene flow among populations, may need to be applied to compensate the loss of genetic diversity and to reduce inbreeding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号