首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Amphipods from the genus Niphargus represent an important part of the Western Palearctic subterranean fauna. The genus is morphologically diverse, comprising several distinct ecomorphs bound to microhabitats in the subterranean environment. The most impressive among them are “lake giants,” a series of massive, large‐bodied species. These range from morphologically distinct to morphologically cryptic taxa. We analysed the taxonomic structure of the Niphargus arbiterNiphargus salonitanus species complex, belonging to “lake giants” from the Dinaric Karst (West Balkans), and assessed their phylogenetic, morphological and ecological diversity. Multilocus phylogeny suggested that the complex is monophyletic and nested within other cave lake ecomorphs. Unilocus and multilocus coalescence species delimitations indicated that the complex totals nine species. These species substantially overlap in morphology and cannot be unambiguously told apart without the use of molecular markers. An analysis of splitting events within a palaeogeological context, and modelling of environmental characteristics on the phylogeny unveiled a complex history of diversification. Part of this diversification might have been influenced by ecological divergence along the altitudinal gradient reaching from the Adriatic coast to inland Dinaric mountain chains and Poljes. Other splits coincide with the marine regression–transgression cycles during Pliocene. We describe Niphargus alpheus sp. n., Niphargus anchialinus sp. n., Niphargus antipodes sp. n., Niphargus arethusa sp. n., Niphargus doli sp. n., Niphargus fjakae sp. n. and Niphargus pincinovae sp. n., and by doing so hope to prompt their further research.  相似文献   

2.
The Middle East is at the southeastern borderline of the range of the subterranean amphipod Niphargus. The review of new and published data identified two new species and set the guidelines for the future research in the area. The genus in this part of the world seems to be insufficiently studied. The taxonomic status of Niphargus valachicus, population identified as N. spoeckeri and some populations, identified as N. nadarini, need to be reviewed. According to present data, we expect the highest diversity in Western Turkey. The eventual new records of the genus in the Middle East can be expected from those areas where even the longest periods of drought in the recent geological history did not affect the water supply.  相似文献   

3.
Temperature tolerances (including lethal limits) and associated rates of thermal acclimation of fish are critical information in predicting fish responses to global climate changes. In this study, a partial sequence of the heat shock protein 70 gene (HSP70) from the fish species Channa striatus was isolated and characterized. Evolutionary process that led to the diversity of HSP70 specific to vertebrates was also analysed. Results revealed that HSP70 is highly homologous in other fish families. The conservation of the HSP 70 gene among fish families could be driven by forces of natural selection due to climatic change. We exposed C. striatus to heat shock (32 °C) and cold shock (16 °C) respectively, in order to examine the differences of temperatures in influencing the expression patterns of HSP70. We revealed that expression of HSP70 was higher at 32 °C than at 16 °C in most of the organs. Specifically, occurrence of chaperone activity of HSP70 was found at low temperature. Therefore, this fish was postulated that to seems to be able to survive at lower temperature compared to higher temperature indicating there is force of natural selection acting towards this HSP 70 gene. This will demonstrate the effect of global warming towards the fish survivability.  相似文献   

4.
Lack of an HSP70 heat shock response in two Antarctic marine invertebrates   总被引:2,自引:0,他引:2  
Members of the HSP70 gene family comprising the inducible (HSP70) genes and GRP78 (glucose-regulated protein 78 kDa) were identified in an Antarctic sea star (Odontaster validus) and an Antarctic gammarid (Paraceradocus gibber). These genes were surveyed for expression levels via Q-PCR after an acute 2-hour heat shock experiment in both animals and a time course assay in O. validus. No significant up-regulation was detected for any of the genes in either of the animals during the acute heat shock. The time course experiment in O. validus produced slightly different results with an initial down regulation in these genes at 2°C, but no significant up-regulation of the genes either at 2 or 6°C. Therefore, the classical heat shock response is absent in both species. The data is discussed in the context of the organisms’ thermal tolerance and the applicability of HSP70 to monitor thermal stress in Antarctic marine organisms.  相似文献   

5.
6.
The cost of living for freshwater fish in a warmer, more polluted world   总被引:1,自引:0,他引:1  
Little of the vast literature on the temperature physiology of freshwater fish is useful in predicting the effects of global warming. In the present review a series of laboratory experiments is reviewed in which rainbow trout (Oncorhynchus mykiss) were exposed to simulated global warming, a 2 °C increment superimposed upon the natural thermal regime, in the presence and absence of two common freshwater pollutants, ammonia and acidity (low pH). Simulated global warming had little effect on the growth and physiology of trout fed to satiation over much of the summer. However, in late summer, when ambient water temperature was at its highest, the addition of 2 °C caused a marked inhibition of appetite and growth, although this impact was not exacerbated by a reduction in food availability. In winter, + 2 °C stimulated metabolism, appetite and growth by approximately 30–60%. Exposure of satiation‐fed trout to low levels of pollutants produced unexpected results. Ammonia (NH3 + NH4+ = 70 μm) stimulated summer growth and energy conversion efficiency, whilst acidification (pH 5.2) increased appetite and growth but caused no disturbance of electrolyte balance. These pollutant effects were additive upon, but not synergistic with, the effects of + 2 °C. The ability of the fish to acclimate to the experimental conditions was tested with acute lethal temperature and/or toxicant challenges. Fish exposed to + 2 °C had a slightly (0.2–1.0 °C) but significantly higher lethal temperature than those exposed to ambient temperature when fed to satiation. However, there was no evidence of acclimation to either ammonia or low pH. It is concluded that the impact of global warming on freshwater fish will vary seasonally. The additional temperature may provide growth benefits in winter, but may threaten fish populations living towards the upper end of their thermal tolerance zone in (late) summer.  相似文献   

7.
The success of any organism depends not only on niche adaptation but also the ability to survive environmental perturbation from homeostasis, a situation generically described as stress. Although species-specific mechanisms to combat “stress” have been described, the production of heat shock proteins (HSPs), such as HSP70, is universally described across all taxa. Members of the HSP70 gene family comprising the constitutive (HSC70) and inducible (HSP70) members, plus GRP78 (glucose-regulated protein, 78 kDa), a related HSP70 family member, were cloned using degenerate polymerase chain reaction (PCR) from two evolutionary divergent Antarctic marine molluscs (Laternula elliptica and Nacella concinna), a bivalve and a gastropod, respectively. The expression of the HSP70 family members was surveyed via quantitative PCR after an acute 2-h heat shock experiment. Both species demonstrated significant up-regulation of HSP70 gene expression in response to increased temperatures. However, the temperature level at which these responses were induced varied with the species (+6–8°C for L. elliptica and +8–10°C for N. concinna) compared to their natural environmental temperature). L. elliptica also showed tissue-specific expression of the genes under study. Previous work on Antarctic fish has shown that they lack the classical heat shock response, with the inducible form of HSP70 being permanently expressed with an expression not further induced under higher temperature regimes. This study shows that this is not the case for other Antarctic animals, with the two molluscs showing an inducible heat shock response, at a level probably set during their temperate evolutionary past.  相似文献   

8.
1. The functional feeding group approach has been widely used to describe the community structure of benthic invertebrates in relation to organic matter resources. Based on this functional framework, positive interactions between feeding groups (especially shredders and collector‐gatherers) were postulated in the River Continuum Concept. However, relationships with organic matter have been poorly documented for invertebrates living in the hyporheic zone. 2. We hypothesised that the common subterranean amphipod Niphargus rhenorhodanensis would feed on fine particulate organic matter (FPOM), which is more abundant than coarse particulate organic matter (CPOM) in hyporheic habitats, and should be favoured by the occurrence of shredders that produce FPOM from CPOM. 3. We used laboratory experiments to quantify leaf litter processing by N. rhenorhodanensis and a common shredder, the surface amphipod Gammarus roeselii. We estimated rates of feeding and assimilation (using nitrogen stable isotopes) of the two species separately and together to reveal any potential shredder–collector facilitation between them. 4. Measured leaf litter mass loss showed that N. rhenorhodanensis did not act as a shredder, unlike G. roeselii. Organic matter dynamics and 15N/14N ratios in tissues of niphargids indicated that N. rhenorhodanensis was a collector‐gatherer feeding preferentially on FPOM. We also found a positive influence of the gammarid shredders on the assimilation rate of N. rhenorhodanensis, which fed on FPOM produced by the shredders, supporting the hypothesis of a positive interaction between surface shredders and hyporheic collector‐gatherers.  相似文献   

9.
Groundwater belongs to the spatially most extensive, but least explored freshwater systems. On a global scale, the species richness of several subterranean invertebrate taxa parallels species richness found in surface waters, while on a local scale species richness hardly exceeds 20 species. This results in a high contribution of groundwater ecosystems to regional β- and γ-diversity, and to a smaller degree to α-diversity, and deserves focused attention. In general, more species are to be found in large cave systems. The second largest cave system in Europe is Hölloch in Switzerland. In this paper we revised the taxonomic, phylogenetic and ecological diversity of the amphipod community in the Hölloch cave system. While previous records listed five geographically widespread species of the genus Niphargus for this cave system, we could not confirm the presence of any of those species, but rather found three highly distinct species new to science. In this paper we describe Niphargus styx sp. nov., Niphargus murimali sp. nov., and Niphargus muotae sp. nov., and suggest that previous records from that cave were probably misidentifications. Although amphipod species richness in this cave system seems to be lower than previously thought in terms of absolute numbers, the cave retained its regional and international importance in terms of nature conservation for multiple reasons. First, all newly described species are probably endemic to this cave system. Second, they are phylogenetically distantly related and exhibit moderate to high phylogenetic diversity. Third, the species, as inferred from their functional morphology, are also ecologically highly divergent. Based on geographic distribution of their nearest relatives, we hypothesize that the cave system was most likely independently colonized from North, West and South and that the pre-adapted ancestors occupied different ecological niches within the system.

http://zoobank.org/urn:lsid:zoobank.org:pub:A19309E5-C06B-4844-A4D8-7571F05F25C9  相似文献   

10.
The temporal dynamics of heat shock protein 70 (HSP70) expression in response to longer‐term acclimation and rapid hardening in the butterfly Lycaena tityrus is investigated. After a 1‐h exposure to 1 °C or 37 °C, HSP70 is quickly up‐regulated within 1 h and down‐regulated within 2 h. The fast dynamic of HSP70 expression is in contrast to the patterns found in organisms inhabiting more stable thermal environments, and is interpreted as an adaptation to the large and rapid temperature variation experienced by flying ectotherms. HSP70 expression is higher in males than in females, as well as in animals reared at 27 °C than at 20 °C, although it is very similar across the high and low induction temperatures. Animals reared at the higher temperature, however, respond less strongly to high‐temperature stress.  相似文献   

11.
Cleaning symbioses play an important role in the health of certain coastal marine communities. These interspecific associations often occur at specific sites (cleaning stations) where a cleaner organism (commonly a fish or shrimp) removes ectoparasites/damaged tissue from a ‘client’ (a larger cooperating fish). At present, the potential impact of climate change on the fitness of cleaner organisms remains unknown. This study investigated the physiological and biochemical responses of tropical (Lysmata amboinensis) and temperate (L. seticaudata) cleaner shrimp to global warming. Specifically, thermal limits (CTMax), metabolic rates, thermal sensitivity, heat shock response (HSR), lipid peroxidation [malondialdehyde (MDA) concentration], lactate levels, antioxidant (GST, SOD and catalase) and digestive enzyme activities (trypsin and alkaline phosphatase) at current and warming (+3 °C) temperature conditions. In contrast to the temperate species, CTMax values decreased significantly from current (24–27 °C) to warming temperature conditions (30 °C) for the tropical shrimp, where metabolic thermal sensitivity was affected and the HSR was significantly reduced. MDA levels in tropical shrimp increased dramatically, indicating extreme cellular lipid peroxidation, which was not observed in the temperate shrimp. Lactate levels, GST and SOD activities were significantly enhanced within the muscle tissue of the tropical species. Digestive enzyme activities in the hepatopancreas of both species were significantly decreased by warmer temperatures. Our data suggest that the tropical cleaner shrimp will be more vulnerable to global warming than the temperate Lysmata seticaudata; the latter evolved in a relatively unstable environment with seasonal thermal variations that may have conferred greater adaptive plasticity. Thus, tropical cleaning symbioses may be challenged at a greater degree by warming‐related anthropogenic forcing, with potential cascading effects on the health and structuring of tropical coastal communities (e.g. coral reefs).  相似文献   

12.
Summary. Heat shock proteins (HSPs) are synthesised by cells subsequent to a stress exposure and are known to confer protection to the cell in response to a second challenge. HSP induction and decay are correlated to thermotolerance and may therefore be used as a biomarker of thermal history. The current study tested the temperature-dependent nature of the heat shock response and characterised its time profile of induction. Whole blood from 6 healthy males (Age: 26 ± (SD) 2 yrs; Body mass 74.2 ± 3.8 kgs; VO2max: 49.1 ± 4.0 ml·kg−1·min−1) were isolated and exposed to in vitro heat shock (HS) at 37, 38, 39, 40, and 41 °C for a period of 90 min. After HS the temperature was returned to 37 °C and intracellular HSP70 was quantified from the leukocytes at 0, 2, 4, and 6 h after heat treatment. The concentration of HSP70 was not different between temperatures (P > 0.05), but the time-profile of HSP70 synthesis appeared temperature-dependent. At control (37 °C) and lower temperatures (38–39 °C) the mean HSP70 concentration increased up to 4 h post HS (P < 0.05) and then returned towards baseline values by 6 h post HS. With in vitro hyperthermic conditions (40–41 °C), the time-profile was characterised by a sharp rise in HSP70 levels immediately after treatment (P < 0.05 for 40 °C at 0 h), followed by a progressive decline over time. The results suggest a temperature-dependent time-profile of HSP70 synthesis. In addition, the temperature at which HSP70 is inducted might be lower than 37 °C.  相似文献   

13.
The Antarctic limpet, Nacella concinna, exhibits the classical heat shock response, with up-regulation of duplicated forms of the inducible heat shock protein 70 (HSP70) gene in response to experimental manipulation of seawater temperatures. However, this response only occurs in the laboratory at temperatures well in excess of any experienced in the field. Subsequent environmental sampling of inter-tidal animals also showed up-regulation of these genes, but at temperature thresholds much lower than those required to elicit a response in the laboratory. It was hypothesised that this was a reflection of the complexity of the stresses encountered in the inter-tidal region. Here, we describe a further series of experiments comprising both laboratory manipulation and environmental sampling of N. concinna. We investigate the expression of HSP70 gene family members (HSP70A, HSP70B, GRP78 and HSC70) in response to a further suite of environmental stressors: seasonal and experimental cold, freshwater, desiccation, chronic heat and periodic emersion. Lowered temperatures (−1.9°C and −1.6°C), generally produced a down-regulation of all HSP70 family members, with some up-regulation of HSC70 when emerging from the winter period and increasing sea temperatures. There was no significant response to freshwater immersion. In response to acute and chronic heat treatments plus simulated tidal cycles, the data showed a clear pattern. HSP70A showed a strong but very short-term response to heat whilst the duplicated HSP70B also showed heat to be a trigger, but had a more sustained response to complex stresses. GRP78 expression indicates that it was acting as a generalised stress response under the experimental conditions described here. HSC70 was the major chaperone invoked in response to long-term stresses of varying types. These results provide intriguing clues not only to the complexity of HSP70 gene expression in response to environmental change but also insights into the stress response of a non-model species.  相似文献   

14.
In Manitoba, Canada, wild lake sturgeon (Acipenser fulvescens) populations exist along a latitudinal gradient and are reared in hatcheries to bolster threatened populations. We reared two populations of lake sturgeon, one from each of the northern and southern ends of Manitoba and examined the effects of typical hatchery temperatures (16°C) as well as 60-day acclimation to elevated rearing temperatures (20°C) on mortality, growth and condition throughout early development. Additionally, we examined the cold shock response, which may be induced during stocking, through the hepatic mRNA expression of genes involved in the response to cold stress and homeoviscous adaptation (HSP70, HSP90a, HSP90b, CIRP and SCD). Sturgeon were sampled after 1 day and 1 week following stocking into temperatures of 8, 6 and 4°C in a controlled laboratory environment. The southern population showed lower condition and higher mortality during early life than the northern population while increased rearing temperature impacted the growth and condition of developing northern sturgeon. During the cold shock, HSP70 and HSP90a mRNA expression increased in all sturgeon treatments as stocking temperature decreased, with higher expression observed in the southern population. Expression of HSP90b, CIRP and SCD increased as stocking temperature decreased in northern sturgeon with early acclimation to 20°C. Correlation analyses indicated the strongest molecular relationships were in the expression of HSP90b, CIRP and SCD, across all treatments, with a correlation between HSP90b and body condition in northern sturgeon with early acclimation to 20°C. Together, these observations highlight the importance of population and rearing environment throughout early development and on later cellular responses induced by cold stocking temperatures.  相似文献   

15.
Sepals play important roles in protecting inner floral organs from various stresses and in guaranteeing timely flower opening. However, the exact role of sepals in coordinating interior and exterior signals remains elusive. In this study, we functionally characterized a heat shock protein gene, Arabidopsis HSP70‐16, in flower opening and mild heat stress response, using combined genetics with anatomic, physiological, chemical, and molecular analyses. We showed that HSP70‐16 is required for flower opening and mild heat response. Mutation of HSP70‐16 led to a significant reduction in seed setting rate under 22°C, which was more severe at 27°C. Mutation of HSP70‐16 also caused postgenital fusion at overlapping tips of two lateral sepals, leading to failed flower opening, abnormal floral organ formation, and impaired fertilization and seed setting. Chemical and anatomic analyses confirmed specific chemical and morphological changes of cuticle property in mutant lateral sepals, and qRT‐PCR data indicated that expression levels of different sets of cuticle regulatory and biosynthetic genes were altered in mutants grown at both 22°C and 27°C temperatures. This study provides a link between thermal and developmental perception signals and expands the understanding of the roles of sepal in plant development and heat response.  相似文献   

16.
For a variety of species, changes in the expression of heat shock proteins (HSP) have been linked to key developmental changes, i.e., gametogenesis, embryogenesis, and metamorphosis. Many marine invertebrates are known to have a biphasic life cycle where pelagic larvae go through settlement and metamorphosis as they transition to the benthic life stage. A series of experiments were run to examine the expression of heat shock protein 70 (HSP 70) during larval and early spat (initial benthic phase) development in the Eastern oyster, Crassostrea virginica. In addition, the impact of thermal stress on HSP 70 expression during these early stages was studied. C. virginica larvae and spat expressed three HSP 70 isoforms, two constitutive, HSC 77 and HSC 72, and one inducible, HSP 69. We found differences in the expression of both the constitutive and inducible forms of HSP 70 among larval and early juvenile stages and in response to thermal stress. Low expression of HSP 69 during early larval and spat development may be associated with the susceptibility of these stages to environmental stress. Although developmental regulation of HSP 70 expression has been widely recognized, changes in its expression during settlement and metamorphosis of marine invertebrates are still unknown. The results of the current study demonstrated a reduction of HSP 70 expression during settlement and metamorphosis in the Eastern oyster, C. virginica.  相似文献   

17.
Kelps are in global decline due to climate change, which includes ocean warming. To identify vulnerable species, we need to identify their tolerances to increasing temperatures and determine whether tolerances are altered by co-occurring drivers such as inorganic nutrient levels. This is particularly important for those species with restricted distributions, which may already be experiencing thermal stress. To identify thermal tolerance of the range-restricted kelp Lessonia corrugata, we conducted a laboratory experiment on juvenile sporophytes to measure performance (growth, photosynthesis) across its thermal range (4–22°C). We determined the upper thermal limit for growth and photosynthesis to be ~22–23°C, with a thermal optimum of ~16°C. To determine if elevated inorganic nitrogen availability could enhance thermal tolerance, we compared the performance of juveniles under low (4.5 μmol · d−1) and high (90 μmol · d−1) nitrate conditions at and above the thermal optimum (16–23.5°C). Nitrate enrichment did not enhance thermal performance at temperatures above the optimum but did lead to elevated growth rates at the thermal optimum. Our results indicate L. corrugata is likely to be extremely susceptible to moderate ocean warming and marine heatwaves. Peak sea surface temperatures during summer in eastern and northeastern Tasmania can reach up to 20–21°C, and climate projections suggest that L. corrugata's thermal limit will be regularly exceeded by 2050 as southeastern Australia is a global ocean-warming hotspot. By identifying the upper thermal limit of L. corrugata, we have taken a critical step in predicting the future of the species in a warming climate.  相似文献   

18.
Many epidemics involve plants infected with more than one pathogen, but few experiments address climate change scenarios that influence mixed infections. This study addresses the interactive effects of co‐infection and temperature on disease development in plants of the annual pasture species subterranean clover (Trifolium subterraneum), which is widely sown in different world regions. Bean yellow mosaic virus (BYMV) and the fungus Kabatiella caulivora are two important pathogens causing considerable production losses in pastures containing this species. Both occur together in such pastures causing a severe necrotic disease when mixed infection occurs. Effects of temperature on symptom expression were investigated in subterranean clover plants infected singly or in mixed infection with these pathogens. Plants were maintained in controlled environment rooms at 18°C, 20°C or 22.5°C after sap inoculation with BYMV. K. caulivora conidia suspensions were inoculated to plants once systemic BYMV symptoms developed. Plants were assessed for three disease assessment parameters, dead petioles numbers, marginal leaflet necrosis and overall plant damage. In general, mixed infection caused most severe symptoms, K. caulivora least severe symptoms, and BYMV symptoms of intermediate severity. In single infections, effects of temperature on disease severity differed between pathogens: BYMV symptoms were most pronounced at 18°C, but K. caulivora induced more severe symptoms at 20°C and 22.5°C. In mixed infections, disease severity generally followed the pattern developed with BYMV alone as temperature increased. Also, synergistic increase in disease severity sometimes occurred at 18°C, but increases were only additive at 20°C and 22.5°C. These results reflected the greater BYMV multiplication detected in infected leaves at 18°C compared with 20°C or 22.5°C. Our findings indicate that in rainfed subterranean clover pastures, as global warming progresses disease severity from infection with BYMV and K. caulivora alone may decline or increase, respectively, and mixed infection with them may become less damaging.  相似文献   

19.
Cave‐dwelling ectotherms, which have evolved for millions of years under stable thermal conditions, could be expected to have adjusted their physiological limits to the narrow range of temperatures they experience and to be highly vulnerable to global warming. However, most of the few existing studies on thermal tolerance in subterranean invertebrates highlight that despite the fact that they show lower heat tolerance than most surface‐dwelling species, their upper thermal limits are generally not adjusted to ambient temperature. The question remains to what extent this pattern is common across subterranean invertebrates. We studied basal heat tolerance and its plasticity in four species of distant arthropod groups (Coleoptera, Diplopoda, and Collembola) with different evolutionary histories but under similar selection pressures, as they have been exposed to the same constant environmental conditions for a long time. Adults were exposed at different temperatures for 1 week to determine upper lethal temperatures. Then, individuals from previous sublethal treatments were transferred to a higher temperature to determine acclimation capacity. Upper lethal temperatures of three of the studied species were similar to those reported for other subterranean species (between 20 and 25°C) and widely exceeded the cave temperature (13–14°C). The diplopod species showed the highest long‐term heat tolerance detected so far for a troglobiont (i.e., obligate subterranean) species (median lethal temperature after 7 days exposure: 28°C) and a positive acclimation response. Our results agree with previous studies showing that heat tolerance in subterranean species is not determined by environmental conditions. Thus, subterranean species, even those living under similar climatic conditions, might be differently affected by global warming.  相似文献   

20.
Climate change driven ocean warming and acidification is potentially detrimental to the sensitive planktonic life stages of benthic marine invertebrates. Research has focused on the effects of acidification on calcifying larvae with a paucity of data on species with alternate developmental strategies and on the interactive effects of warming and acidification. To determine the impact of climate change on a conspicuous component of the intertidal fauna of southeast Australia, the development of the noncalcifying lecithotrophic larvae of the sea star Meridiastra calcar was investigated in the setting of predicted ocean warming (+2 to 4 °C) and acidification (?0.4 to 0.6 pH units) for 2100 and beyond in all combinations of stressors. Temperature and pH were monitored in the habitat of M. calcar to place experiments in context with current environmental conditions. There was no effect of temperature or pH on cleavage stage embryos but later development (gastrula‐larvae) was negatively effected by a +2 to 4 °C warming and there was a negative effect of ?0.6 pH units on embryos reaching the hatched gastrula stage. Mortality and abnormal development in larvae increased significantly even with +2 °C warming and larval growth was impaired at +4 °C. For the range of temperature and pH conditions tested, there were no interactive effects of stressors across all stages monitored. For M. calcar, warming not acidification was the dominant stressor. A regression model incorporating data from this study and projected increasing SST for the region suggests an increase in larval mortality to 70% for M. calcar by 2100 in the absence of acclimation and adaptation. The broad distribution of this species in eastern Australia encompassing subtropical to cold temperate thermal regimes provides the possibility that local M. calcar populations may be sustained in a warming world through poleward migration of thermotolerant propagules, facilitated by the strong southward flow of the East Australian Current.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号