首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Published studies reveal that Osteogenic Protein-1 (OP-1) and insulin-like growth factor-I (IGF-I) synergistically stimulate alkaline phosphatase (AP) activity and bone nodule formation in fetal rat calvaria (FRC) cells. In the present study, we examined whether there are interactions between the signal transduction pathways activated by these two growth factors. OP-1 did not significantly affect the levels of IRS-1, IRS-2, the p85alpha subunit of phosphatidylinositol 3-kinase (PI 3-kinase) or the extracellular signal-regulated kinase (ERK)-2, but stimulated ERK-1 protein by twofold. OP-1 also induced phosphorylation of ERK-1 and -2, but not of Akt/protein kinase B (PKB), a protein kinase that is downstream of PI 3-kinase. By comparison, IGF-I increased the levels of the phosphorylated forms of ERK-1 and -2, and Akt/PKB. Inhibition of ERK activation by PD98059 did not significantly alter the stimulation of AP activity by OP-1 or OP-1 in combination with IGF-I. In contrast, inhibition of PI 3-kinase activity by LY294002 blocked the induction of AP activity by OP-1 and OP-1 plus IGF-I. Treatment of cells with rapamycin, an inhibitor of the mammalian target of mTOR, resulted in a 47% and a 53% decrease in the AP activity induced by OP-1 alone and by OP-1 plus IGF-I, respectively. These studies suggest that PI 3-kinase and mTOR contribute to the induction of AP activity by OP-1 and the synergistic effect of OP-1 and IGF-I on AP activity in FRC cells.  相似文献   

2.
3.
In the present study we have investigated the effect of increased serine/threonine phosphorylation of insulin receptor substrates-1 and -2 (IRS-1 and IRS-2) by okadaic acid pretreatment on brown adipocyte insulin signalling leading to glucose transport, an important metabolic effect of insulin in brown adipose tissue. Okadaic acid pretreatment before insulin stimulation decreased IRS-1 and IRS-2 tyrosine phosphorylation in parallel to a decrease in their sodium dodecyl sulfate-polyacrylamide gel electrophoresis mobility. IRS-1/IRS-2-associated p85alpha and phosphatidylinositol (PI) 3-kinase enzymatic activity were partly reduced in brown adipocytes pretreated with okadaic acid upon stimulation with insulin. Furthermore, insulin-induced glucose uptake was totally abolished by the inhibitor in parallel with a total inhibition of insulin-induced protein kinase C (PKC) zeta activity. However, activation of Akt/PKB or p70 S6 kinase (p70(s6k)) by insulin remained unaltered. Our results suggest that downstream of PI 3-kinase, insulin signalling diverges into at least two independent pathways through Akt/PKB and PKC zeta, the PKC zeta pathway contributing to glucose transport induced by insulin in fetal brown adipocytes.  相似文献   

4.
Regulation of insulin receptor substrate (IRS)-2 expression is critical to beta-cell survival, but the mechanisms that control this are complex and undefined. Here in pancreatic beta-cells (INS-1), chronic exposure (>8 h) to 15 mm glucose and/or 5 nm IGF-1, increased Ser/Thr phosphorylation of IRS-2, which correlated with decreased IRS-2 levels. This glucose/IGF-1-induced decrease in IRS-2 levels was prevented by the proteasomal inhibitor, lactacystin. In addition, the glucose/IGF-1-induced increase in Ser/Thr phosphorylation of IRS-2 and the subsequent decrease in INS-1 cell IRS-2 protein levels was thwarted by the mammalian target of rapamycin(mTOR) inhibitor, rapamycin. Moreover, adenoviral-mediated expression of constitutively active mTOR (mTORDelta) further increased glucose/IGF-1-induced Ser/Thr phosphorylation of IRS-2 and decreased IRS-2 protein levels, whereas adenoviral-mediated expression of "kinase-dead" mTOR (mTOR-KD) conversely reduced Ser/Thr phosphorylation of IRS-2 and maintained IRS-2 protein levels. In adenoviral-infected beta-cells expressing mTORDelta, the decrease in IRS-2 protein levels was also prevented by rapamycin or lactacystin, further indicating a proteasomal mediated degradation of IRS-2 mediated via mTOR-induced Ser/Thr phosphorylation of IRS-2. Finally, we found that chronic activation of mTOR leading to decreased levels of IRS-2 in INS-1 cells led to a significant decrease in PKB activation and consequently increased beta-cell apoptosis. Thus, chronic activation of mTOR by glucose (and/or IGF-1) in beta-cells leads to increased Ser/Thr phosphorylation of IRS-2 that targets it for proteasomal degradation, resulting in decreased IRS-2 expression and increased beta-cell apoptosis. This may be a contributing mechanism as to how beta-cell mass is decreased by chronic hyperglycemia in the pathogenesis of type-2 diabetes.  相似文献   

5.
Impaired glucose tolerance precedes type 2 diabetes and is characterized by hyperinsulinemia, which develops to balance peripheral insulin resistance. To gain insight into the deleterious effects of hyperinsulinemia on skeletal muscle, we studied the consequences of prolonged insulin treatment of L6 myoblasts on insulin-dependent signaling pathways. A 24-h long insulin treatment desensitized the phosphoinositide 3-kinase (PI3K)/protein kinase B (PKB) and p42/p44 MAPK pathways toward a second stimulation with insulin or insulin-like growth factor-1 and led to decreased insulin-induced glucose uptake. Desensitization was correlated to a reduction in insulin receptor substrate (IRS)-1 and IRS-2 protein levels, which was reversed by the PI3K inhibitor LY294002. Co-treatment of cells with insulin and LY294002, while reducing total IRS-1 phosphorylation, increased its phosphotyrosine content, enhancing IRS-1/PI3K association. PDK1, mTOR, and MAPK inhibitors did not block insulin-induced reduction of IRS-1, suggesting that the PI3K serine-kinase activity causes IRS-1 serine phosphorylation and its commitment to proteasomal degradation. Contrarily, insulin-induced IRS-2 down-regulation occurred via a PI3K/mTOR pathway. Suppression of IRS-1/2 down-regulation by LY294002 rescued the responsiveness of PKB and MAPK toward acute insulin stimulation. Conversely, adenoviral-driven expression of constitutively active PI3K induced an insulin-independent reduction in IRS-1/2 protein levels. IRS-2 appears to be the chief molecule responsible for MAPK and PKB activation by insulin, as knockdown of IRS-2 (but not IRS-1) by RNA interference severely impaired activation of both kinases. In summary, (i) PI3K mediates insulin-induced reduction of IRS-1 by phosphorylating it while a PI3K/mTOR pathway controls insulin-induced reduction of IRS-2, (ii) in L6 cells, IRS-2 is the major adapter molecule linking the insulin receptor to activation of PKB and MAPK, (iii) the mechanism of IRS-1/2 down-regulation is different in L6 cells compared with 3T3-L1 adipocytes. In conclusion, the reduction in IRS proteins via different PI3K-mediated mechanisms contributes to the development of an insulin-resistant state in L6 myoblasts.  相似文献   

6.
It has been shown that IGF-1-induced pancreatic beta-cell proliferation is glucose-dependent; however, the mechanisms responsible for this glucose dependence are not known. Adenoviral mediated expression of constitutively active phosphatidylinositol 3-kinase (PI3K) in the pancreatic beta-cells, INS-1, suggested that PI3K was not necessary for glucose-induced beta-cell proliferation but was required for IGF-1-induced mitogenesis. Examination of the signaling components downstream of PI3K, 3-phosphoinositide-dependent kinase 1, protein kinase B (PKB), glycogen synthase kinase-3, and p70-kDa-S6-kinase (p70(S6K)), suggested that a major part of glucose-dependent beta-cell proliferation requires activation of mammalian target of rapamycin/p70(S6K), independent of phosphoinositide-dependent kinase 1/PKB activation. Adenoviral expression of the kinase-dead form of PKB in INS-1 cells decreased IGF-1-induced beta-cell proliferation. However, a surprisingly similar decrease was also observed in adenoviral wild type and constitutively active PKB-infected cells. Upon analysis of extracellular signal-regulated protein kinase 1 and 2 (ERK1/ERK2), an increase in ERK1/ERK2 phosphorylation activation by glucose and IGF-1 was observed in kinase-dead PKB-infected cells, but this phosphorylation activation was inhibited in the constitutively active PKB-infected cells. Hence, there is a requirement for the activation of both ERK1/ERK2 and mammalian target of rapamycin/p70(S6K) signal transduction pathways for a full commitment to glucose-induced pancreatic beta-cell mitogenesis. However, for IGF-1-induced activation, these pathways must be carefully balanced, because chronic activation of one (PI3K/PKB) can lead to dampening of the other (ERK1/2), reducing the mitogenic response.  相似文献   

7.
Nonenzymatic glycation is increased in diabetes and leads to increased levels of glycated proteins. Most studies have focused on the role of glycation products in vascular complications. Here, we have investigated the action of human glycated albumin (HGA) on insulin signaling in L6 skeletal muscle cells. Exposure of these cells to HGA inhibited insulin-stimulated glucose uptake and glycogen synthase activity by 95 and 80%, respectively. These effects were time- and dose-dependent, reaching a maximum after 12 h incubation with 0.1 mg/ml HGA. In contrast, exposure of the cells to HGA had no effect on thymidine incorporation. Further, HGA reduced insulin-stimulated serine phosphorylation of PKB and GSK3, but did not alter ERK1/2 activation. HGA did not affect either insulin receptor kinase activity or insulin-induced Shc phosphorylation on tyrosine. In contrast, insulin-dependent IRS-1 and IRS-2 tyrosine phosphorylation was severely reduced in cells preincubated with HGA for 24 h. Insulin-stimulated association of PI3K with IRS-1 and IRS-2, and PI3K activity were reduced by HGA in parallel with the changes in IRS tyrosine phosphorylation, while Grb2-IRS association was unchanged. In L6 myotubes, exposure to HGA increased PKC activity by 2-fold resulting in a similar increase in Ser/Thr phosphorylation of IRS-1 and IRS-2. These phosphorylations were blocked by the PKC inhibitor bisindolylmaleimide (BDM). BDM also blocked the action of HGA on insulin-stimulated PKB and GSK3 alpha. Simultaneously, BDM rescued insulin-stimulation of glucose uptake and glycogen synthase activity in cells exposed to HGA. The use of antibodies specific to PKC isoforms shows that this effect appears to be mediated by activated PKC alpha, independent of reactive oxygen species production. In summary, in L6 skeletal muscle cells, exposure to HGA leads to insulin resistance selectively in glucose metabolism with no effect on growth-related pathways regulated by the hormone.  相似文献   

8.
Isolated rat pancreatic islets were incubated at 3.3 (low) and 16.7 (high) mM glucose with different concentrations of the phosphotyrosine phosphatase (PTP) inhibitor, peroxovanadate (pV). At low glucose, pV stimulated insulin secretion 2- to 4-fold, but it inhibited insulin secretion at 16.7 mM. The latter effect was not due to an inhibition of glucose metabolism, nor was it inhibited by pertussis toxin pretreatment. In addition, pV stimulated insulin secretion approximately 3-fold in depolarized cells at both low and high glucose. pV markedly increased the tyrosine phosphorylation of several proteins, including IRS-1 and -2, and also increased the phosphorylation of the downstream kinases PKB/Akt and MAPK. PKB/Akt, but not MAPK, was also phosphorylated in the absence of pV. Intracellular pV-stimulated tyrosine phosphorylation, including that of IRS-2, was generally increased by high glucose suggesting a further inhibition of PTP and/or enhanced tyrosine kinase activity. Thus, these data suggest that intracellular tyrosine and serine (PKB/Akt) phosphorylation are related to insulin secretion but they do not support a unique and direct link between IRS-2 tyrosine phosphorylation and glucose-stimulated insulin secretion.  相似文献   

9.
During pregnancy, pancreatic islets undergo structural and functional changes in response to an increased demand for insulin. Different hormones, especially placental lactogens, mediate these adaptive changes. Prolactin (PRL) mainly exerts its biological effects by activation of the JAK2/STAT5 pathway. PRL also stimulates some biological effects via activation of IRS-1, IRS-2, PI 3-kinase, and MAPK in different cell lines. Since IRS-2 is important for the maintenance of pancreatic islet cell mass, we investigated whether PRL affects insulin-signaling pathways in neonatal rat islets. PRL significantly potentiated glucose-induced insulin secretion in islets cultured for 7 days. This effect was blocked by the specific PI 3-kinase inhibitor wortmannin. To determine possible effects of PRL on insulin-signaling pathways, fresh islets were incubated with or without the hormone for 5 or 15 min. Immunoprecipitation and immunoblotting with specific antibodies showed that PRL induced a dose-dependent IRS-1 and IRS-2 phosphorylation compared to control islets. PRL-induced increase in IRS-1/-2 phosphorylation was accompanied by an increase in the association with and activation of PI 3-kinase. PRL-induced IRS-2 phosphorylation and its association with PI 3-kinase did not add to the effect of insulin. PRL also induced JAK2, SHC, ERK1 and ERK2 phosphorylation in neonatal islets, demonstrating that PRL can activate MAPK. These data indicate that PRL can stimulate the IRSs/PI 3-kinase and SHC/ERK pathways in islets from neonatal rats.  相似文献   

10.
11.
Akt/PKB activation is reportedly essential for insulin-induced glucose metabolism in the liver. During the hypoinsulinemic and hyperglycemic phase in the Zucker diabetic fatty (ZDF) rat liver, insulin-induced phosphorylations of the insulin receptor (IR) and insulin receptor substrate (IRS)-1/2 were significantly enhanced. Similarly, phosphatidylinositol (PI) 3-kinase activities associated with IRS-1/2 were markedly increased in ZDF rat liver compared with those in the control lean rat liver. However, interestingly, insulin-induced phosphorylation and kinase activation of Akt/PKB were severely suppressed. The restoration of normoglycemia by sodium-dependent glucose transporter (SGLT) inhibitor to ZDF rats normalized elevated PI 3-kinase activation and phosphorylation of IR and IRS-1/2 to lean control rat levels. In addition, impaired insulin-induced Akt/PKB activation was also normalized. These results suggest that chronic hyperglycemia reduces the efficiency of the activation step from PI 3-kinase to Akt/PKB kinase and that this impairment is the molecular mechanism underlying hyperglycemia-induced insulin resistance in the liver.  相似文献   

12.
In vascular smooth muscle cells (VSMCs), platelet-derived growth factor (PDGF) plays a major role in inducing phenotypic switching from contractile to proliferative state. Importantly, VSMC phenotypic switching is also determined by the phosphorylation state/expression levels of insulin receptor substrate (IRS), an intermediary signaling component that is shared by insulin and IGF-I. To date, the roles of PDGF-induced key proliferative signaling components including Akt, p70S6kinase, and ERK1/2 on the serine phosphorylation/expression of IRS-1 and IRS-2 isoforms remain unclear in VSMCs. We hypothesize that PDGF-induced VSMC proliferation is associated with dysregulation of insulin receptor substrates. Using human aortic VSMCs, we demonstrate that prolonged PDGF treatment led to sustained increases in the phosphorylation of protein kinases such as Akt, p70S6kinase, and ERK1/2, which mediate VSMC proliferation. In addition, PDGF enhanced IRS-1/IRS-2 serine phosphorylation and downregulated IRS-2 expression in a time- and concentration-dependent manner. Notably, phosphoinositide 3-kinase (PI 3-kinase) inhibitor (PI-103) and mammalian target of rapamycin inhibitor (rapamycin), which abolished PDGF-induced Akt and p70S6kinase phosphorylation, respectively, blocked PDGF-induced IRS-1 serine phosphorylation and IRS-2 downregulation. In contrast, MEK1/ERK inhibitor (U0126) failed to block PDGF-induced IRS-1 serine phosphorylation and IRS-2 downregulation. PDGF-induced IRS-2 downregulation was prevented by lactacystin, an inhibitor of proteasomal degradation. Functionally, PDGF-mediated IRS-1/IRS-2 dysregulation resulted in the attenuation of insulin-induced IRS-1/IRS-2-associated PI 3-kinase activity. Pharmacological inhibition of PDGF receptor tyrosine kinase with imatinib prevented IRS-1/IRS-2 dysregulation and restored insulin receptor signaling. In conclusion, strategies to inhibit PDGF receptors would not only inhibit neointimal growth but may provide new therapeutic options to prevent dysregulated insulin receptor signaling in VSMCs in nondiabetic and diabetic states.  相似文献   

13.
BACKGROUND: Insulin receptor substrate proteins (IRS) mediate various effects of insulin, including regulation of glucose homeostasis, cell growth and survival. To understand the underlying mechanisms explaining the effects of the Src-related tyrosine kinase GTK on beta-cell proliferation and survival, insulin-signalling pathways involving IRS-1 and IRS-2 were studied in islet cells and RINm5F cells overexpressing wild-type and two different mutants of the SRC-related tyrosine kinase GTK. MATERIALS AND METHODS: Islets isolated from transgenic mice and RINm5F cells overexpressing wild-type and mutant GTK were analysed for IRS-1, IRS-2, SHB, AKT and ERK phosphorylation/activity by Western blot analysis. RESULTS: RINm5F cells expressing the kinase active mutant Y504F-GTK and islet cells from GTK(Y504F) -transgenic mice exhibited reduced insulin-induced tyrosine phosphorylation of IRS-1 and IRS-2. In RINm5F cells, the diminished IRS-phosphorylation was accompanied by a reduced insulin-stimulated activation of phosphatidylinositol 3-kinase (PI3K), AKT and Extracellular Signal-Regulated Kinase, partly due to an increased basal activity. In addition, increased tyrosine phosphorylation of the SHB SH2 domain-adaptor protein and its association with IRS-2, IRS-1 and focal adhesion kinase was observed in these cells. RINm5F cells overexpressing wild-type GTK also exhibited reduced activation of IRS-2, PI3K and AKT, whereas cells expressing a GTK mutant with lower kinase activity (GTK(Y394F)) exhibited insignificantly altered responses to insulin compared to the mock transfected cells. Moreover, GTK was shown to associate with and phosphorylate SHB in transiently transfected COS-7 cells, indicating that SHB is a specific substrate for GTK. CONCLUSIONS: The results suggest that GTK signals via SHB to modulate insulin-stimulated pathways in beta cells and this may explain previous results showing an increased beta-cell mass in GTK-transgenic mice.  相似文献   

14.
Insulin stimulates phosphatidylinositol-3-kinase (PI3K) and extracellular signal-regulated kinases (ERK) in various mammalian cells. To study the role of PI3K in insulin stimulation of ERK, we employed PI3K inhibitor LY294002 and mouse embryonic R- fibroblasts lacking IGF-1 receptors. In these R- cells, PI3K inhibition by LY294002 enhanced insulin stimulation of ERK phosphorylation whereas LY294002 inhibited insulin stimulation of Akt phosphorylation. The enhanced insulin stimulation of ERK phosphorylation was accompanied by increased IRS-1 tyrosine phosphorylation. Insulin stimulation of insulin receptor tyrosine phosphorylation was not altered. PI3K inhibition increased IRS-1-Grb2 complex formation and ras activity following insulin treatment of cells. Increased insulin stimulation of ERK by PI3K inhibition was mediated by the MEK/ERK pathway, but did not involve inhibitory Ser259 phosphorylation of raf that was reported to be mediated by Akt. In summary, PI3K inhibition in R- cells enhanced insulin stimulation of ERK phosphorylation by mechanisms involving enhancement of IRS-1 tyrosine phosphorylation, IRS-1-Grb2 complex formation and the ras/MEK/ERK pathway.  相似文献   

15.
We have investigated the role of PI 3-kinase and mTOR in the degradation of IRS-1 induced by insulin. Inhibition of mTOR with rapamycin resulted in approximately 50% inhibition of the insulin-induced degradation of IRS-1. In contrast, inhibition of PI-3 kinase, an upstream activator of mTOR, leads to a complete block of the insulin-induced degradation. Inhibition of either PI-3 kinase or mTOR prevented the mobility shift in IRS-1 in response to insulin, a shift that is caused by Ser/Thr phosphorylation. These results indicate that insulin stimulates PI 3-kinase-mediated degradation of IRS-1 via both mTOR-dependent and -independent pathways. Platelet-derived growth factor (PDGF) stimulation leads to a lower level of degradation, but significant phosphorylation of IRS-1. Both the degradation and phosphorylation of IRS-1 in response to PDGF are completely inhibited by rapamycin, suggesting that PDGF stimulates IRS-1 degradation principally via the mTOR-dependent pathway. Inhibition of the serine/threonine phosphatase PP2A with okadaic acid also induced the phosphorylation and degradation of IRS-1. IRS-1 phosphorylation and degradation in response to okadaic acid were not inhibited by rapamycin, suggesting that the action of mTOR in the degradation of IRS-1 results from inhibition of PP2A. Consistent with this, treatment of cells with rapamycin stimulated PP2A activity. While the role of mTOR in the phosphorylation of IRS-1 appears to proceed primarily through the regulation of PP2A, we also provide evidence that the regulation of p70S6 kinase phosphorylation requires the direct activity of mTOR.  相似文献   

16.
Phosphoinositide 3-kinases (PI3Ks) are key enzymes that activate intracellular signaling molecules when a number of different growth factors bind to cell surface receptors. PI3Ks are divided into three classes (I, II, III), and enzymes of each class have different tissue specificities and physiological functions. The α-isoform (PI3K-C2α) of class II PI3Ks is considered ubiquitous and preferentially activated by insulin. Our previous study showed that suppression of PI3K-C2α leads to apoptotic cell death. The aim of this study is to determine whether depletion of PI3K-C2α affects ERK or PKB/Akt activity following stimulation with serum and insulin growth factors in Chinese hamster ovary cells expressing human insulin receptors (CHO-IR) and human HepG2 liver cells. Different antisense oligonucleotides (ODNs), which were designed based on the sequence of the C2 domain of the human PI3K-C2α gene, were transfected into cells to inhibit PI3K-C2α expression. Insulin- or serum-induced stimulation of ERK was significantly suppressed by depletion of PI3K-C2α, whereas phosphorylation of IRS-1 and the stimulation of PKB/Akt by insulin were not affected. The number of apoptotic cells was also increased by depletion of PI3K-C2α protein levels. Taken together, our data indicate that PI3K-C2α may be a crucial factor in the stimulation of ERK activity in response to serum or insulin, whereas it is less important for the stimulation of PKB/Akt activity in response to insulin.  相似文献   

17.
Elevated plasma levels of free fatty acids (FFA) can produce insulin resistance in skeletal muscle tissue and liver and, together with alterations in beta-cell function, this has been referred to as lipotoxicity. This study explores the effects of FFAs on insulin action in rat adipocytes. Cells were incubated 4 or 24 h with or without an unsaturated FFA, oleate or a saturated FFA, palmitate (0.6 and 1.5 mM, respectively). After the culture period, cells were washed and insulin effects on glucose uptake and lipolysis as well as cellular content of insulin signaling proteins (IRS-1, PI3-kinase, PKB and phosphorylated PKB) and the insulin regulated glucose transporter GLUT4 were measured. No significant differences were found in basal or insulin-stimulated glucose uptake in FFA-treated cells compared to control cells, regardless of fatty acid concentration or incubation period. Moreover, there were no significant alterations in the expression of IRS-1, PI3-kinase, PKB and GLUT4 following FFA exposure. Insulin's ability to stimulate PKB phosphorylation was also left intact. Nor did we find any alterations following FFA exposure in basal or cAMP-stimulated lipolysis or in the ability of insulin to inhibit lipolysis. The results indicate that oleate or palmitate does not directly influence insulin action to stimulate glucose uptake and inhibit lipolysis in rat fat cells. Thus, lipotoxicity does not seem to occur in the fat tissue itself.  相似文献   

18.
Glycogen synthase (GS) is activated by glucose/glycogen depletion in skeletal muscle cells, but the contributing signaling pathways, including the chief GS regulator GSK3, have not been fully defined. The MEK/ERK pathway is known to regulate GSK3 and respond to glucose. The aim of this study was to elucidate the GSK3 and MEK/ERK pathway contribution to GS activation by glucose deprivation in cultured human myotubes. Moreover, we tested the glucose-dependence of GSK3 and MEK/ERK effects on GS and angiotensin (1–7) actions on these pathways. We show that glucose deprivation activated GS, but did not change phospho-GS (Ser640/1), GSK3β activity or activity-activating phosphorylation of ERK1/2. We then treated glucose-replete and -depleted cells with SB415286, U0126, LY294 and rapamycin to inhibit GSK3, MEK1/2, PI3K and mTOR, respectively. SB415286 activated GS and decreased the relative phospho-GS (Ser640/1) level, more in glucose-depleted than -replete cells. U0126 activated GS and reduced the phospho-GS (Ser640/1) content significantly in glucose-depleted cells, while GSK3β activity tended to increase. LY294 inactivated GS in glucose-depleted cells only, without affecting relative phospho-GS (Ser640/1) level. Rapamycin had no effect on GS activation. Angiotensin-(1–7) raised phospho-ERK1/2 but not phospho-GSK3β (Ser9) content, while it inactivated GS and increased GS phosphorylation on Ser640/1, in glucose-replete cells. In glucose-depleted cells, angiotensin-(1–7) effects on ERK1/2 and GS were reverted, while relative phospho-GSK3β (Ser9) content decreased. In conclusion, activation of GS by glucose deprivation is not due to GS Ser640/1 dephosphorylation, GSK3β or ERK1/2 regulation in cultured myotubes. However, glucose depletion enhances GS activation/Ser640/1 dephosphorylation due to both GSK3 and MEK/ERK inhibition. Angiotensin-(1–7) inactivates GS in glucose-replete cells in association with ERK1/2 activation, not with GSK3 regulation, and glucose deprivation reverts both hormone effects. Thus, the ERK1/2 pathway negatively regulates GS activity in myotubes, without involving GSK3 regulation, and as a function of the presence of glucose.  相似文献   

19.
Insulin stimulates phosphatidylinositol-3-kinase (PI3K) and extracellular signal-regulated kinases (ERK) in various mammalian cells. To study the role of PI3K in insulin stimulation of ERK, we employed PI3K inhibitor LY294002 and mouse embryonic R? fibroblasts lacking IGF-1 receptors. In these R? cells, PI3K inhibition by LY294002 enhanced insulin stimulation of ERK phosphorylation whereas LY294002 inhibited insulin stimulation of Akt phosphorylation. The enhanced insulin stimulation of ERK phosphorylation was accompanied by increased IRS-1 tyrosine phosphorylation. Insulin stimulation of insulin receptor tyrosine phosphorylation was not altered. PI3K inhibition increased IRS-1–Grb2 complex formation and ras activity following insulin treatment of cells. Increased insulin stimulation of ERK by PI3K inhibition was mediated by the MEK/ERK pathway, but did not involve inhibitory Ser259 phosphorylation of raf that was reported to be mediated by Akt. In summary, PI3K inhibition in R? cells enhanced insulin stimulation of ERK phosphorylation by mechanisms involving enhancement of IRS-1 tyrosine phosphorylation, IRS-1–Grb2 complex formation and the ras/MEK/ERK pathway.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号