首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
The discovery of hypothalamic hypophysiotropic factors confirmed the hypothesis of Green and Harris in the late 1940s. These hormones were isolated from their eutopic site of production (the hypothalamus) with the exception of growth hormone (GH)-releasing hormone (GHRH), which was isolated from an ectopic, tumoral site of production and found to be responsible for acromegaly. Following the isolation, characterization and synthesis of human GHRH, clinical studies were performed and are described below. Circulating levels of GHRH can be measured and provide the basis for the diagnosis of acromegaly related to the ectopic, tumoral production of GHRH. At present, GHRH is used as a test of GH secretion mainly as an adjunct to other agents which modify somatostatin status, or to GH-releasing peptides. Its therapeutic potential in children and the elderly is still under investigation. The role of GHRH in the pulsatile secretion of GH is described.  相似文献   

2.
Slot-blot hybridization technique was used to evaluate growth hormone-releasing hormone (GHRH) mRNA levels in the hypothalamus of long-term (14 days) hypophysectomized (HPX) rats treated or not with 125 micrograms hGH/rat, twice daily IP, since the first day postsurgery. In addition, mRNA levels were determined in the hypothalamus of short-term (4 days) GH-treated (250 micrograms hGH/rat, twice daily IP) intact rats. GHRH mRNA levels were increased in HPX rats, and GH treatment partially counteracted this rise. Short-term administration of GH decreased GHRH mRNA levels in intact rats. These results, evaluated together with previous findings showing decreased hypothalamic GHRH-like immunoreactivity in both HPX rats and intact rats given GH (6, 7, 9), indicate that GH exerts a negative feedback action on the synthesis and release of GHRH.  相似文献   

3.
Early sleep in humans is characterized by a distinct suppression of pituitary-adrenal activity coinciding with enhanced activity of the somatotropic axis. Here, we tested in awake humans the hypothesis of an inhibiting influence of hypothalamic growth hormone-releasing hormone (GHRH) on pituitary-adrenal activity. For this purpose, pituitary-adrenal activity was stimulated in 10 men through a standard insulin-hypoglycemia-test (IHT) and in another 10 men through combined administration of CRH/vasopressin. Stimulation was performed in each man on three conditions following pretreatment with Placebo and GHRH administered intravenously (50 microg) or intranasally (300 microg) 1 h before. GH, ACTH and cortisol as well as blood pressure and heart rate were measured repeatedly. Contrary to expectations, pretreatment with GHRH did not suppress but enhanced secretion of cortisol upon insulin-induced hypoglycemia regardless of the route of GHRH pretreatment (p<0.05). In contrast, GHRH did not facilitate cortisol release after stimulation with CRH/vasopressin. Changes in ACTH remained inconsistent. Plasma levels of GH increased significantly after i.v. GHRH application, but remained unchanged after the intranasal administration. Blood pressure and heart rate were not influenced by the treatments. Results indicate facilitating effects of GHRH mediated at a suprapituitary (i.e. hypothalamic) level as suggested by restriction of the effect to the hypoglycemia-induced cortisol release with no effects after pituitary stimulation with CRH/vasopressin.  相似文献   

4.
5.
The effect of Freund's adjuvant injection on 24-hour variation of hypothalamic corticotropin-releasing hormone (CRH), thyrotropin-releasing hormone (TRH), GH-releasing hormone (GRH) and somatostatin levels was examined in adult rats kept under light between 0800 and 2000 h daily. Groups of rats receiving Freund's complete adjuvant or its vehicle 3 days before sacrifice were killed at six different time intervals throughout a 24-hour cycle. In the median eminence, adjuvant vehicle-injected rats exhibited significant 24-hour variations for the four hormones examined, with maxima at noon. These 24-hour rhythms were inhibited or suppressed by Freund's adjuvant injection. In the anterior hypothalamus of adjuvant vehicle-treated rats, CRH content peaked at 1600 h, while two peaks were found for TRH and GRH levels, i.e., at 2400-0400 h and 1600 h. Freund's adjuvant injection suppressed 24-hour rhythm of anterior hypothalamic CRH, TRH and GRH content and uncovered a peak in anterior hypothalamic somatostatin levels at 0400 h. In the medial hypothalamus of adjuvant vehicle-treated rats, significant 24-hour variations were detectable for TRH (peaks at 1600 and 2400 h) and somatostatin (peak at 2400 h) which disappeared after Freund's adjuvant injection. In the posterior hypothalamus of adjuvant vehicle-treated rats, two peaks were apparent for CRH, TRH and somatostatin levels, i.e. at 1600 h and 2400-0400 h, this hormonal profile remaining unmodified after Freund's adjuvant administration. The administration of the immunosuppressant drug cyclosporine (5 mg/kg, 5 days) impaired the depressing effect of Freund's adjuvant injection on CRH, TRH and somatostatin content in median eminence, but not that on GRH. In the anterior hypothalamus, cyclosporine generally prevented the effect of immunization on hormone levels an revealed a second maximum in TRH at 0400 h. Cyclosporine also restored 24-hour variations in TRH and somatostatin levels of medial hypothalamus of Freund's adjuvant-injected rats but was unable to modify them in the posterior hypothalamus. The results further support the existence of a significant effect of immune-mediated inflammatory response at an early phase after Freund's adjuvant injection on hypothalamic levels which was partially sensitive to immunosuppression by cyclosporine.  相似文献   

6.
Corticotropin-releasing hormone (CRH) mediates responses to a variety of stressors. We subjected rats to a 1-h period of an acute stressor, physical restraint, and determined the impact on subsequent sleep-wake behavior. Restraint at the beginning of the light period, but not the dark period, increased waking and reduced rapid eye movement sleep without dramatically altering slow-wave sleep (SWS). Electroencephalogram (EEG) slow-wave activity during SWS and brain temperature were increased by this manipulation. Central administration of the CRH receptor antagonist astressin blocked the increase in waking after physical restraint, but not during the period of restraint itself. Blockade of CRH receptors with astressin attenuated the restraint-induced elevation of brain temperature, but not the increase of EEG slow-wave activity during subsequent SWS. Although corticosterone increased after restraint in naive animals, it was not altered by this manipulation in rats well habituated to handling and injection procedures. These results suggest that under these conditions central CRH, but not the hypothalamic-pituitary-adrenal axis, is involved in the alterations in sleep-wake behavior and the modulation of brain temperature of rats exposed to physical restraint.  相似文献   

7.
To investigate the efficacy of endocrine evaluation in diagnosing and localizing the cause of anterior pituitary failure, 17 patients with suprasellar space-occupying lesions, 4 patients with intrasellar tumors, 8 patients with no detectable anatomical lesion, 1 patient with posttraumatic failure and 1 patient with septooptical dysplasia were investigated. Endocrine evaluation consisted of measuring adrenocorticotropic hormone (ACTH), cortisol, and growth hormone (GH) levels during insulin hypoglycemia test (IHT) and after administration of corticotropin-releasing hormone (CRH) and growth hormone-releasing hormone (GRH). In addition, basal prolactin levels, gonadal and thyroid function were evaluated. The results showed that 4 of 17 patients with suprasellar tumors had normal ACTH and GH responses during IHT and after releasing hormone (RH) administration. Five of these patients had a normal ACTH or cortisol rise but no GH response during IHT. All 5 had a normal ACTH and 3 had normal GH rise after RH. Seven patients with suprasellar tumors had no ACTH or GH response during IHT, but all had an ACTH response to CRH. Only 3 of this group had a GH response to GRH. There was one exception of a patient who showed a GH and ACTH rise during IHT but only a blunted ACTH and no GH rise after RH administration. Four patients with pituitary failure and no demonstrable lesion had an ACTH rise after CRH but no GH rise after GRH, whereas in 3 patients with isolated ACTH deficiency no ACTH rise after CRH was seen. In 4 patients with nonsecreting pituitary tumors normal ACTH responses to IHT and CRH were seen, whereas GH rose during IHT only in 1 patient.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Arterial blood pressure, chest movement, electroencephalogram, and electromyogram were monitored in six normotensive Sprague-Dawley rats for 4 h/day 3 days before and 4 days after 114 h of rapid-eye-movement (REM) sleep deprivation. During recovery sleep immediately after REM sleep deprivation (RD), there was a significant increase in the amount of time spent in REM sleep. During this rebound in REM sleep, there was a significant rise (26%) in heart rate in wakefulness, non-REM sleep, and REM sleep during the first 4 h after RD. Systolic blood pressure was also significantly elevated (14%) but only during wakefulness before recovery sleep. Rats with the greatest waking systolic blood pressure after RD had the lowest REM sleep rebound in the 4 h immediately after RD (r = -0.885, P less than 0.05). The rise in heart rate, systolic blood pressure, and REM sleep time evident on day 1 immediately after RD was absent on recovery days 2-4. The respiratory rate tended to be higher throughout the recovery period in every state of consciousness; however, these values never reached the level of significance. In the initial recovery sleep period, regulation of heart rate was more disrupted by REM sleep deprivation than either arterial blood pressure or respiratory rate.  相似文献   

9.
The role of the transmembrane receptor Notch in the adult brain is poorly understood. Here, we provide evidence that bunched, a negative regulator of Notch, is involved in sleep homeostasis. Genetic evidence indicates that interfering with bunched activity in the mushroom bodies (MBs) abolishes sleep homeostasis. Combining bunched and Delta loss-of-function mutations rescues normal homeostasis, suggesting that Notch signaling may be involved in regulating sensitivity to sleep loss. Preventing the downregulation of Delta by overexpressing a wild-type transgene in MBs reduces sleep homeostasis and, importantly, prevents learning impairments induced by sleep deprivation. Similar resistance to sleep loss is observed with Notch(spl-1) gain-of-function mutants. Immunohistochemistry reveals that the Notch receptor is expressed in glia, whereas Delta is localized in neurons. Importantly, the expression in glia of the intracellular domain of Notch, a dominant activated form of the receptor, is sufficient to prevent learning deficits after sleep deprivation. Together, these results identify a novel neuron-glia signaling pathway dependent on Notch and regulated by bunched. These data highlight the emerging role of neuron-glia interactions in regulating both sleep and learning impairments associated with sleep loss.  相似文献   

10.
Growth hormone-releasing hormone (GHRH), its receptor (GHRHR), and other members of the somatotropic axis are involved in non-rapid eye movement sleep (NREMS) regulation. Previously, studies established the involvement of hypothalamic GHRHergic mechanisms in NREMS regulation, but cerebral cortical GHRH mechanisms in sleep regulation remained uninvestigated. Here, we show that unilateral application of low doses of GHRH to the surface of the rat somatosensory cortex ipsilaterally decreased EEG delta wave power, while higher doses enhanced delta power. These actions of GHRH on EEG delta wave power occurred during NREMS but not during rapid eye movement sleep. Further, the cortical forms of GHRH and GHRHR were identical to those found in the hypothalamus and pituitary, respectively. Cortical GHRHR mRNA and protein levels did not vary across the day-night cycle, whereas cortical GHRH mRNA increased with sleep deprivation. These results suggest that cortical GHRH and GHRHR have a role in the regulation of localized EEG delta power that is state dependent, as well as in their more classic hypothalamic role in NREMS regulation.  相似文献   

11.
Epithelial ovarian carcinoma is the leading cause of cancer-related deaths among women with gynecologic malignancies. Antagonists of the growth hormone-releasing hormone (GHRH) have been shown to inhibit growth of various cancers through endocrine, autocrine, and paracrine mechanisms. In this study, we have investigated the effects of GHRH antagonists (GHRHa) in ES-2 human clear cell ovarian cancer and in UCI-107 human serous ovarian cancer in vitro and in vivo. We evaluated the expression of mRNA for GHRH receptor, the binding to GHRH receptors, in specimens of ES-2 ovarian cancer. We evaluated also the in vitro effects of GHRHa on ES-2 cells and the in vivo effect of 2 different GHRHa on ES-2 and UCI-107 tumors. Nude mice bearing xenografts on ES-2 and UCI-107 ovarian cancer were treated with JMR-132 and MZ-J-7-118, respectively. Tumor growth was compared to control. ES-2 cells expressed mRNA for the functional splice variant SV1 of the GHRH receptor. JMR-132 inhibited cell proliferation in vitro by 42% and 18% at 10 and 1 μM concentration, respectively. Specific high affinity receptors for GHRH were detected in ES-2 cancer samples. In vivo daily subcutaneous injections of GHRHa significantly reduced tumor growth compared to a control group in both animal models. Our results indicate that GHRHa such as JMR-132 and MZ-J-7-118 can inhibit the growth of human ovarian cancer. The efficacy of GHRHa in ovarian cancer should be assessed in clinical trials.  相似文献   

12.
Growth hormone response of bull calves to growth hormone-releasing factor   总被引:2,自引:0,他引:2  
Three experiments were conducted to determine serum growth hormone (GH) response of bull calves (N = 4; 83 kg body wt) to iv injections and infusions of human pancreatic GH-releasing factor 1-40-OH (hpGRF). Peak GH responses to 0, 2.5, 10, and 40 micrograms hpGRF/100 kg body wt were 7 +/- 3, 8 +/- 3, 18 +/- 7, and 107 +/- 55 (mean peak height +/- SEM) ng/ml serum, respectively. Only the response to the 40-microgram dose was greater (P less than 0.05) than the 0-microgram dose. Concentrations of prolactin in serum were not affected by hpGRF treatment. In calves injected with hpGRF (20 micrograms/100 kg body wt) at 6-hr intervals for 48 hr, GH increased from a mean preinjection value of 3.1 ng/ml serum to a mean peak response value of 70 ng/ml serum. Differences in peak GH response between times of injection existed within individual calves (e.g., 10.5 ng/ml vs 184.5 ng/ml serum). Concentrations of GH in calves infused continuously with either 0 or 200 micrograms hpGRF/hr for 6 hr averaged 7.4 +/- 3 and 36.5 +/- 11 ng/ml serum, respectively (P less than 0.05). Concentrations of GH oscillated markedly in hpGRF-infused calves, but oscillations were asynchronous among calves. We conclude that GH response of bull calves to hpGRF is dose dependent and that repeated injections or continuous infusions of hpGRF elicit GH release, although magnitude of response varies considerably. We hypothesize that differences in GH response to hpGRF within and among calves, and pulsatile secretion in the face of hpGRF infusion may be related to the degree of synchrony among exogenous hpGRF and endogenous GRF and somatostatin.  相似文献   

13.
Sleep deprivation (SD) is suggested to be associated with reduced thermo-regulatory functions. This study aimed to quantify the effect of partial (PSD) and total (TSD) 24?h SD using a standard heat tolerance test (HTT). Eleven participants underwent HTT after well-rested state, PSD and TSD. No significant physiological differences were found between the exposures but subjective discomfort was higher after TSD. Evening chronotypes' temperature during HTT was higher after TSD compared with PSD (p = 0.017). After TSD, evening chronotypes compared to intermediate chronotypes' temperature was higher during the first hour of the HTT (p?<?0.05), suggesting that thermo-regulatory function during exercise in the heat is influenced by chronotype.  相似文献   

14.
The effects of iv administration of growth hormone-releasing factor (GRF) on growth hormone (GH) release and on nitrogen metabolism were measured in prepubertal calves. Crossbred beef heifers (111 kg) were used in a Latin square design to test the effects of 0, 0.01, 0.033, 0.067, and 0.1 microgram human pancreatic (hp) GRF [hpGRF (1,40)OH]/kg body wt on plasma GH concentrations. When they were given doses of 0.067 and 0.1 microgram hpGRF/kg body wt, plasma GH increased (P less than 0.05) within 5-15 min, compared with injections of control buffer, and then returned to preinjection concentrations. The response to 0.067 microgram hpGRF/kg body wt every 3 hr for 42 hr was studied in five heifers (137 kg body wt). The animals responded to 50% of the GRF injections with an increase in plasma GH during every 6-hr period measured. Nitrogen retention, hormone concentrations, and weight gain were measured in five bull calves (90 kg body wt) administered 0 or 0.067 microgram Nle rat hypothalamic GRF (1,29)NH2/kg body wt every 4 hr for 10 days. Metabolic parameters were interpreted to indicate an anabolic response to GRF even though increases of 16% in nitrogen retention, 23% in plasma somatomedin C concentrations, and 36% in weight gain with pulsatile GRF treatment were variable and statistically similar to those of controls. These results indicate that GRF induces peak GH secretion within 15 min in prepubertal calves and that calves can respond to multiple injections of GRF with an increase in plasma GH.  相似文献   

15.
In order to further understand the role of endogenous pituitary neuropeptides in pituitary hormonal content and secretion, GHRH, SRIH and GH contents were quantified in GH adenomas obtained from acromegalic patients with plasma GH levels either high (greater than 5 micrograms/l, range 11 to 550 micrograms/l, n = 11) or in the normal range (less than 5 micrograms/l, range 1 to 3.3 micrograms/l, n = 4). Values were compared to those found in normal human pituitaries. No relationship was found between GHRH content and plasma GH or between SRIH and GH content when considering together adenomas and normal pituitaries. Results showed that there is a positive relationship between GHRH and GH content: when GHRH content is high, GH content is also high (normal pituitaries and GH adenomas of acromegalic patients with high plasma GH) and when GHRH content is low, GH content is also low (GH adenomas of acromegalic patients with plasma GH in the normal range). Conversely, SRIH content is negatively related to plasma GH levels: when SRIH is present, plasma GH is in the normal range; when SRIH is undetectable, plasma GH is high.  相似文献   

16.
Seven subjects exercised to thermal comfort in a cold environment (O degrees C, 2.5 m X s-1) after normal sleep (control) and following a 50-h period of sleep deprivation. Resting core temperature (rectal) taken before the subject entered the cold environment was significantly lower (-0.5 degrees C, P less than 0.05) following the 50-h period of wakefulness. However, rectal temperature was not different after 15 min of exercise during the two exposures, suggesting that the subjects stored heat more rapidly during the first 15 min of exercise after sleep deprivation. No significant differences in self-chosen exercise intensity, significant differences in self-chosen exercise intensity, heart rate, metabolic rate, or exercise time were evident between the control and sleep deprived exposures. Fifty hours of sleep deprivation failed to alter the core temperature response during exercise in severe cold stress, and subjects chose identical work rates to minimize fatigue and cold sensation. The results suggest that the 50-h sleep deprivation period was not a true physiological stress during exercise in a cold environment. (Supported by Contract #DAMD 17-81-C1023.)  相似文献   

17.
The changes in cardiac and ventilatory responses were measured in 7 endurance athletes during physical exercise on a bicycle ergometer, taking place after a control night and after a night with partial sleep deprivation in the middle of the night. The results show that, despite the maximal work load was not modified with control, heart rate, ventilation and VE/VO2 ratio (ERO2) were greater at the submaximal (75% of the VO2 max) and maximal work load and oxygen consumption decreased at maximal work, after the night of partial sleep deprivation as compared to the control. These findings suggest that acute sleep loss may contribute to alter the endurance performance by impairment of aerobic pathways.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号