共查询到20条相似文献,搜索用时 0 毫秒
1.
Mazzarella L Bonomi G Lubrano MC Merlino A Riccio A Vergara A Vitagliano L Verde C di Prisco G 《Proteins》2006,62(2):316-321
The cathodic hemoglobin component of the Antarctic fish Trematomus newnesi (HbCTn) is a Root-effect protein. The interpretation of its functional properties in relation to its sequence is puzzling. Indeed, HbCTn sequence is characterized by an extremely low histidyl content, and in particular by the lack of His146beta and His69beta, which are believed to be important in Bohr and Root effects, respectively. Furthermore, previous analyses suggested that the local environment of Asp95alpha, Asp99beta, and Asp101beta should not be appropriate for the formation of Asp-Asp interactions, which are important for the Root effect. Here, we report the high-resolution crystal structure of the deoxy form of HbCTn. Our data provide a structural interpretation for the very low oxygen affinity of the protein and insights into the structural determinants of the Root effect protein. The structure demonstrates that the presence of Ile41alpha and Ser97alpha at the alpha1beta2 interface does not prevent the formation of the inter-Asp interactions in HbCTn, as previous studies had suggested. The present data indicate that the hydrogen bond formed between Asp95alpha and Asp101beta, which is stabilized by Asp99beta, is per se sufficient to generate the Root effect, and it is the minimal structural requirement needed for the design of Root-effect Hbs. 相似文献
2.
Histidine decarboxylase (HDC) from Lactobacillus 30a converts histidine to histamine, a process that enables the bacteria to maintain the optimum pH range for cell growth. HDC is regulated by pH; it is active at low pH and inactive at neutral to alkaline pH. The X-ray structure of HDC at pH 8 revealed that a helix was disordered, resulting in the disruption of the substrate-binding site. The HDC trimer has also been shown to exhibit cooperative kinetics at neutral pH, that is, histidine can trigger a T-state to R-state transition. The D53,54N mutant of HDC has an elevated Km, even at low pH, indicating that the enzyme assumes the low activity T-state. We have solved the structures of the D53,54N mutant at low pH, with and without the substrate analog histidine methyl ester (HME) bound. Structural analysis shows that the apo-D53,54N mutant is in the inactive or T-state and that binding of the substrate analog induces the enzyme to adopt the active or R-state. A mechanism for the cooperative transition is proposed. 相似文献
3.
The structural transition induced by ligand binding in human hemoglobin encompasses quaternary structure changes at the interfaces between the two alphabeta dimers. In contrast, the interfaces between alpha and beta subunits within the same dimer (i.e., alpha1beta1 and alpha2beta2 interfaces) are structurally invariant. Previous work from this laboratory using NMR spectroscopy has identified four sites at the intradimeric alpha1beta1 and alpha2beta2 interfaces that, although structurally invariant, experience significant changes in the rates of proton exchange upon ligand binding. These sites are Hisalpha103(G10) and Hisalpha122(H5) in each alpha subunit of the hemoglobin tetramer. In the present work, we show that the proton exchange at the Hisalpha103(G10) sites is affected by the interactions of hemoglobin with chloride ions. Increasing concentrations of chloride ions at pH 6.45 and at 37 degrees C enhance the exchange rate of the Hisalpha103(G10) N(epsilon 2) proton. The enhancement is greater in deoxygenated than in ligated hemoglobin. In the framework of the local unfolding model for proton exchange, these results suggest that the structural free energy and/or the proton transfer reactions at the Hisalpha103(G10) sites depend on the concentration of chloride ions. Therefore, the ligand-induced changes at the Hisalpha103(G10) sites are modulated by the allosteric effect of chloride ions on hemoglobin. 相似文献
4.
5.
Zhigang Tu Albert Young Christopher Murphy Jun F. Liang 《Journal of peptide science》2009,15(11):790-795
Many bioactive peptides are featured by their unique amino acid compositions such as argine/lysine‐rich peptides. However, histidine‐rich bioactive peptides are hardly found. In this study, histidine‐containing peptides were constructed by selectively replacing the corresponded lysine residues in a lytic peptide LL‐1 with histidines. Interestingly, all resulting peptides demonstrated pH‐dependent activities. The cell lysis activities of these peptides could be increased up to four times as the solution pHs dropped from pH = 7.4 to pH = 5.5. The pH sensitivity of a histidine‐containing peptide was determined by histidine substitution numbers. Peptide derivatives with more histidines were associated with increased pH sensitivity. Results showed that not the secondary structures but pH‐affected cell affinity changes were responsible for the pH‐dependent activities of histidine‐containing peptides. The histidine substitution approach demonstrated here may present a general strategy to construct bioactive peptides with desired pH sensitivity for various applications. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd. 相似文献
6.
Received 20 December 1999/ Accepted in revised form 26 April 2000 相似文献
7.
8.
J E Ekholm S D Shukla D J Hanahan 《Biochemical and biophysical research communications》1981,103(2):407-413
The membrane ATPase of density (age) separated human erythrocytes was examined for its stimulation by the cytosols of these cell groups. On the assumption that the stimulatory activity in the cytosol is only calmodulin, it was consistently observed that the young cytosol had a significantly higher activity towards the membrane ATPase activity (from any age group) than did the old cell cytosol. The data clearly demonstrates decided differences in the expression of calmodulin activity in cytosols from young and old erythrocytes and would support the conclusion that calmodulin activity is altered during aging of these cells. Possible mechanisms for these alterations are discussed. 相似文献
9.
Youngbin Baek Nripen Singh Abhiram Arunkumar Ameya Borwankar Andrew L. Zydney 《Biotechnology journal》2019,14(7)
There is extensive experimental data showing that the final pH and buffer composition after protein diafiltration (DF), particularly with monoclonal antibodies, can be considerably different than that in the DF buffer due to electrostatic interactions between the charged protein and the charged ions. Previous models for this behavior have focused on the final (equilibrium) partitioning and are unable to explain the complex pH and concentration profiles during the DF process. The objective of this study is to develop a new model for antibody DF based on solution of the transient mass balance equations, with the permeate concentrations of the charged species evaluated assuming Donnan equilibrium across the semipermeable membrane in combination with electroneutrality constraints. Model predictions are in excellent agreement with experimental data obtained during DF of both acidic and basic monoclonal antibodies, with the protein charge determined from independent electrophoretic mobility measurements. The model is able to predict the entire pH/histidine concentration profiles during DF, providing a framework for the development of DF processes that yield the desired antibody formulation. 相似文献
10.
Yeagle GJ Gilchrist ML Walker LM Debus RJ Britt RD 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2008,363(1494):1157-66; discussion 1166
The CalEPR Center at UC-Davis (http://brittepr.ucdavis.edu) is equipped with five research grade electron paramagnetic resonance (EPR) instruments operating at various excitation frequencies between 8 and 130GHz. Of particular note for this RSC meeting are two pulsed EPR spectrometers working at the intermediate microwave frequencies of 31 and 35GHz. Previous lower frequency electron spin-echo envelope modulation (ESEEM) studies indicated that histidine nitrogen is electronically coupled to the Mn cluster in the S2 state of photosystem II (PSII). However, the amplitude and resolution of the spectra were relatively poor at these low frequencies, precluding any in-depth analysis of the electronic structure properties of this closely associated nitrogen nucleus. With the intermediate frequency instruments, we are much closer to the 'exact cancellation' limit, which optimizes ESEEM spectra for hyperfine-coupled nuclei such as 14N and 15N. Herein, we report the results from ESEEM studies of both 14N- and 15N-labelled PSII at these two frequencies. Spectral simulations were constrained by both isotope datasets at both frequencies, with a focus on high-resolution spectral examination of the histidine ligation to the Mn cluster in the S2 state. 相似文献
11.
Maheshinie Rajapaksha Jack F. Eichler Jan Hajduch David E. Anderson Kenneth L. Kirk James G. Bann 《Protein science : a publication of the Protein Society》2009,18(1):17-23
The binding of the Bacillus anthracis protective antigen (PA) to the host cell receptor is the first step toward the formation of the anthrax toxin, a tripartite set of proteins that include the enzymatic moieties edema factor (EF), and lethal factor (LF). PA is cleaved by a furin‐like protease on the cell surface followed by the formation of a donut‐shaped heptameric prepore. The prepore undergoes a major structural transition at acidic pH that results in the formation of a membrane spanning pore, an event which is dictated by interactions with the receptor and necessary for entry of EF and LF into the cell. We provide direct evidence using 1‐dimensional 13C‐edited 1H NMR that low pH induces dissociation of the Von‐Willebrand factor A domain of the receptor capillary morphogenesis protein 2 (CMG2) from the prepore, but not the monomeric full length PA. Receptor dissociation is also observed using a carbon‐13 labeled, 2‐fluorohistidine labeled CMG2, consistent with studies showing that protonation of His‐121 in CMG2 is not a mechanism for receptor release. Dissociation is likely caused by the structural transition upon formation of a pore from the prepore state rather than protonation of residues at the receptor PA or prepore interface. 相似文献
12.
Donald F. Busiek Eugene A. Bauer 《Biochimica et Biophysica Acta (BBA)/General Subjects》1979,585(3):389-397
Normal human skin fibroblast cultures have been used to assess the effects of relatively minor changes in environmental pH on collagenase, a major extracellular gene product. Collagenase accumulation in the culture medium, measured both as enzyme activity and immunoreactive material, was 2- to 10-fold greater at pH 7.6–8.2 than at pH 6.8–7.2. The pH-associated increase in collagenase was parallel by an increase in general protein synthesis. Nevertheless, prototypic lysosomal and cytoplasmic enzymes changed very little under identical culturing conditions. Although substantial intracellular protein degradation occurred at all pH values, the small differences either in general protein degradation or in specific collagenase degradation in the medium were of insufficient magnitude to account for the increased accumulation of collagenase. 相似文献
13.
Inobe T Arai M Nakao M Ito K Kamagata K Makio T Amemiya Y Kihara H Kuwajima K 《Journal of molecular biology》2003,327(1):183-191
We have studied the ATP-induced allosteric structural transition of GroEL using small angle X-ray scattering and fluorescence spectroscopy in combination with a stopped-flow technique. With X-ray scattering one can clearly distinguish the three allosteric states of GroEL, and the kinetics of the transition of GroEL induced by 85 microM ATP have been observed directly by stopped-flow X-ray scattering for the first time. The rate constant has been found to be 3-5s(-1) at 5 degrees C, indicating that this process corresponds to the second phase of the ATP-induced kinetics of tryptophan-inserted GroEL measured by stopped-flow fluorescence. Based on the ATP concentration dependence of the fluorescence kinetics, we conclude that the first phase represents bimolecular non-cooperative binding of ATP to GroEL with a bimolecular rate constant of 5.8 x 10(5)M(-1)s(-1) at 25 degrees C. Considering the electrostatic repulsion between negatively charged GroEL (-18 of the net charge per monomer at pH 7.5) and ATP, the rate constant is consistent with a diffusion-controlled bimolecular process. The ATP-induced fluorescence kinetics (the first and second phases) at various ATP concentrations (< 400 microM) occur before ATP hydrolysis by GroEL takes place and are well explained by a kinetic allosteric model, which is a combination of the conventional transition state theory and the Monod-Wyman-Changeux model, and we have successfully evaluated the equilibrium and kinetic parameters of the allosteric transition, including the binding constant of ATP in the transition state of GroEL. 相似文献
14.
组氨酸磷酸化(pHis)在原核和真核生物的生命活动中发挥重要调控作用,并与包括恶性肿瘤在内的多种病理过程相关。pHis修饰中磷酰胺键在高温和低pH下容易断裂,其高度不稳定性导致对pHis修饰的鉴定和研究进展缓慢。近年来,磷酸化蛋白质组学新技术的发展以及pHis特异性抗体的出现,推动了pHis修饰蛋白底物的鉴定和功能研究。首次在哺乳动物细胞中鉴定到超过700个pHis修饰蛋白,并陆续发现黏着斑激酶(FAK)和磷酸甘油酸变位酶1(PGAM1)等蛋白质的pHis修饰能促进肿瘤发展。本文主要探讨组氨酸激酶和组氨酸磷酸酶在调控特定蛋白质pHis修饰中的关键机制及其功能,以期为pHis修饰蛋白的生物学功能研究奠定基础。 相似文献
15.
To understand the mechanism of a functionally important ATP-induced allosteric transition of GroEL, we have studied the effect of a series of metal fluoride-ADP complexes and vanadate-ADP on GroEL by kinetic fluorescence measurement of pyrene-labeled GroEL and by small-angle X-ray scattering measurement of wild-type GroEL. The metal fluorides and vanadate, complexed with ADP, are known to mimic the gamma-phosphate group of ATP, but they differ in geometry and size; it is expected that these compounds will be useful for investigating the strikingly high specificity of GroEL for ATP that enables the induction of the allosteric transition. The kinetic fluorescence measurement revealed that aluminium, beryllium, and gallium ions, when complexed with the fluoride ion and ADP, induced a biphasic fluorescence change of pyrenyl GroEL, while scandium and vanadate ions did not induce any kinetically observed change in fluorescence. The burst phase and the first phase of the fluorescence kinetics were reversible, while the second phase and subsequent changes were irreversible. The dependence of the burst-phase and the first-phase fluorescence changes on the ADP concentration indicated that the burst phase represents non-cooperative nucleotide binding to GroEL, and that the first phase represents the allosteric transition of GroEL. Both the amplitude and the rate constant of the first phase of the fluorescence kinetics were well understood in terms of a kinetic allosteric model, which is a combination of transition state theory and the Monod-Wyman-Changeux allosteric model. From the kinetic allosteric model analysis, the relative free energy of the transition state in the metal fluoride-ADP-induced allosteric transition of GroEL was found to be larger than the corresponding free energy of the ATP-induced allosteric transition by more than 5.5kcal/mol. However, the X-ray scattering measurements indicated that the allosteric state induced by these metal fluoride-ADP complexes is structurally equivalent to the allosteric state induced by ATP. These results suggested that both the size and coordination geometry of gamma-phosphate (and its analogs) are related to the allosteric transition of GroEL. It was therefore concluded that the tetrahedral geometry of gamma-phosphate (or its analogs) and the inter-atomic distance ( approximately 1.6A) between phosphorus (vanadium, or metal atom) and oxygen (or fluorine) are both important for inducing the allosteric transition of GroEL, leading to the high selectivity of GroEL for ATP about ligand adenine nucleotides, which function as the preferred allosteric ligand. 相似文献
16.
There are currently two contradictory models for the kinetics of the ATP-induced GroEL allosteric transition occurring around 20 microM ATP. One model, proposed by Horovitz et al. demonstrates the existence of two parallel pathways for the allosteric transition and an abrupt ATP-dependent switch from one pathway to the other. The other model, which was proposed by the present authors, shows no need to assume the parallel pathways, and a combination of the transition-state theory and the Monod-Wyman-Changeux model of allostery can explain the kinetics as well as the equilibrium of the transition. The discrepancy appears to be due to whether we regard the transition as reversible or irreversible. Thus, here we have investigated the reversibility of the allosteric transition between 0 microM and 70 microM ATP by the use of a stopped-flow double-jump technique, which has allowed us to monitor the kinetics of the reverse reaction from the relaxed state at a high ATP concentration to the tense state at a low ATP concentration. The tryptophan fluorescence of a tryptophan-inserted variant of GroEL was used to follow the kinetics. As a result, the allosteric transition was shown to be a reversible process, supporting the validity of our model. We also show that the structural environment around the ATP-binding site of GroEL in the transition state is very similar to that in the relaxed state (Phi=0.9) by using a Phi value analysis in the kinetic Monod-Wyman-Changeux model, which is analogous to the mutational Phi value analysis in protein folding. 相似文献
17.
It is found that for Enterococcus hirae ATCC9790 bacteria grown in anaerobic conditions, one-hour exposure to low-intensity (radiant power of 0.06 mW/cm2) coherent extremely high frequency electromagnetic radiation (from 45 to 53 GHz), or millimeter electromagnetic radiation, leads to an appreciable increase in latent growth time and to a decrease in specific growth rate; herein, the effects intensify as the frequency increases from 49 to 53 GHz. The result is enhanced at an increase in the radiation duration from 30 min to 1 h; however, a further increase in the exposure time up to 2 h does not lead to intensification of the effect. It is shown that the effect of extremely high frequency electromagnetic radiation on Enterococcus hirae does not depend on pH of the medium (pH 6.0 or 8.0). It may be expected that these bacteria have protective or reparation mechanisms that compensate long-term action of this radiation; it is not improbable that various mechanisms of pH regulation are present as well. 相似文献
18.
Sheetal Uppal Amit Kumar Manish Shandilya Nitika Mukhi Amit Kumar Singh Suneel Kateriya Jagreet Kaur Suman Kundu 《Analytical biochemistry》2016
Hemoglobins with diverse characteristics have been identified in all kingdoms of life. Their ubiquitous presence indicates that these proteins play important roles in physiology, though function for all hemoglobins are not yet established with certainty. Their physiological role may depend on their ability to bind ligands, which in turn is dictated by their heme chemistry. However, we have an incomplete understanding of the mechanism of ligand binding for these newly discovered hemoglobins and the measurement of their kinetic parameters depend on their coordination at the heme iron. To gain insights into their functional role, it is important to categorize the new hemoglobins into either penta- or hexa-coordinated varieties. We demonstrate that simple pH titration and absorbance measurements can determine the coordination state of heme iron atom in ferric hemoglobins, thus providing unambiguous information about the classification of new globins. This method is rapid, sensitive and requires low concentration of protein. Penta- and hexa-coordinate hemoglobins displayed distinct pH titration profiles as observed in a variety of hemoglobins. The pentacoordinate distal histidine mutant proteins of hexacoordinate hemoglobins and ligand-bound hexacoordinate forms of pentacoordinate hemoglobins reverse the pH titration profiles, thus validating the sensitivity of this spectroscopic technique. 相似文献
19.
Copper concentration in plants and in the rhizosphere as influenced by the iron status of tomato (Lycopersicon esculentum L.) 总被引:1,自引:1,他引:0
Changes of metal concentration that occur in the rhizosphere may arise from several processes including variation in the concentration
of complexing ligands, pH or redox potential that can be influenced by the Fe status of the plant. The aim of this study was
to assess for both acidic and calcareous, Cu-contaminated soils how Cu concentration in plants and in the rhizosphere was
affected by the Fe status of a strategy I plant species. The change of soil solution pH, total solution Cu concentration and
soil redox potential was monitored for 8 days in the rhizosphere of tomato (Lycopersicon esculentum L.) in response to contrasting Fe supply. The concentration of Cu in roots was enhanced under Fe deficiency in the acidic
soils. Shoot Cu however did not vary with the Fe status of the plant. The plant Fe status had little effect on rhizosphere
pH, redox potential or Cu concentration in solution in either acidic or calcareous soils. Marked differences in pH and solution
Cu concentration were observed between rhizosphere and uncropped soils. Roots induced an increase in pH of acidic soils and
a decrease in solution Cu concentration in all soils. The decrease in solution Cu concentration in acidic soils may be explained
by the increase in rhizosphere pH. The proposed device provided new data on the fate of Cu in the rhizosphere and showed a
positive correlation for the four soils considered together between the total Cu concentration in soil solution and root Cu
concentration. 相似文献
20.
Megan L Murtaugh Sean W Fanning Tressa M Sharma Alexandra M Terry James R Horn 《Protein science : a publication of the Protein Society》2011,20(9):1619-1631
There is growing interest in the development of protein switches, which are proteins whose function, such as binding a target molecule, can be modulated through environmental triggers. Efforts to engineer highly pH sensitive protein–protein interactions typically rely on the rational introduction of ionizable groups in the protein interface. Such experiments are typically time intensive and often sacrifice the protein's affinity at the permissive pH. The underlying thermodynamics of proton‐linkage dictate that the presence of multiple ionizable groups, which undergo a pKa change on protein binding, are necessary to result in highly pH‐dependent binding. To test this hypothesis, a novel combinatorial histidine library was developed where every possible combination of histidine and wild‐type residue is sampled throughout the interface of a model anti‐RNase A single domain VHH antibody. Antibodies were coselected for high‐affinity binding and pH‐sensitivity using an in vitro, dual‐function selection strategy. The resulting antibodies retained near wild‐type affinity yet became highly sensitive to small decreases in pH, drastically decreasing their binding affinity, due to the incorporation of multiple histidine groups. Several trends were observed, such as histidine “hot‐spots,” which will help enhance the development of pH switch proteins as well as increase our understanding of the role of ionizable residues in protein interfaces. Overall, the combinatorial approach is rapid, general, and robust and should be capable of producing highly pH‐sensitive protein affinity reagents for a number of different applications. 相似文献