首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
U F Schade 《Prostaglandins》1987,34(3):385-400
The influence of lipopolysaccharide (LPS, endotoxin) or its lipid A component (bacterial and synthetic) on the synthesis of zymosan induced leukotriene C4, prostaglandin E2 and prostacyclin and on the conversion of exogenous arachidonic acid was studied in mouse peritoneal macrophages. It was found that following preincubation with LPS the amount of leukotriene C4 released during phagocytosis of zymosan was substantially decreased. The levels of prostaglandin E2 and prostacyclin, however, were the same in LPS-treated cells and controls. Likewise, pretreatment with LPS impaired the capacity to convert exogenously added arachidonic acid to mono- and di-HETE's. Lipid A (bacterial and synthetic) exhibited the same activity as LPS. LPS had no effect on macrophages of the endotoxin low responder mouse strain (C3H/HeJ). Several explanations could be possible for the observed LPS effect. The finding that low doses of alpha-tocopheryl acetate prevented the LPS-induced decrease of LTC4 synthesis indicates a protective role of this agent. We would, therefore, favour the idea that lipoxygenases undergo oxidative selfinactivation during LPS action.  相似文献   

2.
The influence of lipopolysaccharide (LPS, endotoxin) or its lipid A component (bacterial and synthetic) on the synthesis of zymosan induced leukotriene C4, prostaglandin E2 and prostacyclin and on the conversion of exogenous arachidonic acid was studied in mouse peritoneal macrophages. It was found that following preincubation with LPS the amount of leukotriene C4 released during phagocytosis of zymosan was substantially decreased. The levels of prostaglandin E2 and prostacyclin, however, were the same in LPS-treated cells and controls. Likewise, pretreatment with LPS impaired the capacity to convert exogenously added arachidonic acid to mono- and di-HETE's. Lipid A (bacterial and synthetic) exhibited the same activity as LPS. LPS had no effect on macrophages of the endotoxin low responder mouse strain (C3H/ HeJ). Several explanations could be possible for the observed LPS effect. The finding that low doses of α-tocopheryl acetate prevented the LPS-induced decrease of LTC4 synthesis indicates a protective role of this agent. We would, therefore, favour the idea that lipoxygenases undergo oxidative selfinactivation during LPS action.  相似文献   

3.
Resident mouse peritoneal macrophages when exposed to zymosan during the first day of cell culture synthesize and secrete large amounts of prostaglandin E2 (PGE2) and leukotriene C4 (LTC4), the respective products of cyclo-oxygenase- and 5-lipoxygenase-catalysed oxygenations of arachidonic acid. Under these conditions of cell stimulation only small amounts of hydroxyeicosatetraenoic acids (HETEs) are concomitantly produced. However, exogenously added arachidonic acid is metabolized to large amounts of 12- and 15-HETE and only relatively small amounts of PGE2. No LTC4 is formed under these conditions. In contrast, resident mouse peritoneal macrophages in cell culture for 4 days synthesized less PGE2 and LTC4 when exposed to zymosan. However, these macrophage populations continue to synthesize 12-HETE from exogenously added arachidonic acid. Zymosan induced the secretion of a lysosomal enzyme, N-acetyl-beta-glucosaminidase, equally in both 1- and 4-day cultures. Both 12- and 15-hydroperoxyeicosatetraenoic acids (HPETEs), the precursors of 12- and 15-HETE, were found to be irreversible inhibitors of the cyclo-oxygenase pathway and reversible inhibitors of the 5-lipoxygenase pathway in macrophages. 15-HETE were found to be reversible inhibitors of both pathways. Thus the oxidation of arachidonic oxidation of arachidonic acid to both prostaglandins and leukotrienes may be under intracellular regulation by products of 12- and 15-lipoxygenases.  相似文献   

4.
LPS from bacteria can result in the development of sepsis syndrome and acute lung injury. Although acute exposure to endotoxin primes leukocytes for enhanced synthesis of leukotrienes (LT), little is known about the effect of chronic exposure. Therefore, we determined the effect of prolonged LPS treatment on 5-lipoxygenase (5-LO) metabolism of arachidonic acid in alveolar macrophages (AM) and in peripheral blood monocytes. Pretreatment of AM with LPS caused time- and dose-dependent suppression of LT synthetic capacity. LPS pretreatment failed to inhibit arachidonic acid (AA) release. The fact that LPS inhibited LT synthesis from endogenous AA more than from exogenous AA suggested an effect on 5-LO-activating protein (FLAP). In addition, an inhibitory effect of LPS treatment on AM 5-LO activity was suggested by cell-free 5-LO enzyme assay. No effect on the expression of either 5-LO or FLAP proteins was observed. New protein synthesis was necessary for LPS-induced reduction of 5-LO metabolism in AM, and immunoblotting demonstrated marked induction of NO synthase (NOS). Inhibition by LPS was reproduced by an NO donor and was abrogated by inhibitors of constitutive and inducible NOS. Compared with AM, peripheral blood monocytes exhibited no suppression by LPS of 5-LO metabolism and no induction of inducible NOS. We conclude that prolonged exposure to LPS impairs AM 5-LO metabolism by NO-mediated suppression of both 5-LO and FLAP function. Because LT contribute to antimicrobial defense, this down-regulation of 5-LO metabolism may contribute to the increased susceptibility to pneumonia in patients following sepsis.  相似文献   

5.
We have previously shown that the biologically important reactive oxygen metabolite hydrogen peroxide (H2O2) stimulates arachidonic acid (AA) release and thromboxane A2 synthesis in the rat alveolar macrophage. We have now investigated the effects of H2O2 on alveolar macrophage 5-lipoxygenase metabolism. H2O2 failed to stimulate detectable synthesis of leukotriene B4, leukotriene C4, or 5-hydroxyeicosatetraenoic acid (5-HETE) as determined by reverse-phase high performance liquid chromatography (RP-HPLC) and sensitive radioimmunoassays (RIAs). This was not explained by oxidative degradation of leukotrienes by H2O2 at the concentrations used. Moreover, RIA and RP-HPLC analyses demonstrated that H2O2 dose-dependently inhibited synthesis of leukotriene B4, leukotriene C4, and 5-HETE induced by the agonists A23187 (10 microM) and zymosan (100 micrograms/ml), over the same concentration range at which it augmented synthesis of the cyclooxygenase products thromboxane A2 and 12-hydroxy-5,8,10-heptadecatrienoic acid. Four lines of evidence suggested that H2O2 inhibited alveolar macrophage leukotriene and 5-HETE synthesis by depleting cellular ATP, a cofactor for 5-lipoxygenase. 1) H2O2 depleted ATP in A23187- and zymosan-stimulated alveolar macrophages with a dose dependence very similar to that for inhibition of agonist-induced leukotriene synthesis. 2) The time courses of ATP depletion and inhibition of leukotriene B4 synthesis by H2O2 were compatible with a rate-limiting effect of ATP on leukotriene synthesis in H2O2-exposed cultures. 3) Treatment of alveolar macrophages with the electron transport inhibitor antimycin A prior to A23187 stimulation depleted ATP and inhibited leukotriene B4 and C4 synthesis to equivalent degrees, while thromboxane A2 production was spared. 4) Incubation with the ATP precursors inosine plus phosphate attenuated both ATP depletion and inhibition of leukotriene B4 and C4 synthesis in alveolar macrophages stimulated with A23187 in the presence of H2O2. Our results show that H2O2 has the capacity to act both as an agonist for macrophage AA metabolism, and as a selective inhibitor of the 5-lipoxygenase pathway, probably as a result of its ability to deplete ATP. Depletion of cellular energy stores by oxidants generated during inflammation in vivo may be a means by which the inflammatory response is self-limited.  相似文献   

6.
Studies of the response of RAW264.7 cells (RAW) to lipopolysaccharide (LPS) were carried out to determine why these cells do not demonstrate the prostaglandin (PG)-dependent autocrine regulation of tumor necrosis factor-alpha (TNF-alpha) secretion observed in primary resident peritoneal macrophages (RPMs). The major cyclooxygenase (COX) product of LPS-stimulated RAW was PGD2, with lesser amounts of PGE2. LPS-treated RAW produced PGs more slowly and reached their maximal PG synthetic rate later than did LPS-treated RPMs, as a result of lower constitutive COX-1 expression and a slower rate of COX-2 induction. Cytosolic phospholipase A2 and levels of free arachidonic acid were similar in RAW and RPMs. In contrast to RPMs, LPS-treated RAW produced high quantities of TNF-alpha, which were not altered in the presence of COX inhibitors. This failure of endogenous PGs to suppress TNF-alpha secretion was explained by the absence of the prostaglandin D2 receptor and the low levels of PGE2 produced during the first 2 h of the LPS response. These studies demonstrate that autocrine regulation of TNF-alpha secretion in response to LPS is greatly facilitated by a COX-1-mediated rapid accumulation of PGs as well by a correspondence between the PGs produced and the receptors expressed by the cells.  相似文献   

7.
Comprehensive studies of prostaglandin (PG) synthesis in murine resident peritoneal macrophages (RPM) responding to bacterial lipopolysaccharide (LPS) revealed that the primary PGs produced by RPM were prostacyclin and PGE(2). Detectable increases in net PG formation occurred within the first hour, and maximal PG formation had occurred by 6-10 h after LPS addition. Free arachidonic acid levels rose and peaked at 1-2 h after LPS addition and then returned to baseline. Cyclooxygenase-2 (COX-2) and microsomal PGE synthase levels markedly increased upon exposure of RPM to LPS, with the most rapid increases in protein expression occurring 2-6 h after addition of the stimulus. RPM constitutively expressed high levels of COX-1. Studies using isoform-selective inhibitors and RPM from mice bearing targeted deletions of ptgs-1 and ptgs-2 demonstrated that COX-1 contributes significantly to PG synthesis in RPM, especially during the initial 1-2 h after LPS addition. Selective inhibition of either COX isoform resulted in increased secretion of tumor necrosis factor-alpha (TNF-alpha); however, this effect was much greater with the COX-1 than with the COX-2 inhibitor. These results demonstrate autocrine regulation of TNF-alpha secretion by endogenous PGs synthesized primarily by COX-1 in RPM and suggest that COX-1 may play a significant role in the regulation of the early response to endotoxemia.  相似文献   

8.
Mouse peritoneal macrophages metabolize dihomogammalinolenic acid (20:3n-6) primarily to 15-hydroxy-8,11,13-eicosatrienoic acid (15-OH-20:3). Since the biological properties of this novel trienoic eicosanoid remain poorly defined, the effects of increasing concentrations of 15-OH-20:3 and its arachidonic acid (20:4n-6) derived analogue. 15-hydroxy-5,8,11,13-eicosatetraenoic acid (15-HETE), on mouse macrophage 20:4n-6 metabolism were investigated. Resident peritoneal macrophages were prelabeled with [3H]-20:4n-6 and subsequently stimulated with zymosan in the presence of either 15-OH-20:3 or 15-HETE (1-30 microM). After 1 hr, the radiolabeled soluble metabolites were analyzed by reverse phase high performance liquid chromatography. 15-OH-20:3 inhibited zymosan-induced leukotriene C4 (IC50 = 2.4 microM) and 5-HETE (IC50 = 3.1 microM) synthesis. In contrast to the inhibition of macrophage 5-lipoxygenase, 15-OH-20:3 enhanced 12-HETE synthesis (5-30 microM) and had no measurable effect on cyclooxygenase metabolism (1-10 microM) i.e., 6-keto-prostaglandin F1 alpha and prostaglandin E2 synthesis. Addition of exogenous 15-HETE produced similar effects. These results suggest that the manipulation of macrophage 15-OH-20:3n-6 levels may provide a measure of cellular control over 20:4n-6 metabolism, specifically, leukotriene production.  相似文献   

9.
10.
Alpha-fetoprotein stimulates leukotriene synthesis in P388D1 macrophages   总被引:1,自引:0,他引:1  
Alpha-fetoprotein (AFP) is able to bind specifically polyunsaturated fatty acids, especially arachidonic acid, the major precursor for prostaglandin and leukotriene synthesis. In P388D1 macrophages, AFP was found to reduce prostaglandin synthesis. This reduced synthesis was counter-balanced by a higher release of unmetabolized arachidonic acid and an enhanced production of leukotrienes. The same results were obtained with unactivated and activated cells irrespective of the activator used: lipopolysaccharide, Ca2+ ionophore A23187, phorbol myristate acetate, interferon-gamma, silica, or zymozan particles. The stimulation of leukotriene synthesis by AFP in macrophages thus appears to be a possible mechanism for the in vitro immunosuppressive effects of this oncofetal protein.  相似文献   

11.
We have previously reported that 15-hydroxyeicosatetraenoic acid (15-HETE) stimulated the 5-lipoxygenase in the murine PT-18 mast/basophil cell line to produce leukotriene B4 and 5-HETE from exogenously added arachidonic acid. In order to determine the structural requirements in the HETE molecule that are necessary for the activation of this 5-lipoxygenase, various isomeric HETEs, derivatives and analogs were prepared, purified and tested. The order of stimulatory potencies was: 15-HETE acetate greater than 15-HETE = 15-hydroperoxyeicosatetraenoic acid (15-HPETE) greater than 5-HPETE = 12-HPETE greater than 5-HETE. 15-HETE methyl ester, 12-HETE and prostaglandin E2 were ineffective over the concentration range tested. Several diHETEs were also tested. 5S,15S-DiHETE was somewhat less potent than 15-HETE, whereas both 8S,15S-diHETE and leukotriene B4 were inactive. The calcium ionophore A23187 was much less effective than 15-HETE. These structure-activity studies indicate the importance of the nature, position and location of the various functional groups in the HETE molecule and suggest that a specific recognition site is involved in the activation of the 5-lipoxygenase in PT-18 cells.  相似文献   

12.
13.
In this study we report the in vitro inhibition of leukotriene synthesis in calcium ionophore (A23187)-stimulated, intact human blood neutrophils by AHR-5333. The results showed that AHR-5333 inhibits 5-HETE, LTB4 and LTC4 synthesis with IC50 values of 13.9, 13.7 and 6.9 microM, respectively. Further examination of the effect of AHR-5333 on individual reactions of the 5-lipoxygenase pathway (i.e. conversion of LTA4 to LTB4, LTA4 to LTC4, and arachidonic acid to 5-HETE) showed that this agent was not inhibitory to LTA4 epoxyhydrolase and glutathione-S-transferase activity in neutrophil homogenates. However, conversion of arachidonic acid (30 microM) to 5-HETE was half maximally inhibited by 20 microM AHR-5333 in the cell-free system. The inhibition of LTB4 and LTC4 formation in intact neutrophils by AHR-5333 appears to be entirely due to a selective inhibition of 5-lipoxygenase activity and an impaired formation of LTA4, which serves as substrate for LTA4 epoxyhydrolase and glutathione-S-transferase. AHR-5333 did not affect the transformation of exogenous arachidonic acid to thromboxane B2, HHT and 12-HETE in preparations of washed human platelets, indicating that this agent has no effect on platelet prostaglandin H synthase, thromboxane synthase and 12-lipoxygenase activity. The lack of inhibitory activity of AHR-5333 on prostaglandin H synthase activity was confirmed with microsomal preparations of sheep vesicular glands.  相似文献   

14.
Repair of the airway epithelium after injury is critical for the maintenance of barrier function and the limitation of airway hyperreactivity. Airway epithelial cells (AECs) metabolize arachidonic acid to biologically active eicosanoids via the enzyme cyclooxygenase (COX). We investigated whether stimulating or inhibiting COX metabolites would affect wound closure in monolayers of cultured AECs. Inhibiting COX with indomethacin resulted in a dose-dependent inhibition of wound closure in human and feline AECs. Specific inhibitors for both COX-1 and COX-2 isoforms impaired wound healing. Inhibitors of 5-lipoxygenase did not affect wound closure in these cells. The addition of prostaglandin E(2) (PGE(2)) eliminated the inhibition due to indomethacin treatment, and the exogenous application of PGE(2) stimulated wound closure in a dose-dependent manner. Inhibition of COX with indomethacin only at initial time points resulted in a sustained inhibition of wound closure, indicating that prostanoids are involved in early wound repair processes such as spreading and migration. These differences in wound closure may be important if arachidonic acid metabolism and eicosanoid concentrations are altered in disease states such as asthma.  相似文献   

15.
This study was designed to determine the effect of inhibitors of cyclooxygenase (COX)-1, COX-2, and the nonselective COX inhibitor naproxen on coronary vasoactivity and thrombogenicity under baseline and lipopolysaccharide (LPS)-induced inflammatory conditions. We hypothesize that endothelial COX-1 is the primary COX isoform in the canine normal coronary artery, which mediates arachidonic acid (AA)-induced vasodilatation. However, COX-2 can be induced and overexpressed by inflammatory mediators and becomes the major local COX isoform responsible for the production of antithrombotic prostaglandins during systemic inflammation. The interventions included the selective COX-1 inhibitor SC-560 (0.3 mg/kg iv), the selective COX-2 inhibitor nimesulide (5 mg/kg iv), or the nonselective COX inhibitor naproxen (3 mg/kg iv). The selective prostacyclin (IP) receptor antagonist RO-3244794 (RO) was used as an investigational tool to delineate the role of prostacyclin (PGI(2)) in modulating vascular reactivity. AA-induced vasodilatation of the left circumflex coronary artery was suppressed to a similar extent by each of the COX inhibitors and RO. The data suggest that AA-induced vasodilatation in the normal coronary artery is mediated by a single COX isoform, the constitutive endothelial COX-1, which is reported to be susceptible to COX-2 inhibitors. The effect of the COX inhibitors on thrombus formation was evaluated in a model of carotid artery thrombosis secondary to electrolytic-induced vessel wall injury. Pretreatment with LPS (0.5 mg/kg iv) induced a systemic inflammatory response and prolonged the time-to-occlusive thrombus formation, which was reduced in the LPS-treated animals by the administration of nimesulide. In contrast, neither SC-560 nor naproxen influenced the time to thrombosis in the animals pretreated with LPS. The data are of significance in view of reported adverse cardiovascular events observed in clinical trials involving the use of selective COX-2 inhibitors, thereby suggesting that the endothelial constitutive COX-1 and the inducible vascular COX-2 serve important functions in maintaining vascular homeostasis.  相似文献   

16.
Arachidonic acid is the precursor of several potent derivatives that regulate physiological functions in the cardiovascular system. Thromboxane (TXA2) and prostacyclin (PGI2) are synthesized by the cyclooxygenase enzyme. The proaggregatory and vasoconstrictive TXA2 produced by platelets is opposed in vivo by the antiaggregatory and vasodilating activity of PGI2 synthesized by blood vessels. Arachidonic acid is also converted via a 5-lipoxygenase to leukotrienes, the vasoconstrictive components of SRSA. We have shown that this latter pathway is regulated by 15-HETE, a product of the 15-lipoxygenase present in lymphocytes. Confluent cultures of rat aorta smooth muscle cells (RSM) were superfused briefly with [14C]arachidonic acid. The products were isolated and analyzed by thin-layer chromatography-radioautography, high performance liquid chromatography, and gas-liquid chromatography-mass spectrometry. Prostacyclin (PGI2) was identified as the major product both by its biological properties in a platelet aggregation assay and by the mass spectrum of its tetra-trimethylsilylether-methyl ester derivative. Minor quantities of PGE2, PGD2, and PGF2 alpha were also synthesized. Three other compounds with chromatographic properties of mono-hydroxy eicosanoic acids were also formed in major amounts. These were shown to be cyclooxygenase products since their synthesis, together with that of prostacyclin, was blocked by the cyclooxygenase inhibitors aspirin (0.2 mM) and indomethacin (10 microM). Quantities of the hydroxy-eicosanoids were isolated from large scale incubations by silicic acid chromatography. Following methylation and reduction with platinum oxide/H2, the compounds were converted to their trimethylsilylether derivatives and analyzed by gas-liquid chromatography-mass spectrometry. The compounds were identified as 11-hydroxy-5,8,12,14-eicosatetraenoic acid (11-HETE), 15-hydroxy-5,8,11,13-eicosatetraenoic acid (15-HETE), and hydroxy-5,8,10-heptadeca-trienoic acid (HHT) by simultaneous ion monitoring of characteristic ions at M/e ratios of 287, 258, 229 for 11-HETE and 343, 314, 173 for 15-HETE, and by comparison with the mass spectra of authentic samples. Rat smooth muscle cells, prelabeled by 24-hour incubation with [14C]arachidonic acid, released large amounts of prostacyclin together with enhanced amounts of 11- and 15-HETE in response to physiological levels of thrombin (0.5-5 units/ml). These experiments demonstrate that, in addition to the thromboxane antagonist prostacyclin, vascular smooth muscle cells produce significant quantities of the leukotriene inhibitor 15-HETE via the cyclooxygenase pathway in response to physiological stimuli such as thrombin. The release of both prostacyclin and 15-HETE by vascular smooth muscle cells may thus play an important role in vascular homeostasis.  相似文献   

17.
Biochemical evidence in support of a role for arachidonic acid 5-lipoxygenase activity in pancreatic islet insulin secretion has been obtained. Peptidyl leukotriene metabolism was studied in rat islets using a dual-labeling technique in extended culture, with analysis of arachidonic acid metabolites by reverse-phase high-performance liquid chromatography. The production of [3H]arachidonoyl/[35S]cysteinyl leukotrienes C4 and E4 by islets was compared with that by mouse resident peritoneal macrophages and with the lipoxygenase metabolism of rabbit polymorphonuclear leukocytes. The stimulus-specific nature of leukotriene biosynthesis was characterized by low basal biosynthesis in unstimulated islet cells with a calcium-mediated activation of 5-lipoxygenase product formation.  相似文献   

18.
The Lipid A moiety of endotoxin potently activates TLR-4 dependent host innate immune responses. We demonstrate that Lipid-A mediated leukotriene biosynthesis regulates pathogen-associated molecular patterns (PAMP)-dependent macrophage activation. Stimulation of murine macrophages (RAW264.7) with E. coli 0111:B4 endotoxin (LPS) or Kdo2-lipid A (Lipid A) induced inflammation and Lipid A was sufficient to induce TLR-4 mediated macrophage inflammation and rapid ERK activation. The contribution of leukotriene biosynthesis was evaluated with a 5-lipoxygenase activating protein (FLAP) inhibitor, MK591. MK591 pre-treatment not only enhanced but also sustained ERK activation for up to 4 hours after LPS and Lipid A stimulation while inhibiting cell proliferation and enhancing cellular apoptosis. Leukotriene biosynthesis inhibition attenuated inflammation induced by either whole LPS or the Lipid A fraction. These responses were regulated by inhibition of the key biosynthesis enzymes for the proinflammatory eicosanoids, 5-lipoxygenase (5-LO), and cyclooxygenase-2 (COX-2) quantified by immunoblotting. Inhibition of leukotriene biosynthesis differentially regulated TLR-2 and TLR-4 cell surface expression assessed by flow cytometry, suggesting a close mechanistic association between TLR expression and 5-LO associated eicosanoid activity in activated macrophages. Furthermore, MK591 pre-treatment enhanced ERK activation and inhibited cell proliferation after LPS or Lipid A stimulation. These effects were regulated in part by increased apoptosis and modulation of cell surface TLR expression. Together, these data clarify the mechanistic association between 5-lipoxygenase activating protein-mediated leukotriene biosynthesis and 5-LO dependent eicosanoid metabolites in mediating the TLR-dependent inflammatory response after endotoxin exposure typical of bacterial sepsis.  相似文献   

19.
The effect of adrenalectomy on the formation of cyclooxygenase and lipoxygenase products by activated peritoneal rat macrophages was determined. After isolation, the cells were incubated with [1-14C]arachidonic acid and the calcium ionophore A23187 and the metabolites isolated by HPLC chromatography. The main components formed in the controls are 6-keto-prostaglandin F1 alpha, thromboxane B2 and 12-HETE. One peak represents 5,12-di-HETE. Smaller amounts of prostaglandin F2 alpha, prostaglandin E2, prostaglandin D2, leukotriene B4 and 15-HETE are also present. After adrenalectomy, a considerable increase occurs in the amounts of leukotriene B4, 15-HETE and 12-HETE. The increase in the prostaglandins is smaller. The compounds formed from endogenous arachidonic acid are also determined. In the cells of the controls, 6-keto-prostaglandin F1 alpha and thromboxane B2 are produced in higher amounts than leukotriene B4. After adrenalectomy, the formation of leukotriene B4 is much more increased than that of 6-keto-prostaglandin F1 alpha. These effects are most probably related to a diminished amount or inactivation of lipocortin, a glucocorticosteroid-induced peptide with phospholipase A2 inhibitory activity in adrenalectomized animals.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号