首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Macrophage migration inhibitory factor (MIF) is increased in kidney and urine during kidney disease. MIF binds to and activates CD74 and chemokine receptors CXCR2 and CXCR4. CD74 is a protein trafficking regulator and a cell membrane receptor for MIF, D-dopachrome tautomerase (D-DT/MIF-2) and bacterial proteins. MIF signaling through CD74 requires CD44. CD74, CD44 and CXCR4 are upregulated in renal cells in diseased kidneys and MIF activation of CD74 in kidney cells promotes an inflammatory response. MIF or CXCR2 targeting protects from experimental kidney injury, CD44 deficiency modulates kidney injury and CXCR4 activation promotes glomerular injury. However, the contribution of MIF or MIF-2 to these actions of MIF receptors has not been explored. The safety and efficacy of strategies targeting MIF, CD74, CD44 and CXCR4 are under study in humans.  相似文献   

2.
Macrophage migration inhibitory factor (MIF) is a cytokine expressed in various cell types, including hematopoietic, epithelial, endothelial, mesenchymal and neuronal cells. Altered MIF expression has been associated with a multitude of diseases ranging from inflammatory disorders like sepsis, lupus and rheumatoid arthritis to organ pathologies such as heart failure, myocardial infarction, acute kidney injury, organ fibrosis and a number of malignancies. The implication of MIF in these diseases was supported by numerous animal studies. MIF acts in an autocrine and paracrine manner via binding and activating the receptors CD74/CD44, CXCR2, CXCR4 and CXCR7. Upon receptor binding, several downstream signaling pathways were shown to be activated in vivo, including ERK1/2, AMPK and AKT. Expression of MIF receptors is not uniform in various cells, resulting in differential responses to MIF across various tissues and pathologies. Within cells, MIF can directly bind and interact with intracellular proteins, such as the constitutive photomorphogenic-9 (COP9) signalosome subunit 5 (CSN5), p53 or thioredoxin-interacting protein (TXNIP). D-dopachrome tautomerase (D-DT or MIF-2) was recognized to be a structural and functional homolog of MIF, which could exert overlapping effects, raising further the complexity of canonical MIF signaling pathways. Here, we provide an overview of the expression and regulation of MIF, D-DT and their receptors. We also discuss the downstream signaling pathways regulated by MIF/D-DT and their pathological roles in different tissue, particularly in the heart and the kidney.  相似文献   

3.
4.
D-dopachrome tautomerase (D-DT) shares amino acid sequence similarity, structural architecture and biological activity with the cytokine MIF. Recent studies show that the two protein homologs also bind to the same cell surface receptor, CD74, to activate the ERK1/2 pathway that ultimately leads to pro-inflammatory and pro-survival gene expression. We recently showed that RTL1000 and DRa1-MOG-35-55, two biological drugs with potent anti-inflammatory properties that treat experimental autoimmune encephalomyelitis (EAE) in mice, bind to the cell surface receptor CD74 with high affinity and compete with MIF for binding to the same regions of CD74. Computational modeling of MIF and RTL1000 binding interactions with CD74 predicted the presence of three CD74 binding regions for each MIF homotrimer. Through a similar approach we have now expanded our work to study the D-DT (MIF-2) interaction with CD74 that is mainly defined by three elements scattered throughout the disordered regions of the interacting molecules. The model predicted: (a) a hydrophobic cradle between CD74 and D-DT consisting of N-terminal tyrosine residues of three CD74 monomers arranged in a planar alignment interacts with aromatic amino acid residues located in the disordered D-DT C-terminus; (b) a triad consisting of the E103 residue on one D-DT monomer in close contact with R179 and S181 on one chain of the CD74 trimer forms an intermolecular salt bridge; and (c) amino acid residues on the C-terminus random coil of CD74 chain C form a long interacting area of ∼500 Å2 with a disordered region of D-DT chain B. These three binding elements were also present in MIF/CD74 binding interactions, with involvement of identical or highly similar amino acid residues in each MIF homotrimer that partner with the exact same residues in CD74. Topologically, however, the location of the three CD74 binding regions of the D-DT homotrimer differs substantially from that of the three MIF binding regions. This key difference in orientation appears to derive from a sequence insertion in D-DT that topologically limits binding to only one CD74 molecule per D-DT homotrimer, in contrast to predicted binding of up to three CD74 molecules per MIF homotrimer. These results have implications for the manner in which D-DT and MIF compete with each other for binding to the CD74 receptor and for the relative potency of DRa1-MOG-35-55 and RTL1000 for competitive inhibition of D-DT and MIF binding and activation through CD74.  相似文献   

5.
Macrophage migration inhibitory factor (MIF) is a cytokine that participates in the host inflammatory response. A Cys-Xaa-Xaa-Cys (CXXC)-based thiol-protein oxidoreductase activity of MIF is associated with certain biological functions. Peptides spanning the CXXC region of thiol-protein oxidoreductases retain some biochemical properties of the full-length protein. We report on the characterization of CXXC-spanning MIF-(50-65) and its serine variant, C57S/C60S-MIF-(50-65). Following disulfide-mediated cyclization, MIF-(50-65) adapted a beta-turn conformation comparable with that of beta-turn-containing cyclo-57,60-[Asp57,Dap60]MIF-(50-65). MIF-(50-65) had a redox potential E'0 of -0.258 V and formed mixed disulfides with glutathione and cysteine. MIF-(50-65) but not C57S/C60S-MIF-(50-65) had oxidoreductase activity in vitro. Intriguingly, MIF-(50-65) exhibited MIF-like cellular activities. The peptide but not its variant had glucocorticoid overriding and proliferation-enhancing activity and stimulated ERK1/2 phosphorylation. MIF-(50-65) and its variant bound to the MIF-binding protein JAB1 and enhanced cellular levels of p27Kip1. As the peptide and its variant were endocytosed at similar efficiency, sequence 50-65 appears sufficient for the JAB1-related effects of MIF, whereas other activities require CXXC. Cyclo-57,60-[Asp57,Dap60]MIF-(50-65) activated ERK1/2, indicating that CXXC-dependent disulfide and beta-turn formation is associated with an activity-inducing conformation. We conclude that CXXC and sequence 50-65 are critical for the activities of MIF. MIF-(50-65) is a surprisingly short sequence with MIF-like functions that could be an excellent molecular template for MIF therapeutics.  相似文献   

6.
Macrophage migration inhibitory factor (MIF) was originally identified for its ability to inhibit the random migration of macrophages in vitro. MIF is now recognized as an important mediator in a range of inflammatory disorders. We recently observed that the absence of MIF is associated with a reduction in leukocyte-endothelial cell interactions induced by a range of inflammatory mediators, suggesting that one mechanism whereby MIF acts during inflammatory responses is by promoting leukocyte recruitment. However, it is unknown whether MIF is capable of inducing leukocyte recruitment independently of additional inflammatory stimuli. In this study, we report that MIF is capable of inducing leukocyte adhesion and transmigration in postcapillary venules in vivo. Moreover, leukocytes recruited in response to MIF were predominantly CD68(+) cells of the monocyte/macrophage lineage. Abs against the monocyte-selective chemokine CCL2 (JE/MCP-1) and its receptor CCR2, but not CCL3 and CXCL2, significantly inhibited MIF-induced monocyte adhesion and transmigration. CCL2(-/-) mice displayed a similar reduction in MIF-induced recruitment indicating a critical role of CCL2 in the MIF-induced response. This hypothesis was supported by findings that MIF induced CCL2 release from primary microvascular endothelial cells. These data demonstrate a previously unrecognized function of this pleiotropic cytokine: induction of monocyte migration into tissues. This function may be critical to the ability of MIF to promote diseases such as atherosclerosis and rheumatoid arthritis, in which macrophages are key participants.  相似文献   

7.
Xie L  Qiao X  Wu Y  Tang J 《PloS one》2011,6(1):e16428
Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine, regulating inflammatory and immune responses. MIF binds to cell surface receptor CD74, resulting in both rapid and sustained ERK activation. It was reported that MIF-induced rapid ERK activation requires its co-receptor CD44. But the exact mechanism underlying sustained ERK activation is not well understood. In the current study, we described a detailed mechanism of MIF mediated sustained ERK activation. We found that β-arrestin1, a scaffold protein involved in the activation of the MAPK cascade, interacts with CD74 upon MIF stimulation, resulting in CD74-mediated MIF endocytosis in a chlorpromazine (CPZ)-sensitive manner. β-arrestin1 is also involved in endocytotic MIF signaling, leading to sustained ERK activation. Therefore β-arrestin1 plays a central role in coupling MIF endocytosis to sustained ERK activation.  相似文献   

8.
A human T cell hybridoma clone, F5, producing high levels of macrophage migration inhibitory factor (MIF) was established by the emetine-actinomycin D selection method. This clone produced two species of MIF which were separated on a Phenyl Sepharose column. We purified MIF-2 (the more hydrophobic species of the two) to homogeneity from the conditioned medium of stimulated F5 cells by a series of steps that included hydrophobic chromatography, ion-exchange chromatography. Ricinus communis lectin affinity chromatography, and high-performance liquid chromatography on anion exchange and reverse-phase columns. Purified MIF was digested with endoproteinase Lys-C and Asp-N. The amino acid sequences of the generated peptides were determined. No sequence similarity with any other protein was found. The molecular weight of MIF-2 was estimated to be 45 kDa from sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of immunoprecipitates with anti-peptide antibodies. These results show that F5MIF-2 is a novel cytokine.  相似文献   

9.
Macrophage migration inhibitory factor (MIF) is a chemokine-like inflammatory cytokine, which plays a pivotal role in the pathogenesis of inflammatory and cardiovascular diseases as well as cancer. We previously identified MIF as a novel B cell chemokine that promotes B cell migration through non-cognate interaction with the CXC chemokine receptor CXCR4 and CD74, the surface form of MHC class II invariant chain. In this study, we have analyzed the regulation of the MIF receptors under inflammatory conditions by investigating the impact of lipopolysaccharide (LPS), tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) on CD74 and CXCR4 expression in B lymphocytes. We found that both LPS and TNF-α stimulation of primary B cells and the human B myeloma cell line RPMI-8226 enhanced protein expression as well as mRNA levels of CD74 in a time- and dose-dependent manner. By contrast, no effect on CXCR4 expression was observed. Selective inhibition of IκBα phosphorylation significantly attenuated LPS-induced expression of CD74, suggesting the contribution of NF-κB signaling pathways to the regulation of CD74 expression. Importantly, individual or simultaneous blockade of MIF or CD74 using specific neutralizing antibodies markedly affected B cell proliferation after LPS exposure. Taken together, our findings unveil a connection between the pro-proliferative activity of MIF/CD74 signaling in B cells and inflammation, offering novel target mechanisms in inflammatory cardiovascular or autoimmune pathogenesis.  相似文献   

10.
The pro-inflammatory cytokine macrophage migration inhibitory factor (MIF) is induced by glucocorticoids (GCs), but it was not previously known if MIF regulates cellular sensitivity to GC. Here we show in GC and LPS-treated peritoneal macrophages derived from MIF-/- and wt mice that the absence of endogenous MIF is associated with increased sensitivity to GC of TNF release. This is associated with increased expression of mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP-1), concomitant decreased phosphorylation of p38 MAPK, but no effect of MIF on nuclear factor kappaB (NF-kappaB). These results demonstrate that MIF regulates GC sensitivity by phosphorylation of p38, and provides a cellular mechanism for this observation, indicating that MKP-1 is a central target of this regulation.  相似文献   

11.
12.
Macrophage migration inhibitory factor (MIF) is a glycosylated multi-functional protein that acts as an enzyme as well as a cytokine. MIF mediates its actions through a cell surface class II major histocompatibility chaperone, CD74 and co-receptors such as CD44, CXCR2, CXCR4 or CXCR7. MIF has been implicated in the pathogenesis of several acute and chronic inflammatory diseases. Although MIF is a molecule of biomedical importance, a public resource of MIF signaling pathway is currently lacking. In view of this, we carried out detailed data mining and documentation of the signaling events pertaining to MIF from published literature and developed an integrated reaction map of MIF signaling. This resulted in the cataloguing of 68 molecules belonging to MIF signaling pathway, which includes 24 protein-protein interactions, 44 post-translational modifications, 11 protein translocation events and 8 activation/inhibition events. In addition, 65 gene regulation events at the mRNA levels induced by MIF signaling have also been catalogued. This signaling pathway has been integrated into NetPath (http://www.netpath.org), a freely available human signaling pathway resource developed previously by our group. The MIF pathway data is freely available online in various community standard data exchange formats. We expect that data on signaling events and a detailed signaling map of MIF will provide the scientific community with an improved platform to facilitate further molecular as well as biomedical investigations on MIF.  相似文献   

13.
Acute myeloid leukemia (AML) is the most common acute leukemia diagnosed in adults. Macrophage migration inhibitory factor (MIF) is a pro-inflammatory cytokine that plays a significant role in pathogenesis and autoimmune diseases. The major function of MIF is to promote the cell proliferation, migration, and invasion. The aim of the present study is to identify the association between MIF-173 (rs755662) single nucleotide polymorphism (SNP) and AML in Taiwanese population. DNA samples extracted from 256 AML patients and 256 healthy controls were investigated using polymerase chain reaction followed by restriction fragment length polymorphism analysis. The association between MIF-173 SNP genotype and AML patients were assessed with SPSS software. The results show that the GC genotype of MIF-173 SNP is significantly higher in AML patients than in the healthy controls (OR 1.58, 95 % CI 1.06, P = 0.034). Carrier genotypes GC and CC may be a causative factor for AML cancer (OR 1.39, 95 % CI 0.95, P = 0.085). White blood cell count (103/µl) were significantly associated with AML MIF-173 polymorphism patients (P = 0.002). Our results in this study provide the first evidence that the MIF-173 polymorphism is associated with AML. MIF is a potential biomarker for development of AML cancer in male adult in Taiwanese population. Further validations in other populations are warranted.  相似文献   

14.
15.
《Cellular signalling》2014,26(12):2969-2978
Solid tumors are composed of a heterogeneous population of cells that interact with each other and with soluble and insoluble factors that, when combined, strongly influence the relative proliferation, differentiation, motility, matrix remodeling, metabolism and microvessel density of malignant lesions. One family of soluble factors that is becoming increasingly associated with pro-tumoral phenotypes within tumor microenvironments is that of the migration inhibitory factor family which includes its namesake, MIF, and its only known family member, D-dopachrome tautomerase (D-DT). This review seeks to highlight our current understanding of the relative contributions of a variety of immune and non-immune tumor stromal cell populations and, within those contexts, will summarize the literature associated with MIF and/or D-DT.  相似文献   

16.
Macrophage migration inhibitory factor (MIF) is an upstream activator of innate immunity that regulates subsequent adaptive responses. It was previously shown that in macrophages, MIF binds to a complex of CD74 and CD44, resulting in initiation of a signaling pathway. In the current study, we investigated the role of MIF in B cell survival. We show that in B lymphocytes, MIF initiates a signaling cascade that involves Syk and Akt, leading to NF-kappaB activation, proliferation, and survival in a CD74- and CD44-dependent manner. Thus, MIF regulates the adaptive immune response by maintaining the mature B cell population.  相似文献   

17.
Macrophage migration inhibitory factor (MIF), a proinflammatory cytokine, is overexpressed in prostate cancer, but the mechanism by which MIF exerts effects on tumor cells remains undetermined. MIF interacts with its identified membrane receptor, CD74, in association with CD44, resulting in ERK 1/2 activation. Therefore, we hypothesized that increased expression or surface localization of CD74 and MIF overexpression by prostate cancer cells regulated tumor cell viability. Prostate cancer cell lines (LNCaP and DU-145) had increased MIF gene expression and protein levels compared with normal human prostate or benign prostate epithelial cells (p < 0.01). Although MIF, CD74, and CD44 variant 9 expression were increased in both androgen-dependent (LNCaP) and androgen-independent (DU-145) prostate cancer cells, cell surface of CD74 was only detected in androgen-independent (DU-145) prostate cancer cells. Therefore, treatments aimed at blocking CD74 and/or MIF (e.g., inhibition of MIF or CD74 expression by RNA interference or treatment with anti-MIF- or anti-CD74- neutralizing Abs or MIF-specific inhibitor, ISO-1) were only effective in androgen-independent prostate cancer cells (DU-145), resulting in decreased cell proliferation, MIF protein secretion, and invasion. In DU-145 xenografts, ISO-1 significantly decreased tumor volume and tumor angiogenesis. Our results showed greater cell surface CD74 in DU-145 prostate cancer cells that bind to MIF and, thus, mediate MIF-activated signal transduction. DU-145 prostate cancer cell growth and invasion required MIF activated signal transduction pathways that were not necessary for growth or viability of androgen-dependent prostate cells. Thus, blocking MIF either at the ligand (MIF) or receptor (CD74) may provide new, targeted specific therapies for androgen-independent prostate cancer.  相似文献   

18.
Idiosyncratic drug-induced hepatitis may depend upon many factors including a balance between pro- and anti-inflammatory mediator production levels. Using a guinea pig model of liver injury induced by bioactivation of the anesthetic drug, halothane, we found that toxicity was commensurate with an increase in serum macrophage migration inhibitory factor (MIF), a pro-inflammatory signal and counter-regulator of glucocorticoids, but only in susceptible animals. The pathogenic role of MIF was further investigated using a murine model in which liver injury was induced by the reactive metabolite of another drug, acetaminophen (APAP). MIF leakage from the liver into the sera preceded peak increases in toxicity following APAP administration. MIF null (-/-) mice were significantly less susceptible to this toxicity at 8 h. At 48 h following a 300 mg/kg dose, complete lethality was observed in wild-type mice, while 46% survival was noted in MIF-/- mice. The decreased hepatic injury in MIF-/- mice correlated with a reduction in mRNA levels of interferon-gamma and a significant increase in heat shock protein expression, but was unrelated to the APAP-protein adduct formation in the liver. These findings support MIF as a critical pro-toxicant signal in drug-induced liver injury with potentially important and novel effects on heat shock protein responsiveness.  相似文献   

19.
The macrophage migration inhibitory factor (MIF) family of cytokines contains multiple ligand-binding sites and mediates immunomodulatory processes through an undefined mechanism(s). Previously, we reported a dynamic relay connecting the MIF catalytic site to an allosteric site at its solvent channel. Despite structural and functional similarity, the MIF homolog D-dopachrome tautomerase (also called MIF-2) has low sequence identity (35%), prompting the question of whether this dynamic regulatory network is conserved. Here, we establish the structural basis of an allosteric site in MIF-2, showing with solution NMR that dynamic communication is preserved in MIF-2 despite differences in the primary sequence. X-ray crystallography and NMR detail the structural consequences of perturbing residues in this pathway, which include conformational changes surrounding the allosteric site, despite global preservation of the MIF-2 fold. Molecular simulations reveal MIF-2 to contain a comparable hydrogen bond network to that of MIF, which was previously hypothesized to influence catalytic activity by modulating the strength of allosteric coupling. Disruption of the allosteric relay by mutagenesis also attenuates MIF-2 enzymatic activity in vitro and the activation of the cluster of differentiation 74 receptor in vivo, highlighting a conserved point of control for nonoverlapping functions in the MIF superfamily.  相似文献   

20.
c-Jun N-terminal kinase (JNK) is a member of the mitogen-activated protein kinase (MAPK) family and controls essential processes such as inflammation, cell differentiation, and apoptosis. JNK signalling is triggered by extracellular signals such as cytokines and environmental stresses. Macrophage migration inhibitory factor (MIF) is a pleiotropic pro-inflammatory cytokine with chemokine-like functions in leukocyte recruitment and atherosclerosis. MIF promotes MAPK signalling through ERK1/2, while it can either activate or inhibit JNK phosphorylation, depending on the cell type and underlying stimulation context. MIF activities are mediated by non-cognate interactions with the CXC chemokine receptors CXCR2 and CXCR4 or by ligation of CD74, which is the cell surface expressed form of the class II invariant chain. ERK1/2 signalling stimulated by MIF is dependent on CD74, but the receptor pathway involved in MIF activation of the JNK pathway is unknown. Here we comprehensively characterize the stimulatory effect of MIF on the canonical JNK/c-Jun/AP-1 pathway in fibroblasts and T cell lines and identify the upstream signalling components. Physiological concentrations of recombinant MIF triggered the phosphorylation of JNK and c-Jun and rapidly activated AP-1. In T cells, MIF-mediated activation of the JNK pathway led to upregulated gene expression of the inflammatory chemokine CXCL8. Activation of JNK signalling by MIF involved the upstream kinases PI3K and SRC and was found to be dependent on CXCR4 and CD74. Together, these data show that the CXCR4/CD74/SRC/PI3K axis mediates a rapid and transient activation of the JNK pathway as triggered by the inflammatory cytokine MIF in T cells and fibroblasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号