首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chronic in vivo or in vitro application of GABA(A) receptor agonists alters GABA(A) receptor peptide expression and function. Furthermore, chronic in vitro application of N-methyl-D-aspartate (NMDA) agonists and antagonists alters GABA(A) receptor function and mRNA expression. However, it is unknown if chronic in vivo blockade of NMDA receptors alters GABA(A) receptor function and peptide expression in brain. Male Sprague-Dawley rats were chronically administered the noncompetitive NMDA receptor antagonist MK-801 (0.40 mg/kg, twice daily) for 14 days. Chronic blockade of NMDA receptors significantly increased hippocampal GABA(A) receptor alpha4 and gamma2 subunit expression while significantly decreasing hippocampal GABA(A) receptor alpha2 and beta2/3 subunit expression. Hippocampal GABA(A) receptor alpha1 subunit peptide expression was not altered. In contrast, no significant alterations in GABA(A) receptor subunit expression were found in cerebral cortex. Chronic MK-801 administration also significantly decreased GABA(A) receptor-mediated hippocampal Cl- uptake, whereas no change was found in GABA(A) receptor-mediated cerebral cortical Cl- uptake. Finally, chronic MK-801 administration did not alter NMDA receptor NR1, NR2A, or NR2B subunit peptide expression in either the cerebral cortex or the hippocampus. These data demonstrate heterogeneous regulation of GABA(A) receptors by glutamatergic activity in rat hippocampus but not cerebral cortex, suggesting a new mechanism of GABA(A) receptor regulation in brain.  相似文献   

2.
The extracellular levels of aspartate, glutamate and GABA were measured by microdialysis, coupled with an HPLC method, in rat prefrontal cortex (mPFC) and ventral hippocampus (VH) before and during the performance of a step-down inhibitory task. The basal levels of glutamate were about 50% higher than those of aspartate, and GABA levels were about 20-folds smaller than those of the excitatory amino acids. There were no significant differences in the basal levels of any of the three amino acids between the two brain regions. The extracellular levels of aspartate increased during acquisition and recall trials in both VH and mPFC, whereas those of glutamate increased in the VH during acquisition only. A significant increase in GABA levels was also detected during acquisition but only in the mPFC. The neuronal origin of the increased extracellular levels of aspartate, glutamate and GABA was demonstrated by administering tetrodotoxin directly into the mPFC or VH by reverse dialysis. These findings, together with previous evidence from our and other laboratories, indicate a differential release of aspartate and glutamate from excitatory neurons during the performance of behavioral responses, and therefore, distinct roles for the two excitatory amino acids should be envisaged.  相似文献   

3.
Obesity and high-fat (HF) diets have a deleterious impact on hippocampal function and lead to impaired synaptic plasticity and learning deficits. Because all of these processes need an adequate glutamatergic transmission, we have hypothesized that nutritional imbalance triggered by these diets might eventually concern glutamate (Glu) neural pathways within the hippocampus. Glu is withdrawn from excitatory synapses by specific uptake mechanisms involving neuronal (EAAT-3) and glial (GLT-1, GLAST) transporters, which regulate the time that synaptically released Glu remains in the extracellular space and, consequently, the duration and location of postsynaptic receptor activation. The goal of the present study was to evaluate in mouse hippocampus the effect of a short-term high-fat dietary treatment on 1) Glu uptake kinetics, 2) the density of Glu carriers and Glu-degrading enzymes, 3) the density of Glu receptor subunits, and 4) synaptic transmission and plasticity. Here, we show that HF diet triggers a 50% decrease of the Michaelis-Menten constant together with a 300% increase of the maximal velocity of the uptake process. Glial Glu carriers GLT-1 and GLAST were upregulated in HF mice (32 and 27%, respectively), whereas Glu-degrading enzymes glutamine synthase and GABA-decarboxilase appeared to be downregulated in these animals. In addition, HF diet hippocampus displayed diminished basal synaptic transmission and hindered NMDA-induced long-term depression (NMDA-LTD). This was coincident with a reduced density of the NR2B subunit of NMDA receptors. All of these results are compatible with the development of leptin resistance within the hippocampus. Our data show that HF diets upregulate mechanisms involved in Glu clearance and simultaneously impair Glu metabolism. Neurochemical changes occur concomitantly with impaired basal synaptic transmission and reduced NMDA-LTD. Taken together, our results suggest that HF diets trigger neurochemical changes, leading to a desensitization of NMDA receptors within the hippocampus, which might account for cognitive deficits.  相似文献   

4.
Methamphetamine (MAP) is one of the most commonly abused drugs in Asia, and previous studies suggest that serotonin 3 receptors (5-HT(3)) are involved in MAP-induced locomotion and reward. However, little is known about the role of 5-HT(3) receptors in MAP-induced behavioral sensitization. Here, we measured the effects of MDL 72222, a 5-HT(3) antagonist, and SR 57227 A, a 5-HT(3) agonist, on the development and expression of MAP-induced behavioral sensitization, and alternations of 5-HT(3) receptor binding labeled with the 5-HT(3)-selective antagonist, [(3)H]GR65630, in mice. In addition, we investigated the effects of MAP on 5-HT(3A) receptor channel activity in Xenopus laevis oocytes expressing 5-HT(3A) receptors. We found that MDL 72222 attenuated both the development and expression of behavioral sensitization to MAP (1.0 mg/kg, i.p.), and that this attenuating effect of MDL 72222 was reversed by pre-treatment with SR 57227 A. In oocytes expressing 5-HT(3A) receptor, MAP exhibited a dual modulation of 5-HT(3A) receptor channel activity, i.e. pre-treatment with a low dose of MAP (0.1 microm) enhanced 5-HT-induced inward peak current (I(5-HT)) but a high dose of MAP (100 microm) inhibited I(5-HT). The acute administration of MDL 72222 with MAP decreased [(3)H]GR65630 binding versus MAP alone in the mouse striatum. Our results suggest that MDL 72222 attenuates MAP-induced behavioral sensitization via 5-HT(3) receptors in the caudate putamen, and that 5-HT(3) receptor antagonists like MDL 72222 have potential as novel anti-psychotic agents for the treatment of MAP dependence and psychosis.  相似文献   

5.
Type 1 cannabinoid receptor (CB1) is expressed in different neuronal populations in the mammalian brain. In particular, CB1 on GABAergic or glutamatergic neurons exerts different functions and display different pharmacological properties in vivo. This suggests the existence of neuron‐type specific signalling pathways activated by different subpopulations of CB1. In this study, we analysed CB1 expression, binding and signalling in the hippocampus of conditional mutant mice, bearing CB1 deletion in GABAergic (GABA‐CB1‐KO mice) or cortical glutamatergic neurons (Glu‐CB1‐KO mice). Compared to their wild‐type littermates, Glu‐CB1‐KO displayed a small decrease of CB1 mRNA amount, immunoreactivity and [³H]CP55,940 binding. Conversely, GABA‐CB1‐KO mice showed a drastic reduction of these parameters, confirming that CB1 is present at much higher density on hippocampal GABAergic interneurons than glutamatergic neurons. Surprisingly, however, saturation analysis of HU210‐stimulated [35S]GTPγS binding demonstrated that ‘glutamatergic’ CB1 is more efficiently coupled to G protein signalling than ‘GABAergic’ CB1. Thus, the minority of CB1 on glutamatergic neurons is paradoxically several fold more strongly coupled to G protein signalling than ‘GABAergic’ CB1. This selective signalling mechanism raises the possibility of designing novel cannabinoid ligands that differentially activate only a subset of physiological effects of CB1 stimulation, thereby optimizing therapeutic action.  相似文献   

6.
The metabotropic glutamate (mGlu2/3) receptor agonist, LY354740, exhibits anxiolytic-like properties in a number of rodent models. The present study utilized in vivo microdialysis to examine the effects of LY354740 on extracellular monoamine levels in the medial prefrontal cortex (mPFC) of animals subjected to 30 min immobilization stress. Immobilization stress significantly elevated extracellular levels of noradrenaline (NA) and dopamine (DA) in the mPFC, while systemic administration of LY354740 (30 mg/kg, s.c.) significantly attenuated immobilization-induced increases in both NA and DA. Reverse-dialysis of LY354740 (30 microm) into the mPFC significantly attenuated immobilization-induced increases in NA, but not DA without affecting basal levels of either amine. In separate studies in the presence of citalopram (1 microm; reverse dialysis into the mPFC), systemic administration of LY354740 attenuated immobilization-induced increases in NA and DA, but had no effect on serotonin (5-HT) levels. Co-administration of the selective mGlu2/3 receptor antagonist, LY341495, partially or fully reversed the attenuation in NA and DA levels produced by LY354740, respectively. Taken together, these data suggest that LY354740 may produce anti-stress actions, in part, by blocking stress-related increases in catecholamines in the mPFC via mGlu2/3 receptor stimulation.  相似文献   

7.
采用免疫细胞化学双PAP法,观察雌二醇(E2)、孕酮(P)对贝美格(Bemegride,Be)腹腔致痫大鼠顶叶大脑皮层、海马CA1、CA3区Glu和GABA免疫反应细胞的影响。图像分析结果显示:Be致痫组皮层、海马Glu免疫反应平均阳性细胞数及光密度较正常组明显增加(P<0.01);CABA细胞数及光密度减少(P<0.01)。给予E2后,Be致痫大鼠大脑皮层、海马Glu阳性细胞数目增多,光密度增高(P<0.01),GABA阳性细胞数目减少、光密度降低(P<0.05,P<0.01)而给予P后,致痫组GABA阳性细胞数目增多、光密度增高(P<0.01),Glu阳性细胞数目减少、光密度减低(P<0.01)。提示雌、孕激素的致痫、抗痫作用与其调节脑内GABA和Glu系统的兴奋性有关。  相似文献   

8.
Previous studies have shown that brief access to cocaine yields an increase in D2 receptor binding in the medial prefrontal cortex (mPFC), but that extended access to cocaine results in normalized binding of D2 receptors (i.e. the D2 binding returned to control levels). Extended-access conditions have also been shown to produce increased expression of the NR2 subunit of the N-Methyl-D-aspartate receptor in the mPFC. These results implicate disrupted glutamate and dopamine function within this area. Therefore, in the present study, we monitored glutamate and dopamine content within the mPFC during, or 24 hours after, cocaine self-administration in animals that experienced various amounts of exposure to the drug. Na?ve subjects showed decreased glutamate and increased dopamine levels within the mPFC during cocaine self-administration. Exposure to seven 1-hour daily cocaine self-administration sessions did not alter the response to self-administered cocaine, but resulted in decreased basal dopamine levels. While exposure to 17 1-hour sessions also resulted in reduced basal dopamine levels, these animals showed increased dopaminergic, but completely diminished glutamatergic, response to self-administered cocaine. Finally, exposure to 17 cocaine self-administration sessions, the last 10 of which being 6-hour sessions, resulted in diminished glutamatergic response to self-administered cocaine and reduced basal glutamate levels within the mPFC while normalizing (i.e. causing a return to control levels) both the dopaminergic response to self-administered cocaine as well as basal dopamine levels within this area. These data demonstrate directly that the transition to escalated cocaine use involves progressive changes in dopamine and glutamate function within the mPFC.  相似文献   

9.
Toluene is a commonly abused solvent found in many industrial and commercial products. The neurobiological effects of toluene remain unclear, but many of them, like those of ethanol, may be mediated by gamma-aminobutyric acid (GABA) and glutamate receptors. Chronic ethanol administration has been shown to alter levels of specific subunits for GABA type A (GABA(A)), N-methyl-d-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors. However, little is known about the effects of toluene on subunit levels of these receptors. To examine this, rats were exposed to toluene vapors (8000 ppm) or air for 10 days (30 min/day), and afterwards GABA(A) alpha1, NR1 and NR2B (NMDA) and GluR1 and GluR2/3 (AMPA) receptor subunit levels were determined in discrete brain regions of these animals by Western blotting. Toluene increased GABA(A) alpha1, NR1, NR2B and GluR2/3 subunits in the medial prefrontal cortex and decreased GABA(A) alpha1 and NR1 subunits in the substantia nigra compacta. Toluene inhalation produced modest increases in GABA(A) alpha1 subunits in the striatum, as well as slight decreases in this subunit in the ventral tegmental area. NR2B subunit levels were also slightly increased within the nucleus accumbens by toluene. These studies show that toluene differentially alters the levels of specific GABAergic and glutamatergic receptor subunits in a regionally selective manner.  相似文献   

10.
Abstract: Interactions between glutamate (Glu), dopamine (DA), GABA, and taurine (Tau) were investigated in striatum of the freely moving rat by using microdialysis. Intrastriatal infusions of the selective Glu uptake inhibitor l - trans -pyrrolidine-3,4-dicarboxylic acid (PDC) were used to increase the endogenous extracellular [Glu]. Correlations between extracellular [Glu] and extracellular [DA], [GABA], and [Tau], and the effects of a selective blockade of ionotropic Glu receptors, were studied. PDC (1, 2, and 4 m M ) produced a dose-related increase in extracellular [Glu]. At the highest dose of PDC, [Glu] increased from 1.55 ± 0.35 to 6.11 ± 0.88 µ M . PDC also increased extracellular [DA], [GABA], and [Tau]. The increasing [Glu] was correlated significantly with increasing [DA], [GABA], and [Tau]. PDC also decreased extracellular concentrations of DA metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and 4-hydroxy-3-methoxyphenylacetic acid (HVA). Perfusion with the NMDA-receptor antagonist 3-[( R )-2-carboxypiperazin-4-yl]-propyl-1-phosphonic acid (1 m M ) or the AMPA/kainate-receptor antagonist 6,7-dinitroquinoxaline-2,3-dione (DNQX) (1 m M ) attenuated the increases produced by PDC (4 m M ) on [DA], [GABA], and [Tau], and decreases in [DOPAC] and [HVA]. DNQX also attenuated the increases in [Glu] induced by PDC. These data show that endogenous Glu plays a role in modulating the extracellular concentrations of DA, GABA, and Tau in striatum of the freely moving rat.  相似文献   

11.
The ability of serotonin (5-HT) to influence striatal glutamatergic transmission was examined by determining changes over time in glutamate extracellular levels, transporter expression and synaptosomal uptake in rats with lesion of serotonergic neurones. By 8 days after intraraphe injections of 5,7-dihydroxytryptamine, producing 80% decreases in striatal tissue 5-HT levels, no changes were observed in the glutamatergic transmission. When 5-HT depletion was almost complete (21 days post-lesion), high affinity glutamate uptake in striatal synaptosomal preparations was significantly increased (156% of control), although no changes in striatal GLT1, GLAST and EAAC1 mRNAs, and GLT1 protein were detected by in situ hybridization and immunohistochemistry. Meanwhile, the serotonin lesion produced large increases in basal extracellular levels of glutamate and glutamine (364% and 259%, respectively) determined in awake rats by in vivo microdialysis, whereas no change was observed in dopamine levels as compared with control rats. High potassium depolarization as well as L-trans-pyrrolidine-2,4-dicarboxylate, also induced larger increases in extracellular levels of glutamate in lesioned rats than in controls. Finally, similar changes in glutamate transmission were observed by 3 months post-lesion. These results suggest that 5-HT has a long lasting and tonic inhibitory influence on the striatal glutamatergic input, without affecting the basal dopaminergic transmission.  相似文献   

12.
We recently found that intracortical injection of the selective and competitive N-methyl-D-aspartate (NMDA) receptor antagonist 3-(R)-2-carboxypiperazin-4-propyl-1-phosphonic acid (CPP) impaired attentional performance in rats and blockade of 5-hydroxytryptamine (5-HT)2A receptors antagonized this effect. Here, we used the microdialysis technique in conscious rats to study the effect of CPP on extracellular glutamate (GLU) in the medial prefrontal cortex (mPFC) and the regulation of this effect by 5-HT2A receptors. Intraperitoneal injection of 20 mg/kg CPP increased extracellular GLU in the mPFC (201% of basal levels) but had no effect on 5-HT. Intracortical infusion of 100 microm CPP increased extracellular GLU (230% of basal values) and 5-HT (150% of basal values) in the mPFC, whereas 30 microm had no significant effect. The effect of 100 microm CPP on extracellular GLU was abolished by tetrodotoxin, suggesting that neuronal activity is required. Subcutaneous injection of 40 microg/kg M100,907 completely antagonized the effect of 100 microm cpp on extracellular GLU, whereas 10 microg/kg caused only partial attenuation. Likewise, intracortical infusion of 0.1 microm M100,907 completely reversed the increase of extracellular GLU induced by CPP. These findings show that blockade of NMDA receptors in the mPFC is sufficient to increase extracellular GLU locally. The increase of cortical extracellular GLU may contribute to CPP-induced cognitive deficits and blockade of 5-HT2A receptors may provide a molecular mechanism for reversing these deficits caused by dysfunctional glutamatergic transmission in the mPFC.  相似文献   

13.
Glutamate Dehydrogenase 1 (GDH), encoded by the Glud1 gene in rodents, is a mitochondrial enzyme critical for maintaining glutamate homeostasis at the tripartite synapse. Our previous studies indicate that the hippocampus may be particularly vulnerable to GDH deficiency in central nervous system (CNS). Here, we first asked whether mice with a homozygous deletion of Glud1 in CNS (CNS‐Glud1 ?/? mice) express different levels of glutamate in hippocampus, and found elevated glutamate as well as glutamine in dorsal and ventral hippocampus, and increased glutamine in medial prefrontal cortex (mPFC). l ‐serine and d ‐serine, which contribute to glutamate homeostasis and NMDA receptor function, are increased in ventral but not dorsal hippocampus, and in mPFC. Protein expression levels of the GABA synthesis enzyme glutamate decarboxylase (GAD) GAD67 were decreased in the ventral hippocampus as well. Behavioral analysis revealed deficits in visual, spatial and social novelty recognition abilities, which require intact hippocampal‐prefrontal cortex circuitry. Finally, hippocampus‐dependent contextual fear retrieval was deficient in CNS‐Glud1 ?/? mice, and c‐Fos expression (indicative of neuronal activation) in the CA1 pyramidal layer was reduced immediately following this task. These data point to hippocampal subregion‐dependent disruption in glutamate homeostasis and excitatory/inhibitory balance, and to behavioral deficits that support a decline in hippocampal‐prefrontal cortex connectivity. Together with our previous data, these findings also point to different patterns of basal and activity‐induced hippocampal abnormalities in these mice. In sum, GDH contributes to healthy hippocampal and PFC function; disturbed GDH function is relevant to several psychiatric and neurological disorders.  相似文献   

14.
The involvement of synaptosomal neurotransmitter amino-acids in seizure susceptibility and seizure severity was explored. The amino-acid contents of brain synaptosomes were determined in three sublines of Rb mice differing in their response to an acoustic stimulus: Rb1, clonic-tonic seizure-prone, Rb2, clonic seizure-prone, and Rb3, seizure-resistant. Synaptosomes were prepared from 6 brain areas considered to be involved in seizure activity: olfactory bulbs, amygdala, inferior colliculus, hippocampus, cerebellum, pons-medulla. The steady-state levels of GABA and glycine (Gly), inhibitory amino-acids, of taurine (Tau), an inhibitory neurotransmitter of neuromodulator, of aspartate (Asp) and glutamate (Glu), excitatory amino-acids, as well as of serine (Ser) and glutamine (Gln), two precursors of neurotransmitter amino-acids, were determined by HPLC. Low levels of Tau, GABA, and Ser in hippocampus, Gly in amygdala, Glu in hippocampus, inferior colliculus and pons, Gln and Asp in inferior colliculus appeared to correlate with seizure-susceptibility. GABA and Asp in olfactory bulb, Gln in amygdala, hippocampus and pons, ser in olfactory bulb and pons, appeared to be associated either with seizure-severity or-diversity. A strong involvement of hippocampus (Tau, GABA, Ser, Glu, and Gln) and inferior colliculus (Asp, Glu, Gln) in audiogenic seizure-susceptibility, and of olfactory bulb (GABA, Asp) in seizure-severity and/or-diversity is suggested.Special issue dedicated to Dr. Alan N. Davison.  相似文献   

15.
Atypical antipsychotic properties of 4-(4-fluorobenzylidene)-1-[2-[5-(4-fluorophenyl)-1H-pyrazol-4-yl]ethyl] piperidine (NRA0161) were investigated by in vitro receptor affinities, in vivo receptor occupancies and findings were compared with those of risperidone and haloperidol in rodent behavioral studies. In in vitro receptor binding studies, NRA0161 has a high affinity for human cloned dopamine D(4) and 5-HT(2A) receptor with Ki values of 1.00 and 2.52 nM, respectively. NRA0161 had a relatively high affinity for the alpha(1) adrenoceptor (Ki; 10.44 nM) and a low affinity for the dopamine D(2) receptor (Ki; 95.80 nM). In in vivo receptor binding studies, NRA0161 highly occupied the 5-HT(2A) receptor in rat frontal cortex. In contrast, NRA0161 did not occupy the striatal D(2) receptor. In behavioral studies, NRA0161, risperidone and haloperidol antagonized the locomotor hyperactivity in mice, as induced by methamphetamine (MAP). At a higher dosage, NRA0161, risperidone and haloperidol dose-dependently antagonized the MAP-induced stereotyped behavior in mice and NRA0161 dose-dependently and significantly induced catalepsy in rats. The ED(50) value in inhibiting the MAP-induced locomotor hyperactivity was 30 times lower than that inhibiting the MAP-induced stereotyped behavior and 50 times lower than that which induced catalepsy.These findings suggest that NRA0161 may have atypical antipsychotic activities yet without producing extrapyramidal side effects.  相似文献   

16.
Glutamate (Glu) is the primary excitatory neurotransmitter in the central nervous system and plays a critical role in the neuroplasticity of nociceptive networks. We aimed to examine the role of spinal astroglia in the modulation of glutamatergic neurotransmission in a model of chronic psychological stress-induced visceral hyperalgesia in male Wistar rats. We assessed the effect of chronic stress on different glial Glu control mechanisms in the spinal cord including N-methyl-d-aspartate receptors (NMDARs), glial Glu transporters (GLT1 and GLAST), the Glu conversion enzyme glutamine synthetase (GS), and glial fibrillary acidic protein (GFAP). We also tested the effect of pharmacological inhibition of NMDAR activation, of extracellular Glu reuptake, and of astrocyte function on visceral nociceptive response in naive and stressed rats. We observed stress-induced decreased expression of spinal GLT1, GFAP, and GS, whereas GLAST expression was upregulated. Although visceral hyperalgesia was blocked by pharmacological inhibition of spinal NMDARs, we observed no stress effects on NMDAR subunit expression or phosphorylation. The glial modulating agent propentofylline blocked stress-induced visceral hyperalgesia, and blockade of GLT1 function in control rats resulted in enhanced visceral nociceptive response. These findings provide evidence for stress-induced modulation of glia-controlled spinal Glu-ergic neurotransmission and its involvement in chronic stress-induced visceral hyperalgesia. The findings reported in this study demonstrate a unique pattern of stress-induced changes in spinal Glu signaling and metabolism associated with enhanced responses to visceral distension.  相似文献   

17.
目的:通过高频电刺激海人酸癫痫模型大鼠海马,观察海马细胞外谷氨酸(Glu)和γ-氨基丁酸(GABA)的动态变化。方法:将SD大鼠分成4大组(n=10):①空白组;②海人酸组;③假刺激组:植入刺激电极未予电刺激;④电刺激组:海人酸注射后予130 Hz电刺激。利用微透析技术收集不同时段海马细胞外液,应用高效液相-荧光检测法测定收集液Glu、GABA的浓度。结果:注射海人酸后Glu明显升高,并持续至第14天,电刺激使Glu明显下降;而注射海人酸后GABA呈短暂性升高,后逐渐下降于第4天后保持稍高于正常水平,电刺激并无明显改变GABA的水平。结论:海马细胞外Glu下降在海马电刺激治疗癫痫中起到重要作用;高频电刺激海马选择性地减少谷氨酸能神经元活动,但不影响GABA的释放。  相似文献   

18.
It had been reported that exposure to extremely low-frequency magnetic field (ELFMF) induces anxiety in human and rodents. Anxiety mediates via the activation of N-methyl-d-aspartate (NMDA) receptor, whereas activation of γ-aminobutyric acid (GABA) receptor attenuates the same. Hence, the present study was carried out to understand the contribution of NMDA and/or GABA receptors modulation in ELFMF-induced anxiety for which Swiss albino mice were exposed to ELFMF (50?Hz, 10?G) by subjecting them to Helmholtz coils. The exposure was for 8?h/day for 7, 30, 60, 90 and 120 days. Anxiety level was assessed in elevated plus maze, open field test and social interaction test, on 7th, 30th, 60th, 90th and 120th exposure day, respectively. Moreover, the role of GABA and glutamate in ELFMF-induced anxiety was assessed by treating mice with muscimol [0.25?mg/kg intraperitoneally (i.p.)], bicuculline (1.0?mg/kg i.p.), NMDA (15?mg/kg i.p.) and MK-801 (0.03?mg/kg i.p.), as a GABAA and NMDA receptor agonist and antagonist, respectively. Glutamate receptor agonist exacerbated while inhibitor attenuated the ELFMF-induced anxiety. In addition, levels of GABA and glutamate were determined in regions of the brain viz, cortex, striatum, hippocampus and hypothalamus. Experiments demonstrated significant elevation of GABA and glutamate levels in the hippocampus and hypothalamus. However, GABA receptor modulators did not produce significant effect on ELFMF-induced anxiety and elevated levels of GABA at tested dose. Together, these findings suggest that ELFMF significantly induced anxiety behavior, and indicated the involvement of NMDA receptor in its effect.  相似文献   

19.
Hypoxia at birth is a major source of brain damage and it is associated with serious neurological sequelae in survivors. Alterations in the extracellular turnover of glutamate (Glu) and acetylcholine (ACh), two neurotransmitters that are essential for normal hippocampal function and learning and memory processes, may contribute to some of the neurological effects of perinatal hypoxia. We set out to determine the immediate and long-lasting effects of hypoxia on the turnover of these neurotransmitters by using microdialysis to measure the extracellular concentration of Glu and ACh in hippocampus, when hypoxia was induced in rats at postnatal day (PD) 7, and again at PD30. In PD7 rats, hypoxia induced an increase in extracellular Glu concentrations that lasted for up to 2.5 h and a decrease in extracellular ACh concentrations over this period. By contrast, perinatal hypoxia attenuated Glu release in asphyxiated rats, inducing a decrease in basal Glu levels when these animals reached PD30. Unlike Glu, the basal ACh levels in these animals were greater than in controls at PD30, although ACh release was stimulated less strongly than in control animals. These results provide the first evidence of the initial and long term consequences of the hypoxia on Glu and ACh turnover in the brain, demonstrating that hypoxia produces significant alterations in hippocampal neurochemistry and physiology.  相似文献   

20.

Background

Drug addiction is a chronic brain disorder characterized by the compulsive use of drugs. The study of chronic morphine-induced adaptation in the brain and its functional significance is of importance to understand the mechanism of morphine addiction. Previous studies have found a number of chronic morphine-induced adaptive changes at molecular levels in the brain. A study from our lab showed that chronic morphine-induced increases in the expression of D1 receptors at presynaptic terminals coming from other structures to the basolateral amygdala (BLA) played an important role in environmental cue-induced retrieval of morphine withdrawal memory. However, the neurocircuitry where the increased D1 receptors are located and how chronic morphine increases D1 receptor expression in specific neurocircuits remain to be elucidated.

Results

Our results show that chronic morphine induces a persistent increase in D1 receptor expression in glutamatergic terminals of projection neurons from the medial prefrontal cortex (mPFC) to the BLA, but has no influence on D1 receptor expression in projection neurons from the hippocampus or the thalamus to the BLA. This adaptation to chronic morphine is mediated by reduced expression of miR-105 in the mPFC, which results in enhanced D1 receptor expression in glutamatergic terminals of projection neurons from the mPFC to the BLA. Ex vivo optogenetic experiments show that a chronic morphine-induced increase in D1 receptor expression in glutamatergic terminals of projection neurons from the mPFC to the BLA results in sensitization of the effect of D1 receptor agonist on presynaptic glutamate release. mPFC to BLA projection neurons are activated by withdrawal-associated environmental cues in morphine-withdrawal rats, and overexpression of miR-105 in the mPFC leads to reduced D1 receptor induction in response to chronic morphine in glutamatergic terminals of the projection neurons from the mPFC to the BLA, and a reduction in place aversion conditioned by morphine withdrawal.

Conclusions

These results suggest that chronic morphine use induces a persistent increase in D1 receptors in glutamatergic terminals of projection neurons from the mPFC to the BLA via downregulation of miR-105 in the mPFC, and that these adaptive changes contribute to environmental cue-induced retrieval of morphine withdrawal memory.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号