首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
应用不依赖于培养方法的分子技术,研究堆肥中真菌群落的组成及其随温度变化的现象,正在修正以往人们对堆肥过程中重要真菌类群的认识。另外,新一代测序技术的利用虽有限,但已经较先前开始时揭示出更大、更多样化的菌物群落特异性。嗜热菌物种的数量,潜在地促进了先前研究的非特异性嗜热菌物种被大量发现,这些菌物可能具有重要的生物技术应用潜能。  相似文献   

2.
3.
Thermophilic fungi in a municipal waste compost system   总被引:10,自引:0,他引:10  
B E Kane  J T Mullins 《Mycologia》1973,65(5):1087-1100
  相似文献   

4.
目的:研究广西热带地区嗜热真菌的多样性.方法:从广西热带地区各地采集的土壤样品,将土样撒在PDA平板上,50℃高温培养,挑取真菌菌丝进一步划线分离纯化,20℃低温培养验证获得嗜热真菌,对其进行形态观察和ITS基因序列分析.结果:共分离到33株嗜热真菌,形态和分子生物学鉴定结果显示分离到的菌株中有20株属于Thermomyces lanuginosus,4株属于Thermoascus aurantiacus,1株属于Chaetomium thermophilum,l株属于Talaromyces emersonii,1株属于Myceliophthora thermophila,还有6株的ITS序列与已知真菌的同源性很低,尚无法鉴定到种属.结论:广西热带地区的嗜热真菌存在多样性,Thermomyces lanuginosus为该地区主要嗜热真菌种.  相似文献   

5.
6.
Thermophilic fungi: their physiology and enzymes.   总被引:8,自引:0,他引:8  
Thermophilic fungi are a small assemblage in mycota that have a minimum temperature of growth at or above 20 degrees C and a maximum temperature of growth extending up to 60 to 62 degrees C. As the only representatives of eukaryotic organisms that can grow at temperatures above 45 degrees C, the thermophilic fungi are valuable experimental systems for investigations of mechanisms that allow growth at moderately high temperature yet limit their growth beyond 60 to 62 degrees C. Although widespread in terrestrial habitats, they have remained underexplored compared to thermophilic species of eubacteria and archaea. However, thermophilic fungi are potential sources of enzymes with scientific and commercial interests. This review, for the first time, compiles information on the physiology and enzymes of thermophilic fungi. Thermophilic fungi can be grown in minimal media with metabolic rates and growth yields comparable to those of mesophilic fungi. Studies of their growth kinetics, respiration, mixed-substrate utilization, nutrient uptake, and protein breakdown rate have provided some basic information not only on thermophilic fungi but also on filamentous fungi in general. Some species have the ability to grow at ambient temperatures if cultures are initiated with germinated spores or mycelial inoculum or if a nutritionally rich medium is used. Thermophilic fungi have a powerful ability to degrade polysaccharide constituents of biomass. The properties of their enzymes show differences not only among species but also among strains of the same species. Their extracellular enzymes display temperature optima for activity that are close to or above the optimum temperature for the growth of organism and, in general, are more heat stable than those of the mesophilic fungi. Some extracellular enzymes from thermophilic fungi are being produced commercially, and a few others have commercial prospects. Genes of thermophilic fungi encoding lipase, protease, xylanase, and cellulase have been cloned and overexpressed in heterologous fungi, and pure crystalline proteins have been obtained for elucidation of the mechanisms of their intrinsic thermostability and catalysis. By contrast, the thermal stability of the few intracellular enzymes that have been purified is comparable to or, in some cases, lower than that of enzymes from the mesophilic fungi. Although rigorous data are lacking, it appears that eukaryotic thermophily involves several mechanisms of stabilization of enzymes or optimization of their activity, with different mechanisms operating for different enzymes.  相似文献   

7.
Estimation of root distributions in natural systems remains challenging due to the difficulties in excavation and easy breakage of fine roots. Identifying lateral fine root distribution is necessary to determine the potential exploitation of spatially and temporally variable nutrient supplies that characterize most arid ecosystems. We estimated this potential by taking field measurements of lateral root distribution of the small herbaceous perennial Cryptantha flava (A. Nels.) Payson using 15N-enriched nutrient solutions wicked into the soil at various distances from study plants. Leaves were subsequently harvested from these plants and analyzed for N isotopic ratios. C. flava plants were capable of N uptake at distances of greater than 1.0 m from the outer edge of their aboveground canopy. The considerable lateral root neighborhood area of C. flava increases the amount of spatially variable N that is exploitable in these low-N soils. The ability to acquire spatially variable N and rapidly translate N uptake into photosynthetic carbon gain are traits that aid C. flava in maintaining its position as a successful subordinate competitor in a community dominated by larger, woody perennials.  相似文献   

8.
Ten species of fungi were obtained from poultry droppings in Nigeria. Six of these are true thermophiles while the other four are thermotolerant. Aspergillus fumigatus Fresenius, Mucor pusillus Lindt and Thermoascus aurantiacus Stolk are known human pathogens. Except for M. pusillus, all the thermotolerant species had a higher occurrence at 45 degrees C while the thermophilic varieties were readily obtained at 50 degrees C.  相似文献   

9.
10.
The objective of this study was to determine if thermophilic fungi exist in the mycoflora of man and in the aeroflora of his environment.Humicola lanuginosa andHumicola grisea were isolated from 5 of 55 samples of outside air. Three thousand cultures were taken from the nasal mucosae, skin surfaces and recta of 570 children. Cultures were incubated at 50°C. Thermophilic fungi were isolated from 6 of 287 children receiving immunosuppressive therapy for malignancies and from 1 of 283 normal children.H. lanuginosa was recovered from the skin of one, the rectum of one and the nasal mucosae of three patients.Mucor pusillus was isolated from the nasopharynges of two patients.Further studies are now indicated to determine the pathogenicity of these organisms with respect to tissue invasive disease, antigenicity and metabolite toxicity.Supported by General Research Support Grant RR-05584 from National Institutes of Health; Cancer Research Center Grant CA-08480 and Training Grant CA-05176 from the National Cancer Institute, National Institutes of Health and by ALSAC.  相似文献   

11.
12.
Forty-eight thermophilic and thermotolerant species in addition to 5 varieties which belong to 24 genera were collected from desert soils in Saudi Arabia on glucose-(22 genera and 38 species + 5 varieties), cellulose-(15 genera and 27 species + 4 varieties) and 40% sucrose-Czapek's agar plates (13 genera and 26 species + 4 varieties) at 45 °C. The most frequent species were as follows: Aspergillus fumigatus, A. terreus, Humicola grisea var. thermoidae and Chaetomium thermophile var. copropile on glucose-; A. fumigatus, C. thermophile var. copropile, A. terreus, A. nidulans and C. thermophile var. dissitum on cellulose-; and A. fumigatus and A. terreus on 40% sucrose-Czapek's agar plates. Sixteen species and 4 varieties were particularly thermophilic and these were A. fumigatus, H. grisea var. thermoidae, H. insolens, H. lanuginosa, C. thermophile var. copropile, C. thermophile var. dissitum, C. virginicum, M. pusillus, S. thermophila, S.? pulverulentum, T. thermophilus, T.? emersoni, T. aurantiacus, T. thermophila, M. pulchella var. sulfurea, M. albomyces, ?A. terrestris, C. pruinosum, T. thermophila and P. thermophila. The remaining species showed different degrees of thermotolerant (32 species + 1 variety).  相似文献   

13.
Movile Cave, a unique groundwater ecosystem in southern Romania, was discovered in 1986. This chemoautotrophic cave contains an abundant and diverse fauna with terrestrial and aquatic invertebrate communities, including 33 endemic species. Since its discovery, studies have focused mainly on cave chemoautotrophic bacteria, while the microfungal community has been largely neglected. In this study, we determined the microfungal species living on various substrates in Movile Cave and compared this spectrum with the mycobiota detected outside the cave (outside air-borne and soil-borne microfungi). To investigate all of the niches, we collected samples for two consecutive years from the dry part of the cave (cave air and sediment, corroded limestone walls, isopod feces, and isopod and spider cadavers) and from the post-siphon part of the cave, i.e., Airbell II (sediment and floating microbial mat). A total of 123 microfungal species were identified from among several hundred isolates. Of these, 96 species were only detected in the cave environment and not outside of the cave, while 90 species were from the dry part of the cave and 28 were from Airbell II. The most diverse genera were Penicillium (at least 18 species) and Aspergillus (14 species), followed by Cladosporium (9 species). Surprisingly, high CFU counts of air-borne microfungi were found inside the cave; they were even higher than outside the cave during the first year of investigation.  相似文献   

14.
木材腐朽菌在森林生态系统中的功能   总被引:22,自引:1,他引:22  
魏玉莲  戴玉成 《应用生态学报》2004,15(10):1935-1938
木材腐朽菌是森林生态系统的重要组成部分,在森林生态系统中起着极为重要的降解还原作用,主要包括担子菌门非褶菌目、子囊菌门盘菌纲和半知菌类的部分真菌,能全部或部分降解木材中的木质素、纤维素和半纤维素,其降解机制有3种:白色腐朽、褐色腐朽和软腐朽.木材腐朽菌与生态系统中其它生物关系密切,为很多昆虫、鸟类提供营养,有些昆虫也能使木腐菌得到传播.保护木材腐朽菌的生物多样性是保护森林生态系统、维护生态系统健康的重要因素.  相似文献   

15.
16.
An attempt has been made to forecast the potential of thermophilic fungi to grow in soil in the laboratory and in the field in the presence of a predominantly mesophilic fungal flora at usual temperature. The respiratory rate of thermophilic fungi was markedly responsive to changes in temperature, but that of mesophilic fungi was relatively independent of such changes. This suggested that in a thermally fluctuating environment, thermophilic fungi may be at a physiological disadvantage compared to mesophilic fungi. In mixed cultures in soil plates, thermophilic fungi outgrew mesophilic fungi under a fluctuating temperature regime only when the amplitude of the fluctuating temperatures was small and approached their temperature optima for growth. An antibody probe was used to detect the activity of native or an introduced strain of a thermophilic fungus,Thermomyces lanuginosus, under field conditions. The results suggest that although widespread, thermophilic fungi are ordinarily not an active component of soil microflora. Their presence in soil most likely may be the result of the aerial dissemination of propagules from composting plant material.  相似文献   

17.
Festuca idahoensis (Idaho fescue) is a perennial caespitose grass, common in semi-arid rangelands of the Intermountain West. To determine how individuals are recruited into a population, we studied two long-term monitoring plots that were established in 1937 at the Northern Great Basin Experimental Range in southeastern Oregon. The plots measured 3.05×3.05 m, and were located approximately 30 m apart. One plot was ungrazed, the other was subject to moderate levels of cattle grazing. The number of F. idahoensis plants in both plots increased ten-fold between 1937 and 1996, but whether this was due primarily to reproduction by seed or clonal fragmentation was unknown. In 1996, we mapped and sampled 160 plants of F. idahoensis. We used dominant inter-simple sequence repeat (ISSR) markers and codominant allozyme markers in order to identify genetic individuals and measure genetic diversity. Both plots were characterized by high levels of genetic and clonal diversity. When information from ISSRs, allozymes and sample location were combined, 126 genets were recognized, each consisting of one to four samples (ramets). By measuring the diameter of clones surrounding plants that were present in 1937, we estimated that clonal spread occurred at a rate of approximately 3.7 cm per decade, and thus was of secondary importance in the maintenance and increase of F. idahoensis stands. Sexual reproduction, rather than clonal fragmentation, accounted for most of the recruitment of new plants into these plots. The grazed plot had fewer ramets, genotypes, and clones than the ungrazed plot, but the ramets were significantly larger. Levels of genetic diversity did not differ in the grazed and ungrazed plots, but there was some evidence for a small, but significant level of genetic differentiation between the two. The results also indicate that F. idahoensis has the potential to be a long-lived species with some individuals persisting in excess of 60 years. This study demonstrates how long-term monitoring can be supplemented by genetic analysis to obtain detailed information on the population dynamics of plants. In the case of this community dominant species, this provides essential information for understanding succession and developing management and restoration strategies.Electronic Supplementary Material Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s00442-003-1332-2  相似文献   

18.
Natural occurrence of vesicular-arbuscular mycorrhizal (VAM) fungi in Haryana soils showed that VAM sporulation was more intensive in the rhizosphere of nonlegumes than of legumes. Maximum number of spores (342 spores per 50 g of soil) was observed in the rhizosphere of mustard, followed by chickpea, wheat, pearl millet and pigeonpea. Four VAM generaviz. Glomus, Gigaspora, Sclerocystis andAcaulospora, were present there. Soil pH, total soil P, available P, type of soil, soil moisture and cropping season all variables influenced the VA mycorrhizal population in the natural ecosystem. Numbers of VAM spores highly correlated with the presence of total soil P and soil pH indirectly affected the VAM population through the total soil P. The spore population was abundant in sandy soils as compared to loamy sands. Drier soils had higher number of VAM spores. In summer, the VAM population in soil was less as compared to winter season.  相似文献   

19.
Thirteen thermohilic genera and 19 species in addition to one variety of each of M. pulchella and H.grisea were collected from wheat and broad-bean straw composts at 45 °C. In wheat and broad-bean, all thermophilic fungi were completely checked between 4–9 days, and 1–8 days composting when the temperature ranged between 58 ° and 67 °C, and 58 ° and 70 °C respectively, and reappeared, represented by P. duponti, M. albomyces, T. lanuginosus and S. thermophile, after 9 or 10 days composting when the temperature decreased to 51.5 °–54 °C. Wheat and broad-bean straw composts were analyzed biochemically to follow the changes in ethanol and diastase soluble, hemicellulose, cellulose and lignin fractions during composting.  相似文献   

20.
Aquatic Ecology - Few studies have evaluated the effects of large wildfires on downstream non-salmonid fish assemblages. Using multi-year (2009–2015) data from fish assemblage surveys and...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号