首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Retrograde signaling plays an important role in synaptic homeostasis, growth, and plasticity. A retrograde signal at the neuromuscular junction (NMJ) of Drosophila controls the homeostasis of neurotransmitter release. Here, we show that this retrograde signal is regulated by the postsynaptic activity of Ca2+/calmodulin-dependent protein kinase II (CaMKII). Reducing CaMKII activity in muscles enhances the signal and increases neurotransmitter release, while constitutive activation of CaMKII in muscles inhibits the signal and decreases neurotransmitter release. Postsynaptic inhibition of CaMKII increases the number of presynaptic, vesicle-associated T bars at the active zones. Consistently, we show that glutamate receptor mutants also have a higher number of T bars; this increase is suppressed by postsynaptic activation of CaMKII. Furthermore, we demonstrate that presynaptic BMP receptor wishful thinking is required for the retrograde signal to function. Our results indicate that CaMKII plays a key role in the retrograde control of homeostasis of synaptic transmission at the NMJ of Drosophila.  相似文献   

2.
Retrograde bone morphogenetic protein signaling mediated by the Glass bottom boat (Gbb) ligand modulates structural and functional synaptogenesis at the Drosophila melanogaster neuromuscular junction. However, the molecular mechanisms regulating postsynaptic Gbb release are poorly understood. In this study, we show that Drosophila Rich (dRich), a conserved Cdc42-selective guanosine triphosphatase-activating protein (GAP), inhibits the Cdc42-Wsp pathway to stimulate postsynaptic Gbb release. Loss of dRich causes synaptic undergrowth and strongly impairs neurotransmitter release. These presynaptic defects are rescued by targeted postsynaptic expression of wild-type dRich but not a GAP-deficient mutant. dRich inhibits the postsynaptic localization of the Cdc42 effector Wsp (Drosophila orthologue of mammalian Wiskott-Aldrich syndrome protein, WASp), and manifestation of synaptogenesis defects in drich mutants requires Wsp signaling. In addition, dRich regulates postsynaptic organization independently of Cdc42. Importantly, dRich increases Gbb release and elevates presynaptic phosphorylated Mad levels. We propose that dRich coordinates the Gbb-dependent modulation of synaptic growth and function with postsynaptic development.  相似文献   

3.
Ca2+ influx into synaptic compartments during activity is a key mediator of neuronal plasticity. Although the role of presynaptic Ca2+ in triggering vesicle fusion though the Ca2+ sensor synaptotagmin 1 (Syt 1) is established, molecular mechanisms that underlie responses to postsynaptic Ca2+ influx remain unclear. In this study, we demonstrate that fusion-competent Syt 4 vesicles localize postsynaptically at both neuromuscular junctions (NMJs) and central nervous system synapses in Drosophila melanogaster. Syt 4 messenger RNA and protein expression are strongly regulated by neuronal activity, whereas altered levels of postsynaptic Syt 4 modify synaptic growth and presynaptic release properties. Syt 4 is required for known forms of activity-dependent structural plasticity at NMJs. Synaptic proliferation and retrograde signaling mediated by Syt 4 requires functional C2A and C2B Ca2+–binding sites, as well as serine 284, an evolutionarily conserved substitution for a key Ca2+-binding aspartic acid found in other synaptotagmins. These data suggest that Syt 4 regulates activity-dependent release of postsynaptic retrograde signals that promote synaptic plasticity, similar to the role of Syt 1 as a Ca2+ sensor for presynaptic vesicle fusion.  相似文献   

4.
5.
6.
Emerging data implicate microRNAs (miRNAs) in the regulation of synaptic structure and function, but we know little about their role in the regulation of neurotransmission in presynaptic neurons. Here, we demonstrate that the miR-310-313 cluster is required for normal synaptic transmission at the Drosophila larval neuromuscular junction. Loss of miR-310-313 cluster leads to a significant enhancement of neurotransmitter release, which can be rescued with temporally restricted expression of mir-310-313 in larval presynaptic neurons. Kinesin family member, Khc-73 is a functional target for miR-310-313 as its expression is increased in mir-310-313 mutants and reducing it restores normal synaptic function. Cluster mutants show an increase in the active zone protein Bruchpilot accompanied by an increase in electron dense T bars. Finally, we show that repression of Khc-73 by miR-310-313 cluster influences the establishment of normal synaptic homeostasis. Our findings establish a role for miRNAs in the regulation of neurotransmitter release.  相似文献   

7.
Regulation of synaptic strength is essential for neuronal information processing, but the molecular mechanisms that control changes in neuroexocytosis are only partially known. Here we show that the putative G protein-coupled receptor Methuselah (Mth) is required in the presynaptic motor neuron to acutely upregulate neurotransmitter exocytosis at larval Drosophila NMJs. Mutations in the mth gene reduce evoked neurotransmitter release by approximately 50%, and decrease synaptic area and the density of docked and clustered vesicles. Pre- but not postsynaptic expression of normal Mth restored normal release in mth mutants. Conditional expression of Mth restored normal release and normal vesicle docking and clustering but not the reduced size of synaptic sites, suggesting that Mth acutely adjusts vesicle trafficking to synaptic sites.  相似文献   

8.
A longstanding hypothesis is that ion channels are present in the membranes of synaptic vesicles and might affect neurotransmitter release. Here we demonstrate that TRPM7, a member of the transient receptor potential (TRP) ion channel family, resides in the membrane of synaptic vesicles of sympathetic neurons, forms molecular complexes with the synaptic vesicle proteins synapsin I and synaptotagmin I, and directly interacts with synaptic vesicular snapin. In sympathetic neurons, changes in TRPM7 levels and channel activity alter acetylcholine release, as measured by EPSP amplitudes and decay times in postsynaptic neurons. TRPM7 affects EPSP quantal size, an intrinsic property of synaptic vesicle release. Targeted peptide interference of TRPM7's interaction with snapin affects the amplitudes and kinetics of postsynaptic EPSPs. Thus, vesicular TRPM7 channel activity is critical to neurotransmitter release in sympathetic neurons.  相似文献   

9.
Exchange of proteins at sorting endosomes is not only critical to numerous signaling pathways but also to receptor-mediated signaling and to pathogen entry into cells; however, how this process is regulated in synaptic vesicle cycling remains unexplored. In this work, we present evidence that loss of function of a single neuronally expressed GTPase activating protein (GAP), Skywalker (Sky) facilitates endosomal trafficking of synaptic vesicles at Drosophila neuromuscular junction boutons, chiefly by controlling Rab35 GTPase activity. Analyses of genetic interactions with the ESCRT machinery as well as chimeric ubiquitinated synaptic vesicle proteins indicate that endosomal trafficking facilitates the replacement of dysfunctional synaptic vesicle components. Consequently, sky mutants harbor a larger readily releasable pool of synaptic vesicles and show a dramatic increase in basal neurotransmitter release. Thus, the trafficking of vesicles via endosomes uncovered using sky mutants provides an elegant mechanism by which neurons may regulate synaptic vesicle rejuvenation and neurotransmitter release.  相似文献   

10.
Calcium (Ca2+) is a second messenger regulating a wide variety of intracellular processes. Using GABA-and glycinergic synapses as examples, this review analyzes two functions of this unique ion: postsynaptic Ca2+-dependent modulation of receptor-operated channels and Ca2+-induced retrograde regulation of neurotransmitter release from the presynaptic terminals. Phosphorylation, rapid Ca2+-induced modulation via intermediate Ca2+-binding proteins, and changes in the number of functional receptors represent the main pathways of short-and long-term plasticity of postsynaptic receptor-operated channel machinery. Retrograde signaling is an example of synaptic modulation triggered by stimulation of postsynaptic cells and mediated via regulation of presynaptic neurotransmitter release. This mechanism provides postsynaptic neurons with efficient tools to control the presynaptic afferents in an activity-dependent mode. Elevation of intracellular Ca2+ in a postsynaptic neuron triggers the synthesis of endocannabinoids (derivatives of arachidonic acid). Their retrograde diffusion through the synaptic cleft and consequent activation of presynaptic G-protein coupled to CB1 receptors inhibits the release of neurotransmitter. These mechanisms of double modulation, which include control over the function of postsynaptic ion channels and retrograde suppression of the release machinery, play an important role in Ca2+-dependent control of the main excitatory and inhibitory synaptic pathways in the mammalian nervous system.  相似文献   

11.
Evolutionarily conserved homeostatic systems have been shown to modulate synaptic efficiency at the neuromuscular junctions of organisms. While advances have been made in identifying molecules that function presynaptically during homeostasis, limited information is currently available on how postsynaptic alterations affect presynaptic function. We previously identified a role for postsynaptic Dystrophin in the maintenance of evoked neurotransmitter release. We herein demonstrated that Dystrobrevin, a member of the Dystrophin Glycoprotein Complex, was delocalized from the postsynaptic region in the absence of Dystrophin. A newly-generated Dystrobrevin mutant showed elevated evoked neurotransmitter release, increased bouton numbers, and a readily releasable pool of synaptic vesicles without changes in the function or numbers of postsynaptic glutamate receptors. In addition, we provide evidence to show that the highly conserved Cdc42 Rho GTPase plays a key role in the postsynaptic Dystrophin/Dystrobrevin pathway for synaptic homeostasis. The present results give novel insights into the synaptic deficits underlying Duchenne Muscular Dystrophy affected by a dysfunctional Dystrophin Glycoprotein complex.  相似文献   

12.
Retrograde signaling from postsynaptic cells to presynaptic neurons is essential for regulation of synaptic development, maintenance, and plasticity. Here we report that the novel protein AEX-1 controls retrograde signaling at neuromuscular junctions in C. elegans. aex-1 mutants show neural defects including reduced presynaptic activity and abnormal localization of the synaptic vesicle fusion protein UNC-13. Muscle-specific AEX-1 expression rescues these defects but neuron-specific expression does not. AEX-1 has an UNC-13 homologous domain and appears to regulate exocytosis in muscles. This retrograde signaling requires prohormone-convertase function in muscles, suggesting that a peptide is the retrograde signal. This signal regulates synaptic vesicle release via the EGL-30 Gq(alpha) protein at presynaptic terminals.  相似文献   

13.
During the development of the nervous system embryonic neurons are incorporated into neural networks that underlie behaviour. For example, during embryogenesis in Drosophila, motor neurons in every body segment are wired into the circuitry that drives the simple peristaltic locomotion of the larva. Very little is known about the way in which the necessary central synapses are formed in such a network or how their properties are controlled. One possibility is that presynaptic and postsynaptic elements form relatively independently of each other. Alternatively, there might be an interaction between presynaptic and postsynaptic neurons that allows for adjustment and plasticity in the embryonic network. Here we have addressed this issue by analysing the role of synaptic transmission in the formation of synaptic inputs onto identified motorneurons as the locomotor circuitry is assembled in the Drosophila embryo. We targeted the expression of tetanus toxin light chain (TeTxLC) to single identified neurons using the GAL4 system. TeTxLC prevents the evoked release of neurotransmitter by enzymatically cleaving the synaptic-vesicle-associated protein neuronal-Synaptobrevin (n-Syb) [1]. Unexpectedly, we found that the cells that expressed TeTxLC, which were themselves incapable of evoked release, showed a dramatic reduction in synaptic input. We detected this reduction both electrophysiologically and ultrastructurally.  相似文献   

14.
Given the complexity of the nervous system and its capacity for change, it is remarkable that robust, reproducible neural function and animal behavior can be achieved. It is now apparent that homeostatic signaling systems have evolved to stabilize neural function. At the neuromuscular junction (NMJ) of organisms ranging from Drosophila to human, inhibition of postsynaptic neurotransmitter receptor function causes a homeostatic increase in presynaptic release that precisely restores postsynaptic excitation. Here we address what occurs within the presynaptic terminal to achieve homeostatic potentiation of release at the Drosophila NMJ. By imaging presynaptic Ca(2+) transients evoked by single action potentials, we reveal a retrograde, transsynaptic modulation of presynaptic Ca(2+) influx that is sufficient to account for the rapid induction and sustained expression of the homeostatic change in vesicle release. We show that the homeostatic increase in Ca(2+) influx and release is blocked by a point mutation in the presynaptic CaV2.1 channel, demonstrating that the modulation of presynaptic Ca(2+) influx through this channel is causally required for homeostatic potentiation of release. Together with additional analyses, we establish that retrograde, transsynaptic modulation of presynaptic Ca(2+) influx through CaV2.1 channels is a key factor underlying the homeostatic regulation of neurotransmitter release.  相似文献   

15.
Repeated exposure to serotonin (5-HT), an endogenous neurotransmitter that mediates behavioral sensitization in Aplysia[1-3], induces long-term facilitation (LTF) of the Aplysia sensorimotor synapse [4]. LTF, a prominent form of invertebrate synaptic plasticity, is believed to play a major role in long-term learning in Aplysia[5]. Until now, LTF has been thought to be due predominantly to cellular processes activated by 5-HT within the presynaptic sensory neuron [6]. Recent work indicates that LTF depends on the increased expression and release of a sensory neuron-specific neuropeptide, sensorin [7]. Sensorin released during LTF appears to bind to autoreceptors on the sensory neuron, thereby activating critical presynaptic signals, including mitogen-activated protein kinase (MAPK) [8, 9]. Here, we show that LTF depends on elevated postsynaptic Ca2+ and postsynaptic protein synthesis. Furthermore, we find that the increased expression of presynaptic sensorin resulting from 5-HT stimulation requires elevation of postsynaptic intracellular Ca2+. Our results represent perhaps the strongest evidence to date that the increased expression of a specific presynaptic neuropeptide during LTF is regulated by retrograde signals.  相似文献   

16.
Amidated neuropeptides of the FMRFamide class regulate numerous physiological processes including synaptic efficacy at the Drosophila neuromuscular junction (NMJ). We demonstrate here that mutations in wishful thinking (wit) a gene encoding a Drosophila Bmp type 2 receptor that is required for proper neurotransmitter release at the neuromuscular junction, also eliminates expression of FMRFa in that subset of neuroendocrine cells (Tv neurons) which provide the systemic supply of FMRFa peptides. We show that Gbb, a Bmp ligand expressed in the neurohemal organ provides a retrograde signal that helps specify the peptidergic phenotype of the Tv neurons. Finally, we show that supplying FMRFa in neurosecretory cells partially rescues the wit lethal phenotype without rescuing the primary morphological or electrophysiological defects of wit mutants. We propose that Wit and Gbb globally regulate NMJ function by controlling both the growth and transmitter release properties of the synapse as well as the expression of systemic modulators of NMJ synaptic activity.  相似文献   

17.
Homeostatic synaptic plasticity is important for maintaining stability of neuronal function, but heterogeneous expression mechanisms suggest that distinct facets of neuronal activity may shape the manner in which compensatory synaptic changes are implemented. Here, we demonstrate that local presynaptic activity gates a retrograde form of homeostatic plasticity induced by blockade of AMPA receptors (AMPARs) in cultured hippocampal neurons. We show that AMPAR blockade produces rapid (<3 hr) protein synthesis-dependent increases in both presynaptic and postsynaptic function and that the induction of presynaptic, but not postsynaptic, changes requires coincident local activity in presynaptic terminals. This "state-dependent" modulation of presynaptic function requires postsynaptic release of brain-derived neurotrophic factor (BDNF) as a retrograde messenger, which is locally synthesized in dendrites in response to AMPAR blockade. Taken together, our results reveal a local crosstalk between active presynaptic terminals and postsynaptic signaling that dictates the manner by which homeostatic plasticity is implemented at synapses.  相似文献   

18.
The Akt family of serine‐threonine kinases integrates a myriad of signals governing cell proliferation, apoptosis, glucose metabolism, and cytoskeletal organization. Akt affects neuronal morphology and function, influencing dendrite growth and the expression of ion channels. Akt is also an integral element of PI3Kinase‐target of rapamycin (TOR)‐Rheb signaling, a pathway that affects synapse assembly in both vertebrates and Drosophila. Our recent findings demonstrated that disruption of this pathway in Drosophila is responsible for a number of neurodevelopmental deficits that may also affect phenotypes associated with tuberous sclerosis complex, a disorder resulting from mutations compromising the TSC1/TSC2 complex, an inhibitor of TOR (Dimitroff et al., 2012). Therefore, we examined the role of Akt in the assembly and physiological function of the Drosophila neuromuscular junction (NMJ), a glutamatergic synapse that displays developmental and activity‐dependent plasticity. The single Drosophila Akt family member, Akt1 selectively altered the postsynaptic targeting of one glutamate receptor subunit, GluRIIA, and was required for the expansion of a specialized postsynaptic membrane compartment, the subsynaptic reticulum (SSR). Several lines of evidence indicated that Akt1 influences SSR assembly by regulation of Gtaxin, a Drosophila t‐SNARE protein (Gorczyca et al., 2007) in a manner independent of the mislocalization of GluRIIA. Our findings show that Akt1 governs two critical elements of synapse development, neurotransmitter receptor localization, and postsynaptic membrane elaboration. © 2013 The Authors. Developmental Neurobiology Published by Wiley Periodicals, Inc. Develop Neurobiol 73: 723–743, 2013  相似文献   

19.
Frank CA  Kennedy MJ  Goold CP  Marek KW  Davis GW 《Neuron》2006,52(4):663-677
Homeostatic signaling systems are thought to interface with the mechanisms of neural plasticity to achieve stable yet flexible neural circuitry. However, the time course, molecular design, and implementation of homeostatic signaling remain poorly defined. Here we demonstrate that a homeostatic increase in presynaptic neurotransmitter release can be induced within minutes following postsynaptic glutamate receptor blockade. The rapid induction of synaptic homeostasis is independent of new protein synthesis and does not require evoked neurotransmission, indicating that a change in the efficacy of spontaneous quantal release events is sufficient to trigger the induction of synaptic homeostasis. Finally, both the rapid induction and the sustained expression of synaptic homeostasis are blocked by mutations that disrupt the pore-forming subunit of the presynaptic Ca(V)2.1 calcium channel encoded by cacophony. These data confirm the presynaptic expression of synaptic homeostasis and implicate presynaptic Ca(V)2.1 in a homeostatic retrograde signaling system.  相似文献   

20.
Macleod GT  Zinsmaier KE 《Neuron》2006,52(4):569-571
Synaptic homeostasis is a phenomenon that prevents the nervous system from descending into chaos. In this issue of Neuron, Frank et al. overturn the notion that synaptic homeostasis at Drosophila NMJs is a slow developmental process. They report that postsynaptic changes are offset within minutes by a homeostatic increase in neurotransmitter release that requires the presynaptic Ca(2+) channel Cacophony.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号