首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
This study examined the acute and long-term effects of two static stretching protocols of equal duration, performed either as a single stretch or multiple shorter duration repetitions on hip hyperextension range of motion (ROM) and single leg countermovement jump height (CMJ). Thirty female gymnasts were randomly assigned to stretching (SG) or control groups (CG). The SG performed two different protocols of static stretching, three times per week for 9 weeks. One leg performed repeated stretching (3 × 30 s with 30 s rest) while the other leg performed a single stretch (90 s). The CG continued regular training. ROM and CMJ were measured pre- and 2 min post-stretching on weeks 0, 3, 6, 9, and 3 weeks into detraining. CMJ height increased over time irrespective of group (main effect time, p = 0.001), with no statistical difference between groups (main effect group, p = 0.272). Three-way ANOVA showed that, CMJ height after stretching was not affected by either stretching protocol at any time point (p = 0.503 to 0.996). Both stretching protocols equally increased ROM on weeks 6 (10.9 ± 13.4%, p < 0.001, d = 0.42), and 9 (21.5 ± 13.4%, p < 0.001, d = 0.78), and this increase was maintained during detraining (17.0 ± 15.0%, p < 0.001, d = 0.68). No increase in ROM was observed in the CG (p > 0.874). Static stretching of long duration applied either as single or multiple bouts of equal duration, results in similar acute and long-term improvements in ROM. Furthermore, both stretching protocols do not acutely affect subsequent CMJ performance, and this effect is not influenced by the large increase in ROM and CMJ overtime.  相似文献   

2.
The aim of this study was to compare the effects of static stretching, proprioceptive neuromuscular facilitation (PNF) stretching and Mulligan technique on hip flexion range of motion (ROM) in subjects with bilateral hamstring tightness. A total of 40 students (mean age: 21.5±1.3 years, mean body height: 172.8±8.2 cm, mean body mass index: 21.9±3.0 kg · m-2) with bilateral hamstring tightness were enrolled in this randomized trial, of whom 26 completed the study. Subjects were divided into 4 groups performing (I) typical static stretching, (II) PNF stretching, (III) Mulligan traction straight leg raise (TSLR) technique, (IV) no intervention. Hip flexion ROM was measured using a digital goniometer with the passive straight leg raise test before and after 4 weeks by two physiotherapists blinded to the groups. 52 extremities of 26 subjects were analyzed. Hip flexion ROM increased in all three intervention groups (p<0.05) but not in the no-intervention group after 4 weeks. A statistically significant change in initial–final assessment differences of hip flexion ROM was found between groups (p<0.001) in favour of PNF stretching and Mulligan TSLR technique in comparison to typical static stretching (p=0.016 and p=0.02, respectively). No significant difference was found between Mulligan TSLR technique and PNF stretching (p=0.920). The initial–final assessment difference of hip flexion ROM was similar in typical static stretching and no intervention (p=0.491). A 4-week stretching intervention is beneficial for increasing hip flexion ROM in bilateral hamstring tightness. However, PNF stretching and Mulligan TSLR technique are superior to typical static stretching. These two interventions can be alternatively used for stretching in hamstring tightness.  相似文献   

3.
Muscle strain is one of the most common injuries, resulting in a decreased range of motion (ROM) in this group of muscles. Systematic stretching over a period of time is needed to increase the ROM. The purpose of this study was to determine if whole-body vibration (WBV) training would have a positive effect on flexibility training (contract-release method) and thereby on the ROM of the hamstring musculature. In this study, 19 undergraduate students in physical education (12 women and 7 men, age 21.5 +/- 2.0 years) served as subjects and were randomly assigned to either a WBV group or a control group. Both groups stretched systematically 3 times per week for 4 weeks according to the contract-release method, which consists of a 5-second isometric contraction with each leg 3 times followed by 30 seconds of static stretching. Before each stretching exercise, the WBV group completed a WBV program consisting of standing in a squat position on the vibration platform with the knees bent 90 degrees on the Nemes Bosco system vibration platform (30 seconds at 28 Hz, 10-mm amplitude, 6 times per training session). The results show that both groups had a significant increase in hamstring flexibility. However, the WBV group showed a significantly larger increase (30%) in ROM than did the control group (14%). These results indicate that WBV training may have an extra positive effect on flexibility of the hamstrings when combined with the contract-release stretching method.  相似文献   

4.
It is theorized that the total stretch time in a day is more important than the actual single stretch duration time. The purpose of this study was to compare 2 stretching protocols, keeping total stretching time equivalent. The 2 protocols were a 10-second duration stretch and a 30-second duration stretch. Although the stretch durations differed, the total stretching time over the course of a day was held constant at 2 minutes for both protocols. Participants were randomly assigned a protocol to each of their legs: subjects stretched 1 leg with the 10-second protocol and the opposite leg with the 30-second protocol. The 10-second stretch was repeated 6 times for a total of 1 minute; the 30-second protocol was repeated 2 times for a total of 1 minute. Stretching was performed twice daily (a total of 2 minutes each day) for 6 weeks. All stretching was performed to the hamstring muscles. Hip flexion measurements were recorded at pretest, 3-weeks, and 6-weeks. Subjects demonstrated significant gains in range of motion for hip flexion over the course of 6 weeks, p = 0.000. No differences existed between the 2 protocols. Range of motion gains were equal between the 2 stretching protocols. The common denominator was total stretch time for a day. Regardless of the duration of a single stretch, the key to improvement was the total daily stretch time. These findings are important as they allow clinicians and individuals to customize stretching protocols to meet individual needs.  相似文献   

5.
The purpose of this study was to investigate whether 6 weeks of static hamstring stretching effects range of motion (ROM), sprint, and vertical jump performances in athletes. Twenty-one healthy division III women's track and field athletes participated in the study. Subjects were tested for bilateral knee ROM; 55-m sprint time; and vertical jump height before, at 3 weeks, and after the 6-week flexibility program. Subjects were randomly assigned to treatment and control groups and warmed up with a 10-minute jog on a track before a hamstring stretching protocol. The stretching protocol consisted of four repetitions held for 45 seconds, 4 days per week. Four variables (left and right leg ROM, 55-m sprint time, vertical jump) were analyzed using a repeated-measures analysis of variance design. No significant differences (P < or = 0.05) were found with any of the four variables between the stretching and control groups. Six weeks of a static hamstring stretching protocol did not improve knee ROM or sprint and vertical jump performances in women track and field athletes. The use of static stretching should be restricted to post practice or competition because of the detrimental effects reported throughout the literature. Based on the current investigation, it does not seem that chronic static stretching has a positive or negative impact on athletic performance. Thus, the efficacy of utilizing this practice is questionable and requires further investigation.  相似文献   

6.
This study compares the effects of 3 common stretching techniques on the length of the hamstring muscle group during a 4-week training program. Subjects were 19 young adults between the ages of 21 and 35. The criterion for subject inclusion was tight hamstrings as defined by a knee extension angle greater than 20 degrees while supine with the hip flexed 90 degrees . The participants were randomly assigned to 1 of 4 groups. Group 1 (n = 5) was self-stretching, group 2 (n = 5) was static stretching, group 3 (n = 5) was proprioceptive neuromuscular facilitation incorporating the theory of reciprocal inhibition (PNF-R), and group 4 (n = 4) was control. Each group received the same stretching dose of a single 30-second stretch 3 days per week for 4 weeks. Knee extension angle was measured before the start of the stretching program, at 2 weeks, and at 4 weeks. Statistical analysis (p < or = 0.05) revealed a significant interaction of stretching technique and duration of stretch. Post hoc analysis showed that all 3 stretching techniques increase hamstring length from the baseline value during a 4-week training program; however, only group 2 (static stretching) was found to be significantly greater than the control at 4 weeks. These data indicate that static stretching 1 repetition for 30 seconds 3 days per week increased hamstring length in young healthy subjects. These data also suggest that active self-stretching and PNF-R stretching 1 repetition for 30 seconds 3 days per week is not sufficient to significantly increase hamstring length in this population.  相似文献   

7.
The aim of this study was to determine the influence of 2 methods of stretch training (passive and proprioceptive neuromuscular facilitation [PNF]) on range of motion (ROM) in older people between the age of 60 and 70 years over a period of 13 weeks. Fifty-four participants (39 women and 15 men) were divided into 3 groups: passive (n = 17; 66.5 ± 6.5 years), PNF (n = 17; age, 64.7 ± 4.0 years old), and control (n = 17; age, 66.4 ± 4.5 years). The subjects trained 2 times per week on nonconsecutive days for 13 weeks. Each training session included 2 flexibility exercises focused on the shoulder and hip joints. The PNF group performed 6 seconds of passive stretching, 3 seconds of muscular contractions, and 2 seconds of relaxation. The passive group performed 10 seconds of stretching and 5 seconds of relaxation. This sequence was repeated 3 times by each group. The control group did not perform any stretching. In the PNF group, there was an increase in hip ROM (p < 0.001) between pretest and posttest in the passive group and an improvement (p < 0.001) was observed between pretest and posttest, whereas in the control group, there was a significant decrease (p < 0.01) in hip ROM between pretest and posttest. In shoulder ROM, there was an increase (p < 0.001) between pretest and posttest in the passive group and an improvement (p < 0.001) was observed between pretest and posttest in the PNF group. There were no changes in shoulder ROM between pretest and posttest in the control group. The analysis of variance showed significant differences in hip and shoulder ROM between passive and control groups and PNF and control groups, but no significant differences were found between passive and PNF. The main finding was that the ability of physically active older people to increase ROM in response to stretching techniques is similar for both passive and PNF techniques.  相似文献   

8.
Although a dose-response relationship between resistance training frequency and strength has been identified, there is limited research regarding the association between frequency and body composition. This study evaluated the effects of 3 vs. 4 d·wk(-1) of resistance training on body composition and strength in middle-aged women. Twenty-one untrained women (age 47.6 ± 1.2 years) completed 8 weeks of resistance training either 3 nonconsecutive days of the week using a traditional total-body protocol (RT3) or 4 consecutive days of the week using an alternating split-training protocol (RT4). The RT3 completed 3 sets of 8 exercises, whereas RT4 completed 3 sets of 6 upper body exercises or 6 sets of 3 lower body exercises. Both groups completed 72 sets per week of 8-12 repetitions at 50-80% 1 repetition maximum. Weekly training volume load was calculated as the total number of repetitions × load (kg) completed per week. Body composition was measured using air displacement plethysmography. At baseline and after 8 weeks of resistance training, there were no significant between-group differences. Both protocols resulted in significant increases in absolute lean mass (1.1 ± 0.3 kg; p = 0.001), body weight (1.02 ± 0.3 kg; p = 0.005), body mass index (0.3 ± 0.1 kg·m(-2); p = 0.006), strength (p < 0.001), and weekly training volume load (p < 0.001). Correlation analysis revealed that weekly training volume load was strongly and positively related to gains in lean mass (r = 0.56, p = 0.05) and strength (r = 0.60, p = 0.006). In these untrained, middle-aged women, initial short-term gains in lean mass and strength were not influenced by training frequency when the number of training sets per week was equated.  相似文献   

9.
Stretching is often included as part of a warm-up procedure for basketball activity. However, the efficacy of stretching with respect to sport performance has come into question. We determined the effects of 4 different warm-up protocols followed by 20 minutes of basketball activity on flexibility and vertical jump height. Subjects participated in 6 weeks (2 times per week) of warm-up and basketball activity. The warm-up groups participated in ballistic stretching, static stretching, sprinting, or basketball shooting (control group). We asked 3 questions. First, what effect does 6 weeks of warm-up exercise and basketball play have on both flexibility and vertical jump height? We measured sit and reach and vertical jump height before (week -1) and after (week 7) the 6 weeks. Flexibility increased for the ballistic, static, and sprint groups compared to the control group (p < 0.0001), while vertical jump height did not change for any of the groups. Our second question was what is the acute effect of each warm-up on vertical jump height? We measured vertical jump immediately after the warm-up on 4 separate occasions during the 6 weeks (at weeks 0, 2, 4, and 6). Vertical jump height was not different for any group. Finally, our third question was what is the acute effect of each warm-up on vertical jump height following 20 minutes of basketball play? We measured vertical jump height immediately following 20 minutes of basketball play at weeks 0, 2, 4, and 6. Only the ballistic stretching group demonstrated an acute increase in vertical jump 20 minutes after basketball play (p < 0.05). Coaches should consider using ballistic stretching as a warm-up for basketball play, as it is beneficial to vertical jump performance.  相似文献   

10.
It was questioned whether a unilateral stretching program would induce a crosstraining effect in the contralateral muscle. To test this, 13 untrained individuals participated in a 10-week stretching program while 12 other untrained individuals served as a control group. For the experimental group, the right calf muscle was stretched 4 times for 30 seconds, with a 30-second rest between stretches, 3 d·wk(-1) for 10 weeks. Strength, determined via 1 repetition maximum (1RM) unilateral standing toe raise, and range of motion (ROM) were measured pre-post. In the treatment group, the stretched calf muscle had a significant (p < 0.05) 8% increase in ROM, whereas the nonstretched calf muscle had a significant 1% decrease in ROM. The 1 RM of the stretched calf muscle significantly increased 29%, whereas the 1RM of the nonstretched calf muscle significantly increased 11%. In the control group, neither 1RM nor ROM changed for either leg. The results indicate that 10 weeks of stretching only the right calf will significantly increase the strength of both calves. Hence, chronic stretching can also induce a crosstraining effect for strength but not for the ROM. This study also validates earlier findings suggesting that stretching can elicit strength gains in untrained individuals.  相似文献   

11.
Stretching exercise is effective for increasing joint range of motion (ROM). However, the Surgeon General's Report and the American College of Sports Medicine cite a lack of studies identifying strategies capable of increasing the effectiveness of stretching exercise. This investigation evaluated adding modest weight (0.45-1.35 kg) to a stretching exercise routine (Body Recall [BR]) on joint ROM. Forty-three subjects ages 55-83 years participated in 1 of 2 training groups, BR, BR with weights (BR+W), or a control group (C). ROM was evaluated at the neck, shoulder, hip, knee, and ankle before and after 10 weeks of exercise. Using ANCOVA, significant differences (p < 0.01) were observed for right and left cervical rotation, hip extension, ankle dorsiflexion, ankle plantar flexion, and shoulder flexion. Post hoc analysis revealed that cervical rotation (left and right), hip extension, and ankle dorsiflexion for BR+W subjects differed significantly from BR and C (p < 0.01). Significant differences with shoulder flexion and ankle plantar flexion were found for both BR and BR+W in comparison to C (p < 0.01). Results indicate that addition of weights enhanced the effectiveness of stretching exercise for increasing joint ROM with 4 of the 6 selected measurements. Thus, a modest intensity exercise program that is within the reach of most elderly may significantly affect joint ROM and flexibility.  相似文献   

12.
The purpose of this study was to examine the acute effects of 3 different stretching methods combined with a warm-up protocol on vertical jump performance. Sixteen young tennis players (14.5 ± 2.8 years; 175 ± 5.6 cm; 64.0 ± 11.1 kg) were randomly assigned to 4 different experimental conditions on 4 successive days. Each session consisted of a general and specific warm-up, with 5 minutes of running followed by 10 jumps, accompanied by one of the subsequent conditions: (a) Control Condition (CC)-5 minutes of passive rest; (b) Passive Stretching Condition (PSC)-5 minutes of passive static stretching; (c) Active Stretching Condition (ASC)-5 minutes of active static stretching; and (d) Dynamic Stretching Condition (DC)-5 minutes of dynamic stretching. After each intervention, the subjects performed 3 squat jumps (SJs) and 3 countermovement jumps (CMJs), which were measured electronically. For the SJ, 1-way repeated measures analysis of variance (CC × PSC × ASC × DC) revealed significant decreases for ASC (28.7 ± 4.7 cm; p = 0.01) and PSC (28.7 ± 4.3 cm; p = 0.02) conditions when compared with CC (29.9 ± 5.0 cm). For CMJs, there were no significant decreases (p > 0.05) when all stretching conditions were compared with the CC. Significant increases in SJ performance were observed when comparing the DC (29.6 ± 4.9 cm; p = 0.02) with PSC (28.7 ± 4.3 cm). Significant increases in CMJ performance were observed when comparing the conditions ASC (34.0 ± 6.0 cm; p = 0.04) and DC (33.7 ± 5.5 cm; p = 0.03) with PSC (32.6 ± 5.5 cm). A dynamic stretching intervention appears to be more suitable for use as part of a warm-up in young athletes.  相似文献   

13.
Numerous studies have shown that stretching routines can induce strength and force deficits, although the amount of stretching needed to cause these deficits remains unclear. Therefore, the purpose of the study was to examine the relationship between varying amounts of acute static stretching on jumping performance. By systematically increasing the amount of stretching, possible differences in jump height may be discovered, defining a line where acute static stretching becomes detrimental to performance. Ten collegiate athletes and 10 recreational athletes completed 3 different stretching treatments and 1 control treatment on different days in a within-treatment design. Stretching treatments consisted of 2, 4, or 6 sets of stretches, with each stretch held for 15 seconds with a 15-second rest. Stretches were done to the quadriceps, hamstrings, and plantar flexors. Upon arrival, each subject performed a 5-minute warm-up on a stationary upright cycle. After a brief rest period, participants performed 3 trials of a vertical jump test, followed by one of the treatment protocols. After another rest period, a second set of vertical jump trials was performed. Post-6 sets was significantly lower than Pre-6 sets (p < or = 0.05). Additionally, Post-6 sets was significantly lower than Pre-4 sets, Pre-2 sets, and Pre-control (p < or = 0.05). No other conditions were significantly different. In conclusion, 6 sets of stretches, or 90 seconds per muscle group, should not be performed before power activities such as jumping where optimal performance is desired.  相似文献   

14.
The study investigated the heart rate (HR) and heart rate variability (HRV) before, during, and after stretching exercises performed by subjects with low flexibility levels. Ten men (age: 23 ± 2 years; weight: 82 ± 13 kg; height: 177 ± 5 cm; sit-and-reach: 23 ± 4 cm) had the HR and HRV assessed during 30 minutes at rest, during 3 stretching exercises for the trunk and hamstrings (3 sets of 30 seconds at maximum range of motion), and after 30 minutes postexercise. The HRV was analyzed in the time ('SD of normal NN intervals' [SDNN], 'root mean of the squared sum of successive differences' [RMSSD], 'number of pairs of adjacent RR intervals differing by >50 milliseconds divided by the total of all RR intervals' [PNN50]) and frequency domains ('low-frequency component' [LF], 'high-frequency component' [HF], LF/HF ratio). The HR and SDNN increased during exercise (p < 0.03) and decreased in the postexercise period (p = 0.02). The RMSSD decreased during stretching (p = 0.03) and increased along recovery (p = 0.03). At the end of recovery, HR was lower (p = 0.01), SDNN was higher (p = 0.02), and PNN50 was similar (p = 0.42) to pre-exercise values. The LF increased (p = 0.02) and HF decreased (p = 0.01) while stretching, but after recovery, their values were similar to pre-exercise (p = 0.09 and p = 0.3, respectively). The LF/HF ratio increased during exercise (p = 0.02) and declined during recovery (p = 0.02), albeit remaining higher than at rest (p = 0.03). In conclusion, the parasympathetic activity rapidly increased after stretching, whereas the sympathetic activity increased during exercise and had a slower postexercise reduction. Stretching sessions including multiple exercises and sets acutely changed the sympathovagal balance in subjects with low flexibility, especially enhancing the postexercise vagal modulation.  相似文献   

15.
The purpose of this study was to analyze the effect of 3 different exercise interventions plus a control group on passive hip range of motion (ROM). Previous research studies into the methods of improving passive hip mobility have focused on stretching protocols aimed specifically at the hip joint. The effect of core stabilization, motor training, and myofascial stretching techniques on hip mobility in a selected asymptomatic group with limited hip mobility is unclear. In this study, 24 young men with limited hip mobility (<50th percentile) were randomly assigned to 4 groups: stretching, stretching with motor control exercises for the hip and trunk, core endurance with motor control exercises, and the control group. Six-week home exercise programs were individually prescribed based on the assigned group, hip ROM, movement patterns, and timed core endurance. Two-way analyses of variances were conducted to analyze the effect of group assignment on hip ROM improvements. Both stretching groups demonstrated significant improvements in hip ROM (p < 0.05), attaining hip mobility levels at or above the 75th percentile, with rotation improving as much as 56%. The group receiving core endurance and motor control exercises with no stretching also demonstrated a moderate increase in ROM but only significantly so in rotation. Average core endurance holding times improved 38-53%. These results indicate that stretches aimed at the myofascial components of the upper body, in addition to the hip joint, resulted in dramatic increases in hip ROM in a group of young men with limited hip mobility. Hip ROM also improved in the group that did no active stretching, highlighting the potential role of including stabilization or "proximal stiffening training" when rehabilitating the extremities.  相似文献   

16.
The study aimed to evaluate the effects of 1 vs. 2 sessions per week of equal-volume sprint training on explosive, high-intensity and endurance-intensive performances among young soccer players. Thirty-six young male soccer players were randomly divided into 2 experimental groups that performed either a single weekly sprint training session (ST1, n = 18, age: 17.2 ± 0.8 years) or two weekly sprint training sessions (ST2, n = 18; age: 17.1 ± 0.9 years) of equal weekly and total volume, in addition to their regular soccer training regimen. Linear sprinting (10 m, 20 m, 30 m, and flying 10 m), T-test agility, countermovement jump (CMJ) and maximal oxygen consumption were assessed one week before (T1), in the middle (T2) and immediately after the 10 weeks of training (T3). A large magnitude and statistically significant main effect for time was found in all the assessed variables after both training interventions (all p < 0.001; ES ≥ 0.80). No main effect was observed between the 2 groups at any time in linear sprinting, T-test or CMJ test (p > 0.05; ES < 0.20). A significant interaction effect (F = 4.05; p = 0.04, ES = 0.21) was found for maximal oxygen consumption with ST2 inducing better performance than ST1 (p = 0.001; ES = 1.11). Our findings suggested that the two sprint training frequencies were effective in enhancing explosive, high-intensity and endurance-intensive performances. However, it is recommended for coaches and fitness coaches to use a biweekly sprint training modality as it was found to be more effective in improving endurance-intensive performance.  相似文献   

17.
A number of studies have investigated the efficacy of several repetitions of proprioceptive neuromuscular facilitation stretching (PNF) and static stretching (SS). However, there is limited research comparing the effects of a single bout of these stretching maneuvers. The aim of this study was to compare the effectiveness of a single bout of a therapist-applied 30-second SS vs. a single bout of therapist-applied 6-second hamstring (agonist) contract PNF. Forty-five healthy subjects between the ages of 21 and 35 were randomly allocated to 1 of the 2 stretching groups or a control group, in which no stretching was received. The flexibility of the hamstring was determined by a range of passive knee extension, measured using a universal goniometer, with the subject in the supine position and the hip at 90° flexion, before and after intervention. A significant increase in knee extension was found for both intervention groups after a single stretch (SS group = 7.53°, p < 0.01 and PNF group = 11.80°, p < 0.01). Both interventions resulted in a significantly greater increase in knee extension when compared to the control group (p < 0.01). The PNF group demonstrated significantly greater gains in knee extension compared to the SS group (mean difference 4.27°, p < 0.01). It can be concluded that a therapist applied SS or PNF results in a significant increase in hamstring flexibility. A hamstring (agonist) contract PNF is more effective than an SS in a single stretching session. These findings are important to physiotherapists or trainers working in clinical and sporting environments. Where in the past therapists may have spent time conducting multiple repetitions of a PNF and an SS, a single bout of either technique may be considered just as effective. A key component of the study methodology was the exclusion of a warm-up period before stretching. Therefore, the findings of efficacy of a single PNF are of particular relevance in sporting environments and busy clinical settings where time may be limited.  相似文献   

18.
The purpose of this study was to examine the effect of proprioceptive neuromuscular facilitation (PNF) stretching on musculotendinous unit (MTU) stiffness of the ankle joint. Twenty active women were assessed for maximal ankle range of motion, maximal strength of planter flexors, rate of force development, and ankle MTU stiffness. Subjects were randomly allocated into an experimental (n = 10) group or control group (n = 10). The experimental group performed PNF stretching on the ankle joint 3 times per week for 4 weeks, with physiological testing performed before and after the training period. After training, the experimental group significantly increased ankle range of motion (7.8%), maximal isometric strength (26%), rate of force development (25%), and MTU stiffness (8.4%) (p < 0.001). Four weeks of PNF stretching contributed to an increase in MTU stiffness, which occurred concurrently with gains to ankle joint range of motion. The results confirm that MTU stiffness and joint range of motion measurements appear to be separate entities. The increased MTU stiffness after the training period is explained by adaptations to maximal isometric muscle contractions, which were a component of PNF stretching. Because a stiffer MTU system is linked with an improved the ability to store and release elastic energy, PNF stretching would benefit certain athletic performance due to a reduced contraction time or greater mechanical efficiency. The results of this study suggest PNF stretching is a useful modality at increasing a joint's range of motion and its strength.  相似文献   

19.
The purpose of this study was to examine the acute effects of static versus dynamic stretching on peak torque (PT) and electromyographic (EMG), and mechanomyographic (MMG) amplitude of the biceps femoris muscle (BF) during isometric maximal voluntary contractions of the leg flexors at four different knee joint angles. Fourteen men ((mean +/- SD) age, 25 +/- 4 years) performed two isometric leg flexion maximal voluntary contractions at knee joint angles of 41 degrees , 61 degrees , 81 degrees , and 101 degrees below full leg extension. EMG (muV) and MMG (m x s(-2)) signals were recorded from the BF muscle while PT values (Nm) were sampled from an isokinetic dynamometer. The right hamstrings were stretched with either static (stretching time, 9.2 +/- 0.4 minutes) or dynamic (9.1 +/- 0.3 minutes) stretching exercises. Four repetitions of three static stretching exercises were held for 30 seconds each, whereas four sets of three dynamic stretching exercises were performed (12-15 repetitions) with each set lasting 30 seconds. PT decreased after the static stretching at 81 degrees (p = 0.019) and 101 degrees (p = 0.001) but not at other angles. PT did not change (p > 0.05) after the dynamic stretching. EMG amplitude remained unchanged after the static stretching (p > 0.05) but increased after the dynamic stretching at 101 degrees (p < 0.001) and 81 degrees (p < 0.001). MMG amplitude increased in response to the static stretching at 101 degrees (p = 0.003), whereas the dynamic stretching increased MMG amplitude at all joint angles (p 相似文献   

20.
A comparison of assisted and unassisted proprioceptive neuromuscular facilitation techniques and static stretching. J Strength Cond Res 26(5): 1238-1244, 2012-Proprioceptive neuromuscular facilitation (PNF) stretching often requires a partner. Straps are available allowing an individual to perform PNF stretching alone. It is not known if a strap provides similar improvements in the range of motion (ROM) as partner-assisted PNF or static stretching. The purpose of this study was to compare assisted and unassisted (with a strap) PNF stretching and static stretching. Hip joint ROM, reaction time (RT), and movement time (MT) were measured prestretching and poststretching. Thirteen recreationally active adults participated in this study. The participants were subjected to 5 different stretch interventions in a random order on separate days. Stretch conditions included unassisted PNF stretching using (a) isometric, (b) concentric, and (c) eccentric contractions with a stretch strap, (d) partner-assisted isometric PNF, and (e) static stretching. The RT, MT, dynamic, active, passive hip flexion angle, and angular velocity with dynamic hip flexion were measured before and after the intervention. The ROM improved (p < 0.05) 2.6, 2.7, and 5.4%, respectively, with dynamic, active static, and passive static ROM, but there was no significant difference between the stretching protocols. There was a main effect for time (p < 0.05) with all stretching conditions negatively impacting dynamic angular velocity (9.2%). Although there was no significant effect on RT, MT showed a negative main effect for time (p < 0.05) slowing 3.4%. In conclusion, it was found that all 3 forms of active stretching provided similar improvements in the ROM and poststretching performance decrements in MT and angular velocity. Thus, individuals can implement PNF stretching techniques with a partner or alone with a strap to improve ROM, but athletes should not use these techniques before important competitions or training because of the impairment of limb velocity and MT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号