首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Rhizobia form a disparate collection of soil bacteria capable of reducing atmospheric nitrogen in symbiosis with legumes. The study of rhizobial populations in nature involves the collection of large numbers of nodules found on roots or stems of legumes, and the subsequent typing of nodule bacteria. To avoid the time-consuming steps of isolating and cultivating nodule bacteria prior to genotyping, a protocol of strain identification based on the comparison of MALDI-TOF MS spectra was established. In this procedure, plant nodules were considered as natural bioreactors that amplify clonal populations of nitrogen-fixing bacteroids. Following a simple isolation procedure, bacteroids were fingerprinted by analysing biomarker cellular proteins of 3 to 13 kDa using Matrix Assisted Laser Desorption/Ionization Time of Flight (MALDI-TOF) mass spectrometry. In total, bacteroids of more than 1,200 nodules collected from roots of three legumes of the Phaseoleae tribe (cowpea, soybean or siratro) were examined. Plants were inoculated with pure cultures of a slow-growing Bradyrhizobium japonicum strain G49, or either of two closely related and fast-growing Sinorhizobium fredii strains NGR234 and USDA257, or with mixed inoculants. In the fully automatic mode, correct identification of bacteroids was obtained for >97% of the nodules, and reached 100% with a minimal manual input in processing of spectra. These results showed that MALDI-TOF MS is a powerful tool for the identification of intracellular bacteria taken directly from plant tissues.  相似文献   

2.
Acetic acid bacteria (AAB) are widespread microorganisms characterized by their ability to transform alcohols and sugar-alcohols into their corresponding organic acids. The suitability of matrix-assisted laser desorption-time of flight mass spectrometry (MALDI-TOF MS) for the identification of cultured AAB involved in the industrial production of vinegar was evaluated on 64 reference strains from the genera Acetobacter, Gluconacetobacter and Gluconobacter. Analysis of MS spectra obtained from single colonies of these strains confirmed their basic classification based on comparative 16S rRNA gene sequence analysis. MALDI-TOF analyses of isolates from vinegar cross-checked by comparative sequence analysis of 16S rRNA gene fragments allowed AAB to be identified, and it was possible to differentiate them from mixed cultures and non-AAB. The results showed that MALDI-TOF MS analysis was a rapid and reliable method for the clustering and identification of AAB species.  相似文献   

3.
Veloo AC  Welling GW  Degener JE 《Anaerobe》2011,17(4):211-212
Matrix Assisted Laser Desorption and Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) has gained more and more popularity for the identification of bacteria. Several studies show that bacterial diagnosticis is being revolutionized by the application of MALDI-TOF MS. For anaerobic bacteria, MALDI-TOF MS has been used for the identification of Prevotella spp., Fusobacterium spp., Clostridium spp., Bacteroides spp. and Gram-positive anaerobic cocci. However, to identify bacteria reliably, an extensive database is essential. For routine identification of anaerobic bacteria available databases need to be optimised.  相似文献   

4.
Gram-positive anaerobic cocci (GPAC) are part of the commensal microbiota of humans and are a phylogenetically heterogeneous group of organisms. To evaluate the suitability of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for the identification of GPAC, a database was constructed, using reference strains of commonly encountered GPAC and clinical isolates of which the sequence of the 16S rRNA gene was determined. Subsequently, the database was validated by identifying 107 clinical isolates of GPAC. Results were compared with the identifications obtained by 16S sequencing or fluorescent in situ hybridization (FISH). Strains belonging to the same species grouped together, in most cases, by MALDI-TOF MS analyses. Strains with sequence similarities less than 98% to their closest relatives, formed clusters distinct from recognized species in the MALDI-TOF MS dendrogram and, therefore could not be identified. These strains probably represent new species. Only three clinical isolates (2 strains of Finegoldia magna and 1 strain of Anaerococcus vaginalis) could not be identified. For all the other GPAC strains (96/107), reliable identifications were obtained. Therefore, we concluded that MALDI-TOF MS is an excellent tool for the identification of phylogenetically heterogeneous groups of micro-organisms such as GPAC.  相似文献   

5.
MALDI-TOF-MS systems (Microflex-Bruker Daltonics/BioTyper? and Axima-Assurance-Shimadzu/SARAMIS-AnagnosTec) were assessed for bacterial identification. Focusing on bacteria difficult to identify routinely, 296 strains were identified by molecular biology techniques as gold standard. MALDI-TOF-MS identification provided correct results at genus and species level for 94.9%, 83.4% and 83.8%, 65.9% with Biotyper and Saramis respectively.  相似文献   

6.
Matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS) has developed during the past decade into a versatile tool for biopolymer analysis. The aim of this review is to summarize this development and outline the applications, which have been enabled for routine use in the field of nucleic acid analysis. These include the anlaysis of mutations, the resequencing of amplicons with a known reference sequence, and the quantitative analysis of gene expression and allelic frequencies in complex DNA mixtures.  相似文献   

7.
To evaluate a rapid and cost-effective method for monitoring bacteria in ballast water, several marine bacterial isolates were characterized by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Since International Maritime Organization (IMO) regulations are concerned with the unintended transportation of pathogenic bacteria through ballast water, emphasis was placed on detecting species of Vibrio, enterococci and coliforms. Seawater samples collected from the North Sea were incubated in steel ballast tanks and the presence of potentially harmful species of Pseudomonas was also investigated. At the genus-level, the identification of thirty six isolates using MALDI-TOF MS produced similar results to those obtained by 16S rRNA gene sequencing. No pathogenic species were detected either by 16S rRNA gene analysis or by MALDI-TOF MS except for the opportunistically pathogenic bacterium Pseudomonas aeruginosa. In addition, in house software that calculated the correlation coefficient values (CCV) of the mass spectral raw data and their variation was developed and used to allow the rapid and efficient identification of marine bacteria in ballast water for the first time.  相似文献   

8.
Lee K  Bae D  Lim D 《Molecules and cells》2002,13(2):175-184
Protein identification by peptide mass fingerprinting, using the matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS), plays a major role in large proteome projects. In order to develop a simple and reliable method for protein identification by MALDI-TOF MS, we compared and evaluated the major steps in peptide mass fingerprinting. We found that the removal of excess enzyme from the in-gel digestion usually gave a few more peptide peaks, which were important for the identification of some proteins. Internal calibration always gave better results. However, for a large number of samples, two step calibrations (i.e. database search with peptide mass from external calibration, then the use of peptide masses from the search result as internal calibrants) were useful and convenient. From the evaluation and combination of steps that were already developed by others, we established a single overall procedure for peptide identification from a polyacrylamide gel.  相似文献   

9.
目的评价基质辅助激光解吸电离飞行时间质谱(MALDI-TOF MS)技术用于常见益生菌菌株鉴定及潜在益生菌菌株筛选的可行性。方法利用16S rDNA序列分析在方法学上对MALDI-TOF MS技术的鉴定能力进行研究;通过MALDI-TOF MS技术对现有保藏菌株的鉴定结果研究MALDI-TOF MS技术的鉴定准确性及优越性。结果 MALDI-TOF MS技术具备较16S rDNA序列分析更高的菌株鉴定能力;MALDI-TOF MS技术的鉴定结果准确、稳定。结论 MALDI-TOF MS技术可以作为准确、快速、廉价及可高通量操作的菌株鉴定方法应用于常见益生菌菌株的鉴定及潜在益生菌菌株的筛选。  相似文献   

10.
目的建立基质辅助激光解吸电离飞行时间质谱(MADLI-TOF MS)技术鉴定常见益生菌的实验方法并对MADLI-TOF MS技术的适用性进行初步评价。方法对MADLI-TOF MS技术鉴定常见益生菌过程中各影响因素进行考察,筛选出最佳的实验条件。利用19株供试菌株所得的蛋白指纹图谱对MADLI-TOF MS技术的适用性进行研究。结果建立了MADLI-TOF MS技术鉴定常见益生菌的最佳实验方法。初步证明MADLI-TOF MS技术具备在属、种、亚种以及菌株水平上鉴定常见益生菌的能力。结论建立的实验方法稳定性高、重复性好,可以作为MADLI-TOF MS技术鉴定常见益生菌的参考方法。MADLI-TOF MS技术可以作为常见益生菌鉴定的方法之一。  相似文献   

11.
12.
Yersinia enterocolitica are Gram-negative pathogens and known as important causes of foodborne infections. Rapid and reliable identification of strains of the species Y. enterocolitica within the genus Yersinia and the differentiation of the pathogenic from the non-pathogenic biotypes has become increasingly important. We evaluated here the application of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) for rapid species identification and subtyping of Y. enterocolitica. To this end, we developed a reference MS database library including 19 Y. enterocolitica (non-pathogenic biotype 1A and pathogenic biotypes 2 and 4) as well as 24 non-Y. enterocolitica strains, belonging to eleven different other Yersinia spp. The strains provided reproducible and unique mass spectra profiles covering a wide molecular mass range (2000 to 30,000 Da). Species-specific and biotype-specific biomarker protein mass patterns were determined for Y. enterocolitica. The defined biomarker mass patterns (SARAMIS SuperSpectrum™) were validated using 117 strains from various Y. enterocolitica bioserotypes in a blind-test. All strains were correctly identified and for all strains the mass spectrometry-based identification scheme yielded identical results compared to a characterization by a combination of biotyping and serotyping. Our study demonstrates that MALDI-TOF-MS is a reliable and powerful tool for the rapid identification of Y. enterocolitica strains to the species level and allows subtyping of strains to the biotype level.  相似文献   

13.
Lack of genomic sequence data and the relatively high cost of tandem mass spectrometry have hampered proteomic investigations into helminths, such as resolving the mechanism underpinning globally reported anthelmintic resistance. Whilst detailed mechanisms of resistance remain unknown for the majority of drug-parasite interactions, gene mutations and changes in gene and protein expression are proposed key aspects of resistance. Comparative proteomic analysis of drug-resistant and -susceptible nematodes may reveal protein profiles reflecting drug-related phenotypes. Using the gastro-intestinal nematode, Haemonchus contortus as case study, we report the application of freely available expressed sequence tag (EST) datasets to support proteomic studies in unsequenced nematodes. EST datasets were translated to theoretical protein sequences to generate a searchable database. In conjunction with matrix-assisted laser desorption ionisation time-of-flight mass spectrometry (MALDI-TOF-MS), Peptide Mass Fingerprint (PMF) searching of databases enabled a cost-effective protein identification strategy. The effectiveness of this approach was verified in comparison with MS/MS de novo sequencing with searching of the same EST protein database and subsequent searches of the NCBInr protein database using the Basic Local Alignment Search Tool (BLAST) to provide protein annotation. Of 100 proteins from 2-DE gel spots, 62 were identified by MALDI-TOF-MS and PMF searching of the EST database. Twenty randomly selected spots were analysed by electrospray MS/MS and MASCOT Ion Searches of the same database. The resulting sequences were subjected to BLAST searches of the NCBI protein database to provide annotation of the proteins and confirm concordance in protein identity from both approaches. Further confirmation of protein identifications from the MS/MS data were obtained by de novo sequencing of peptides, followed by FASTS algorithm searches of the EST putative protein database. This study demonstrates the cost-effective use of available EST databases and inexpensive, accessible MALDI-TOF MS in conjunction with PMF for reliable protein identification in unsequenced organisms.  相似文献   

14.
MALDI-TOF mass spectrometry of oligomeric food polyphenols   总被引:1,自引:0,他引:1  
Reed JD  Krueger CG  Vestling MM 《Phytochemistry》2005,66(18):2248-2263
The structural heterogeneity of polyphenols from cranberries, grape seed extracts, sorghum and pomegranate was characterized by MALDI-TOF MS. Polyphenolics were isolated by liquid chromatography and subjected to MALDI-TOF MS using trans-3-indoleacrylic acid as the matrix. Spectrometric analysis gave information on degree of polymerization, monomeric substitution, and the nature of intermolecular bonds. Cranberry polyflavan-3-ols had variation in interflavan bonds (A- and B-types) and contained polyflavan-3-ols linked to anthocyanins through a CH3-CH bridge. Polygalloyl-polyflavan-3-ols in grape seed extract had large variation in the degree of galloyl substitution. Sorghum polyflavans had structural heterogeneity in glycosylation and hydroxylation. Pomegranate hydrolyzable tannins that correspond to previously described structures were detected, such as punicalagin, but others that correspond to oligomeric ellgitannins in which two to five core glucose units are cross-linked by dehydrodigalloyl and or valoneoyl units were also observed. Results demonstrate that large heterogeneity occurs in degree of polymerization, intermolecular bonds, pattern of hydroxylation, and substitution with monosaccharides and gallic acid.  相似文献   

15.
MALDI-TOF mass spectrometry (MS) is becoming essential in most clinical microbiology laboratories throughout the world. Its successful use is mainly attributable to the low operational costs, the universality and flexibility of detection, as well as the specificity and speed of analysis. Based on characteristic protein spectra obtained from intact cells – by means of simple, rapid and reproducible preanalytical and analytical protocols – MALDI-TOF MS allows a highly discriminatory identification of yeasts and filamentous fungi starting from colonies. Whenever used early, direct identification of yeasts from positive blood cultures has the potential to greatly shorten turnaround times and to improve laboratory diagnosis of fungemia. More recently, but still at an infancy stage, MALDI-TOF MS is used to perform strain typing and to determine antifungal drug susceptibility. In this article, the authors discuss how the MALDI-TOF MS technology is destined to become a powerful tool for routine mycological diagnostics.  相似文献   

16.
Single-nucleotide polymorphism analysis by MALDI-TOF mass spectrometry   总被引:14,自引:0,他引:14  
Single-nucleotide polymorphisms (SNPs) have great potential for use in genetic-mapping studies, which locate and characterize genes that are important in human disease and biological function. For SNPs to realize their full potential in genetic analysis, thousands of different SNP loci must be screened in a rapid, accurate and cost-effective manner. Matrix-assisted laser desorption-ionization-time-of-flight (MALDI-TOF) mass spectrometry is a promising tool for the high-throughput screening of SNPs, with future prospects for use in genetic analysis.  相似文献   

17.
Chen S 《Proteomics》2006,6(1):16-25
Current protein identification techniques are largely based on MALDI-TOF mass fingerprinting and LC-ESI MS/MS sequence tag analysis. Here we describe an improved method for rapid protein identification that uses direct infusion nanoelectrospray quadrupole time-of-flight (nanoESI QTOF) MS. Protein digests were analyzed without LC separation using nanoESI on a QSTAR XL MS/MS system in information dependent data acquisition mode. The protein identification conditions and parameters were extensively evaluated with in-solution and in-gel digested protein samples. Rapid identification of proteins was achieved and compared directly to the results obtained on the same samples using nanoflow HPLC-MS/MS on the QSTAR system. The increased throughput, reproducibility, the high data quality, and the ease of use make the direct infusion system an efficient and affordable technique for protein identification analysis.  相似文献   

18.
Freshwater snails of the genera Biomphalaria, Bulinus, and Oncomelania are intermediate hosts of schistosomes that cause human schistosomiasis, one of the most significant infectious neglected diseases in the world. Identification of freshwater snails is usually based on morphology and potentially DNA-based methods, but these have many drawbacks that hamper their use. MALDI-TOF MS has revolutionised clinical microbiology and has emerged in the medical entomology field. This study aims to evaluate MALDI-TOF MS profiling for the identification of both frozen and ethanol-stored snail species using protein extracts from different body parts. A total of 530 field specimens belonging to nine species (Biomphalaria pfeifferi, Bulinus forskalii, Bulinus senegalensis, Bulinus truncatus, Bulinus globosus, Bellamya unicolor, Cleopatra bulimoides, Lymnaea natalensis, Melanoides tuberculata) and 89 laboratory-reared specimens, including three species (Bi. pfeifferi, Bu. forskalii, Bu. truncatus) were used for this study. For frozen snails, the feet of 127 field and 74 laboratory-reared specimens were used to validate the optimised MALDI-TOF MS protocol. The spectral analysis yielded intra-species reproducibility and inter-species specificity which resulted in the correct identification of all the specimens in blind queries, with log-score values greater than 1.7. In a second step, we demonstrated that MALDI-TOF MS could also be used to identify ethanol-stored snails using proteins extracted from the foot using a specific database including a large number of ethanol preserved specimens. This study shows for the first time that MALDI-TOF MS is a reliable tool for the rapid identification of frozen and ethanol-stored freshwater snails without any malacological expertise.  相似文献   

19.
Non-enzymatic glycation of protein is mediated via an interaction between the aldehyde group of a reducing sugar and available alpha- or epsilon-amino moieties of the protein. The above event can alter the biological activity of the protein and therefore, it is of particular interest to monitor the glycation of proteins having important functional roles in metabolism. In the present study, matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS) has been used to determine the non-enzymatic glycation of bovine insulin. The degree of insulin glycation was increased in both concentration- and time-dependent manner in relation to exposure to glucose, and the event was more pronounced for monoglycation reaction than that noticed for the diglycation of the hormone. Enzymatic digestion of insulin preparations with endoproteinase Glu C has revealed that each of the B 1-13 and B 22-30 peptide fragments of glycated insulin contains a site of binding of a single glucose molecule. Finally, attempt has been made in order to increase the sensitivity of the glycation assay through efficient enrichment of the glycated insulin on magnetic beads containing immobilized 3-aminophenylboronic acid (APBA) on their surface.  相似文献   

20.
Introduction: The development of precision medicine requires advanced technologies to address the multifactorial disease stratification and to support personalized treatments. Among omics techniques, proteomics based on Mass Spectrometry (MS) is becoming increasingly relevant in clinical practice allowing a phenotypic characterization of the dynamic functional status of the organism. From this perspective, Matrix Assisted Laser Desorption Ionization Time of Flight (MALDI-TOF) MS is a suitable platform for providing a high-throughput support to clinics.

Areas covered: This review aims to provide an updated overview of MALDI-TOF MS applications in clinical proteomics. The most relevant features of this analysis have been discussed, highlighting both pre-analytical and analytical factors that are crucial in proteomics studies. Particular emphasis is placed on biofluids proteomics for biomarkers discovery and on recent progresses in clinical microbiology, drug monitoring, and minimal residual disease (MRD).

Expert commentary: Despite some analytical limitations, the latest technological advances together with the easiness of use, the low time and low cost consuming and the high throughput are making MALDI-TOF MS instruments very attractive for the clinical practice. These features offer a significant potential for the routine of the clinical laboratory and ultimately for personalized medicine.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号