首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Glial cell line-derived neurotrophic factor (GDNF) provides neuroprotection, but its neuroprotective mechanism has not been resolved. We investigated the neuroprotective mechanism of GDNF using primary culture of the rat mesencephalon. Bleomycin sulfate (BLM) and L-buthionine-[S,R]-sulfoximine (BSO) caused apoptosis in both dopaminergic and nondopaminergic neurons, as revealed by the presence of chromatin condensation, and positive staining by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end-labeling (TUNEL). GDNF preincubation blocked the neurotoxicity and reduced the number of the TUNEL-positive cells caused by BLM and BSO exposure. In contrast, GDNF did not provide neuroprotection against glutamate toxicity, which was not accompanied by these apoptotic features. The neuroprotection was mediated by phosphatidylinositol 3-kinase, an effector downstream from c-Ret, because it was blocked by LY294002. GDNF pretreatment caused up-regulation of Bcl-2 and Bcl-x. Furthermore, GDNF suppressed oxygen radical accumulation caused by BLM. Apoptosis induced by BLM and BSO was blocked by a caspase-3 inhibitor. Caspase-3 activity was elevated by BLM and suppressed by GDNF pretreatment. These findings indicate that GDNF has no effect on necrosis but exerts protection against apoptosis by activation of phosphatidylinositol 3-kinase and the subsequent up-regulation of Bcl-2 and Bcl-x, which suppresses accumulation of oxygen radicals followed by caspase-3 activation.  相似文献   

2.
3.
Glial cell line-derived neurotrophic factor (GDNF) is a potent neurotrophic factor with restorative effects in a wide variety of rodent and primate models of Parkinson disease, but penetration into brain tissue from either the blood or the cerebro-spinal fluid is limited. Here we delivered GDNF directly into the putamen of five Parkinson patients in a phase 1 safety trial. One catheter needed to be repositioned and there were changes in the magnetic resonance images that disappeared after lowering the concentration of GDNF. After one year, there were no serious clinical side effects, a 39% improvement in the off-medication motor sub-score of the Unified Parkinson's Disease Rating Scale (UPDRS) and a 61% improvement in the activities of daily living sub-score. Medication-induced dyskinesias were reduced by 64% and were not observed off medication during chronic GDNF delivery. Positron emission tomography (PET) scans of [(18)F]dopamine uptake showed a significant 28% increase in putamen dopamine storage after 18 months, suggesting a direct effect of GDNF on dopamine function. This study warrants careful examination of GDNF as a treatment for Parkinson disease.  相似文献   

4.
Malin SA  Davis BM 《生理学报》2008,60(5):571-578
The neurotrophin and glial cell line-derived neurotrophic factor (GDNF) family of growth factors have been extensively studied because of their proven ability to regulate development of the peripheral nervous system. The neurotrophin family,which includes nerve growth factor (NGF), NT-3, NT4/5 and BDNF, is also known for its ability to regulate the function of adult sensory neurons. Until recently, little was known concerning the role of the GNDF-family (that includes GDNF, artemin, neurturin and persephin) in adult sensory neuron function. Here we describe recent data that indicates that the GDNF family can regulate sensory neuron function, that some of its members are elevated in inflammatory pain models and that application of these growth factors produces pain in vivo. Finally we discuss how these two families of growth factors may converge on a single membrane receptor, TRPV 1, to produce long-lasting hyperalgesia.  相似文献   

5.
6.
Glial cell line-derived neurotrophic factor (GDNF) was reported to be effective for treating subjects with neurodegenerative diseases such as Parkinson's disease. In search of finding a compound which promotes GDNF secretion, we found that concanamycin A (ConA), a vacuolar ATPase (V-type ATPase) inhibitor purified from Streptomyces diastatochromogens, enhanced GDNF secretion from glioma cells. The rat glioma cell line, C6, and the human glioma cell lines, U87MG and T98G, abundantly expressed GDNF mRNA, and secreted GDNF into culture media, and this event was potently enhanced by a Ca(2+) ionophore and by phorbol ester, as noted in other cells. ConA concentration dependently and potently increased GDNF release from C6, U87MG and T98G cells into culture media. In addition, ConA enhanced GDNF secretion from astrocyte primary cultures prepared from the human fetus with the same potency seen in glioma cell lines. Likewise, another V-type ATPase inhibitor, bafilomycinA1 facilitated GDNF release from C6, U87MG and T98G glioma cells, in a concentration-dependent manner. The potencies of these V-type ATPase inhibitors in enhancing GDNF secretion were consistent with those which inhibited V-type ATPase activity. These results suggest that blockade of V-type ATPase potently stimulates the secretion of GDNF from glial cells. The V-type ATPase inhibitors may be beneficial to use for the treatment of diseases in which increase in GDNF could be effective.  相似文献   

7.
Effects of endothelin-1 (ET-1) on glial cell line-derived neurotrophic factor (GDNF) production in cultured astrocytes were examined. Treatment of cultured astrocytes with ET-1 (100 nM) increased mRNA levels of GDNF in 1-6h. The effect of ET-1 was inhibited by BQ788, an ET(B) receptor antagonist, but not by FR139317, an ET(A) receptor antagonist. ET-1 stimulated release of GDNF into culture medium. Dexamethasone (1 microM) and pyrrolidine dithiocarbamate (PDTC, 100 microM), which inhibit activation of NFkappaB, prevented the increases in GDNF mRNA by H(2)O(2). In contrast, the effect of ET-1 was not affected by dexamethasone and PDTC. The increase of astrocytic GDNF mRNA by ET-1 was inhibited by BAPTA/AM (30 microM) and PD98059 (50 microM), but not by calphostin C, staurosporine, and cyclosporine A. These results suggest that ET-1 stimulated expression of astrocytic GDNF through ET(B) receptor-mediated increases in cytosolic Ca(2+) and ERK activation.  相似文献   

8.
Li R  Xia W  Zhang Z  Wu K 《PloS one》2011,6(6):e21663

Background

Human milk contains a wide variety of nutrients that contribute to the fulfillment of its functions, which include the regulation of newborn development. However, few studies have investigated the concentrations of S100B protein, brain-derived neurotrophic factor (BDNF), and glial cell line-derived neurotrophic factor (GDNF) in human milk. The associations of the concentrations of S100B protein, BDNF, and GDNF with maternal factors are not well explored.

Methodology/Principal Findings

To investigate the concentrations of S100B protein, BDNF, and GDNF in human milk and characterize the maternal factors associated with their levels in human milk, human milk samples were collected at days 3, 10, 30, and 90 after parturition. Levels of S100B protein, BDNF, and GDNF, and their mRNAs in the samples were detected. Then, these concentrations were compared with lactation and other maternal factors. S100B protein levels in human milk samples collected at 3, 10, 30, and 90 d after parturition were 1249.79±398.10, 1345.05±539.16, 1481.83±573.30, and 1414.39±621.31 ng/L, respectively. On the other hand, the BDNF concentrations in human milk samples were 10.99±4.55, 13.01±5.88, 13.35±6.43, and 2.83±5.47 µg/L, while those of GDNF were 10.90±1.65, 11.38±1., 11.29±3.10, and 11.40±2.21 g/L for the same time periods. Maternal post-pregnancy body mass index was positively associated with S100B levels in human milk (r = 0.335, P = 0.030<0.05). In addition, there was a significant correlation between the levels of S100B protein and BDNF (z = 2.09, P = 0.037<0.05). Delivery modes were negatively associated with the concentration of GDNF in human milk.

Conclusions

S100B protein, BDNF, and GDNF are present in all samples of human milk, and they may be responsible for the long term effects of breast feeding.  相似文献   

9.
Glial cell line-derived neurotrophic factor (GDNF) promotes development and differentiation of dopaminergic neurons, thus it has an important role in dopamine-related neuropsychiatric disorders. Since the role of dopamine system in smoking is well established, we hypothesized that GDNF gene variants may affect smoking behaviour. Self-reported data on smoking behaviour (never smoked, quit, occasional, or regular smokers) and level of nicotine addiction (Hooked on Nicotine Checklist and Fagerstrom Nicotine Addiction Scale), anxiety, as well as buccal samples were obtained from 930 Hungarian young adults (18–35 years). Genetic analysis involved eight GDNF single-nucleotide polymorphisms (SNP) (rs1981844, rs3812047, rs3096140, rs2973041, rs2910702, rs1549250, rs2973050 and rs11111). Allele-wise association analyses of the eight GDNF SNPs provided a significant association between smoking behaviour and rs3096140 (P = 0.0039). The minor allele (C) was more frequent in those groups who smoked in some form (quit, occasional or regular smokers) as compared to those who never smoked (P = 0.0046). This result remained significant after Bonferroni correction for multiple testing. In the ever smoking group, no significant differences were found in the level of nicotine addiction by the alleles of these polymorphisms. Also, no significant interaction of rs3096140 and smoking categories were observed on anxiety mean scores. Although previous data demonstrated an association between GDNF rs2910704 and severity of methamphetamine use to the best of our knowledge, this is the first study on the role of GDNF genetic variations in smoking behaviour. Our results suggest that GDNF rs3096140 might be involved in the genetic background of smoking, independent of anxiety characteristics.  相似文献   

10.
Glial cell line-derived neurotrophic factor (GDNF), after secreted from cells, plays a critical role in central and peripheral neuron survival and function. The secretion of GDNF can be either constitutive or regulated by physiological stimuli; however, the detailed mechanism driving GDNF secretion is still unknown. Here, we report that sorting protein-related receptor with A-type repeats (SorLA), a member of the mammal Vps10p domain receptor, interacts with GDNF and is localized to GDNF-containing vesicles. Overexpression of SorLA significantly increases, and knockdown of SorLA by siRNA decreases, the regulated secretion of GDNF in PC12 and MN9D cells but has no effect on GDNF constitutive secretion. In addition, overexpression of a truncated form of SorLA also impairs GDNF-regulated secretion. Finally, we found that the prodomain of GDNF mediates the interaction of GDNF with SorLA under acidic conditions. Moreover, overexpression of SorLA could enhance the regulated secretion of the GDNF prodomain-GFP fusion protein, suggesting that the prodomain of GDNF is responsible for its regulated secretion. Together, these findings will advance our understanding of the molecular mechanism underlying GDNF-regulated secretion.  相似文献   

11.
Although glial cell-line derived neurotrophic factor (GDNF) acts as a potent survival factor for dopaminergic neurons, it is not known whether GDNF can directly alter dopamine synthesis. Tyrosine hydroxylase (TH) is the rate-limiting enzyme for dopamine biosynthesis, and its activity is regulated by phosphorylation on three seryl residues: Ser-19, Ser-31, and Ser-40. Using a TH-expressing human neuroblastoma cell line and rat primary mesencephalic neuron cultures, the present study examined whether GDNF alters the phosphorylation of TH and whether these changes are accompanied by increased enzymatic activity. Exposure to GDNF did not alter the TH protein level in either neuroblastoma cells or in primary neurons. However, significant increases in the phosphorylation of Ser-31 and Ser-40 were detected within minutes of GDNF application in both cell types. Enhanced Ser-31 and Ser-40 phosphorylation was associated with increased TH activity but not dopamine synthesis in neuroblastoma cells, possibly because of the absence of l-aromatic amino acid decarboxylase activity in these cells. In contrast, increased phosphorylation of Ser-31 and Ser-40 was found to enhance dopamine synthesis in primary neurons. Pharmacological experiments show that Erk and protein kinase A phosphorylate Ser-31 and Ser-40, respectively, and that their inhibition blocked both TH phosphorylation and activity. Our results indicate that, in addition to its role as a survival factor for dopaminergic neurons, GDNF can directly increase dopamine synthesis.  相似文献   

12.
Neurotrophic factors are essential neurone survival promoting molecules that are often secreted and that bind to neuronal cell surface receptors. Glial cell line-derived neurotrophic factor, GDNF, is a potent neurotrophic factor that promotes the survival of dopaminergic neurones in cultures including embryonic neuronal cultures. We have mapped the gene encoding GDNF by two independent methods: using a cell hybrid panel and by fluorescent in situ hybridisation. We find GDNF lies on the short arm of human chromosome 5, at 5p13.1-p13.3  相似文献   

13.
Spermatogonial stem cells (SSC) are a small self-renewing subpopulation of type A spermatogonia, which for the rest are composed of differentiating cells with a very similar morphology. We studied the development of primary co-cultures of prepubertal bovine Sertoli cells and A spermatogonia and the effect of glial cell line-derived neurotropic factor (GDNF) on the numbers and types of spermatogonia, the formation of spermatogonial colonies and the capacity of the cultured SSC to colonize a recipient mouse testis. During the first week of culture many, probably differentiating, A spermatogonia entered apoptosis while others formed pairs and chains of A spermatogonia. After 1 week colonies started to appear that increased in size with time. Numbers of single (A(s)) and paired (A(pr)) spermatogonia were significantly higher in GDNF treated cultures at Days 15 and 25 (P < 0.01 and 0.05, respectively), and the ratio of A(s) to A(pr) and spermatogonial chains (A(al)) was also higher indicating enhanced self-renewal of the SSC. Furthermore, spermatogonial outgrowths in the periphery of the colonies showed a significantly higher number of A spermatogonia with a more primitive morphology under the influence of GDNF (P < 0.05). Spermatogonial stem cell transplantation experiments revealed a 2-fold increase in stem cell activity in GDNF treated spermatogonial cultures (P < 0.01). We conclude that GDNF rather than inducing proliferation, enhances self-renewal and increases survival rates of SSC in the bovine spermatogonial culture system.  相似文献   

14.
Glial cell line-derived neurotrophic factor (GDNF) is known for its potent effect on neuronal survival, but its role in the development and function of synapses is not well studied. Using Xenopus nerve-muscle co-cultures, we show that GDNF and its family member neurturin (NRTN) facilitate the development of the neuromuscular junction (NMJ). Long-term application of GDNF significantly increased the total length of neurites in the motoneurons. GDNF also caused an increase in the number and the size of synaptic vesicle clustering, as demonstrated by synaptobrevin-GFP fluorescent imaging, and FM dye staining. Electrophysiological experiments revealed two effects of GDNF on synaptic transmission at NMJ. First, GDNF markedly increased the frequency of spontaneous transmission and decreased the variability of evoked transmission, suggesting an enhancement of transmitter secretion. Second, GDNF elicited a small increase in the quantal size, without affecting the average rise and decay times of synaptic currents. Imaging analysis showed that the size of acetylcholine receptor clusters at synapses increased in muscle cells overexpressing GDNF. Neurturin had very similar effects as GDNF. These results suggest that GDNF and NRTN are new neuromodulators that regulate the development of the neuromuscular synapse through both pre- and postsynaptic mechanisms.  相似文献   

15.
16.
Oxidative damage contributes to retinal cell death in patients with age-related macular degeneration or retinitis pigmentosa. One approach to treatment is to identify and eliminate the sources of oxidative damage. Another approach is to identify treatments that protect cells from multiple sources of oxidative damage. In this study, we investigated the effect of increased expression of glial cell line-derived neurotrophic factor (GDNF) in three models of oxidative damage-induced retinal degeneration. Double transgenic mice with doxycycline-inducible expression of GDNF in the retina were exposed to paraquat, FeSO(4), or hyperoxia, all sources of oxidative damage and retinal cell death. Compared to controls, mice with increased expression of GDNF in the retina showed significant preservation of retinal function measured by electroretinograms, reduced thinning of retinal cell layers, and fewer TUNEL-positive cells indicating less retinal cell death. Mice over-expressing GDNF also showed less staining for acrolein, nitrotyrosine, and 8-hydroxydeoxyguanosine, indicating less oxidative damage to lipids, proteins, and DNA. This suggests that GDNF did not act solely to allow cells to tolerate higher levels of oxidative damage before initiation of apoptosis, but also reduced damage from oxidative stress to critical macromolecules. These data suggest that gene transfer of Gdnf should be considered as a component of therapy for retinal degenerations in which oxidative damage plays a role.  相似文献   

17.
Glial cell line-derived neurotrophic factor (GDNF) has been shown to signal through a multicomponent receptor complex consisting of the Ret receptor tyrosine kinase and a member of the GFRalpha family of glycosylphosphatidylinositol-anchored receptors. In the current model of GDNF signaling, Ret delivers the intracellular signal but cannot bind ligand on its own, while GFRalphas bind ligand but are thought not to signal in the absence of Ret. We have compared signaling pathways activated by GDNF in two neuronal cell lines expressing different complements of GDNF receptors. In a motorneuron-derived cell line expressing Ret and GFRalphas, GDNF stimulated sustained activation of the Ras/ERK and phosphatidylinositol 3-kinase/Akt pathways, cAMP response element-binding protein phosphorylation, and increased c-fos expression. Unexpectedly, GDNF also promoted biochemical and biological responses in a line of conditionally immortalized neuronal precursors that express high levels of GFRalphas but not Ret. GDNF treatment did not activate the Ras/ERK pathway in these cells, but stimulated a GFRalpha1-associated Src-like kinase activity in detergent-insoluble membrane compartments, rapid phosphorylation of cAMP response element-binding protein, up-regulation of c-fos mRNA, and cell survival. Together, these results offer new insights into the dynamics of GDNF signaling in neuronal cells, and indicate the existence of novel signaling mechanisms directly or indirectly mediated by GFRalpha receptors acting in a cell-autonomous manner independently of Ret.  相似文献   

18.
Bone marrow stromal cells (BMSC) have attracted interest through their possible use for cell therapy in neurological diseases. Recent reports demonstrated that these cells are able to migrate and have potential for neuronal differentiation after transplantation into brain parenchyma. The objective of this work was determine whether rat BMSC express NGF and GDNF, in order to study its potential application for treatment of neurodegenerative diseases. BMSC were harvested from male rats and cultured in DMEM supplemented with 20% fetal bovine serum. At passage 6 the total RNA was isolated using TriZol reactive. RT-PCRs to evaluate the expression of NGF and GDNF using specific primers were carried out. Our results indicate that rat BMSC have potential to produce NGF and GDNF. We have not found any report in favor of GDNF or NGF production from rat BMSC.  相似文献   

19.
Recently, both clinical and animal studies demonstrated neuronal and glial plasticity to be important for the therapeutic action of antidepressants. Antidepressants increase glial cell line-derived neurotrophic factor (GDNF) production through monoamine-independent protein-tyrosine kinase, extracellular signal-regulated kinase (ERK), and cAMP responsive element-binding protein (CREB) activation in glial cells (Hisaoka, K., Takebayashi, M., Tsuchioka, M., Maeda, N., Nakata, Y., and Yamawaki, S. (2007) J. Pharmacol. Exp. Ther. 321, 148-157; Hisaoka, K., Maeda, N., Tsuchioka, M., and Takebayashi, M. (2008) Brain Res. 1196, 53-58). This study clarifies the type of tyrosine kinase and mechanism of antidepressant-induced GDNF production in C6 glioma cells and normal human astrocytes. The amitriptyline (a tricyclic antidepressant)-induced ERK activation was specifically and completely inhibited by fibroblast growth factor receptor (FGFR) tyrosine kinase inhibitors and siRNA for FGFR1 and -2. Treatment with amitriptyline or several different classes of antidepressants, but not non-antidepressants, acutely increased the phosphorylation of FGFRs and FGFR substrate 2α (FRS2α). Amitriptyline-induced CREB phosphorylation and GDNF production were blocked by FGFR-tyrosine kinase inhibitors. Therefore, antidepressants activate the FGFR/FRS2α/ERK/CREB signaling cascade, thus resulting in GDNF production. Furthermore, we attempted to elucidate how antidepressants activate FGFR signaling. The effect of amitriptyline was inhibited by heparin, non-permeant FGF-2 neutralizing antibodies, and matrix metalloproteinase (MMP) inhibitors. Serotonin (5-HT) also increased GDNF production through FGFR2 (Tsuchioka, M., Takebayashi, M., Hisaoka, K., Maeda, N., and Nakata, Y. (2008) J. Neurochem. 106, 244-257); however, the effect of 5-HT was not inhibited by heparin and MMP inhibitors. These results suggest that amitriptyline-induced FGFR activation might occur through an extracellular pathway, in contrast to that of 5-HT. The current data show that amitriptyline-induced FGFR activation might occur by the MMP-dependent shedding of FGFR ligands, such as FGF-2, thus resulting in GDNF production.  相似文献   

20.
The glial cell line-derived neurotrophic factor (GDNF) family comprise a subclass of cystine-knot superfamily ligands that interact with a multisubunit receptor complex formed by the c-Ret tyrosine kinase and a cystine-rich glycosyl phosphatidylinositol-anchored binding subunit called GDNF family receptor alpha (GFRalpha). All four GDNF family ligands utilize c-Ret as a common signaling receptor, whereas specificity is conferred by differential binding to four distinct GFRalpha homologues. To understand how the different GFRalphas discriminate ligands, we have constructed a large set of chimeric and truncated receptors and analyzed their ligand binding and signaling capabilities. The major determinant of ligand binding was found in the most conserved region of the molecule, a central domain predicted to contain four conserved alpha helices and two beta strands. Distinct hydrophobic and positively charged residues in this central region were required for binding of GFRalpha1 to GDNF. Interaction of GFRalpha1 and GFRalpha2 with GDNF and neurturin required distinct subsegments within this central domain, which allowed the construction of chimeric receptors that responded equally well to both ligands. C-terminal segments adjacent to the central domain are necessary and have modulatory function in ligand binding. In contrast, the N-terminal domain was dispensable without compromising ligand binding specificity. Ligand-independent interaction with c-Ret also resides in the central domain of GFRalpha1, albeit within a distinct and smaller region than that required for ligand binding. Our results indicate that the central region of this class of receptors constitutes a novel binding domain for cystine-knot superfamily ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号