首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Guo F  Zhou Z  Dou Y  Tang J  Gao C  Huan J 《Cytokine》2012,57(3):417-428
The purpose of study is to investigate the effects of GEF-H1/RhoA pathway in regulating intercellular adhesion molecule-1 (ICAM-1) expression in lipopolysaccharide (LPS)-activated endothelial cells. Exposure of human umbilical vein endothelial cells (HUVECs) to LPS induced GEF-H1 and ICAM-1 expression in dose- and time-dependent up-regulating manners. Pretreatment with Clostridium difficile toxin B-10463 (TcdB-10463), an inhibitor of Rho activity, reduced LPS-related phosphorylation of p65 at Ser 536 in a dose-dependent manner. Inhibition of TLR4 expression significantly blocked LPS-induced RhoA activity, NF-κB transactivation, GEF-H1 and ICAM-1 expression. Coimmunoprecipitation assay indicated that LPS-activated TLR4 and GEF-H1 formed a signalling complex, suggesting that LPS, acting through TLR4, stimulates GEF-H1 expression and RhoA activity, and thereby induces NF-κB transactivation and ICAM-1 gene expression. However, GEF-H1/RhoA regulates LPS-induced NF-κB transactivation and ICAM-1 expression in a MyD88-independent pathway because inhibition of MyD88 expression could not block LPS-induced RhoA activity. Furthermore, pretreatment with Y-27632, an inhibitor of ROCK, significantly reduced LPS-induced p38, ERK1/2 and p65 phosphorylation, indicating that ROCK acts as an upstream effector of p38 and ERK1/2 to promote LPS-induced NF-κB transactivation and ICAM-1 expression. What is more, the p38 inhibitor (SB203580) but not ERK1/2 inhibitor (PD98059) blocked LPS-induce NF-κB transactivation and ICAM-1 expression, which demonstrates that RhoA mediates LPS-induced NF-κB transactivation and ICAM-1 expression dominantly through p38 but not ERK1/2 activation. In summary, our data suggest that LPS-induced ICAM-1 synthesis in HUVECs is regulated by GEF-H1/RhoA-dependent signaling pathway via activation of p38 and NF-κB.  相似文献   

2.
3.
4.
Small guanine nucleotide-binding proteins of the Ras and Rho (Rac, Cdc42, and Rho) families have been implicated in cardiac myocyte hypertrophy, and this may involve the extracellular signal-related kinase (ERK), c-Jun N-terminal kinase (JNK), and/or p38 mitogen-activated protein kinase (MAPK) cascades. In other systems, Rac and Cdc42 have been particularly implicated in the activation of JNKs and p38-MAPKs. We examined the activation of Rho family small G proteins and the regulation of MAPKs through Rac1 in cardiac myocytes. Endothelin 1 and phenylephrine (both hypertrophic agonists) induced rapid activation of endogenous Rac1, and endothelin 1 also promoted significant activation of RhoA. Toxin B (which inactivates Rho family proteins) attenuated the activation of JNKs by hyperosmotic shock or endothelin 1 but had no effect on p38-MAPK activation. Toxin B also inhibited the activation of the ERK cascade by these stimuli. In transfection experiments, dominant-negative N17Rac1 inhibited activation of ERK by endothelin 1, whereas activated V12Rac1 cooperated with c-Raf to activate ERK. Rac1 may stimulate the ERK cascade either by promoting the phosphorylation of c-Raf or by increasing MEK1 and/or -2 association with c-Raf to facilitate MEK1 and/or -2 activation. In cardiac myocytes, toxin B attenuated c-Raf(Ser-338) phosphorylation (50 to 70% inhibition), but this had no effect on c-Raf activity. However, toxin B decreased both the association of MEK1 and/or -2 with c-Raf and c-Raf-associated ERK-activating activity. V12Rac1 cooperated with c-Raf to increase expression of atrial natriuretic factor (ANF), whereas N17Rac1 inhibited endothelin 1-stimulated ANF expression, indicating that the synergy between Rac1 and c-Raf is potentially physiologically important. We conclude that activation of Rac1 by hypertrophic stimuli contributes to the hypertrophic response by modulating the ERK and/or possibly the JNK (but not the p38-MAPK) cascades.  相似文献   

5.
Our earlier studies have shown that vitamin C at pharmacological doses (mM) induces loss of redox-dependent viability in bovine lung microvascular endothelial cells (BLMVECs) that is mediated by oxidative stress. Therefore, here, we investigated the vitamin C-induced activation of the lipid signaling enzyme, phospholipase D (PLD) in BLMVECs. Monolayer cultures of BLMVECs were treated with vitamin C (0-10 mM) for different time periods (0-2 h) and the activity of PLD was determined. Vitamin C induced activation of PLD in BLMVECs in a time- and dose-dependent fashion that was significantly attenuated by antioxidants, p38 mitogen-activated protein kinase (p38 MAPK)-specific inhibitor (SB203580), extracellular signal-regulated protein kinase (ERK)-specific inhibitor (PD98059), and transient transfection of cells with dominant-negative (DN)-p38 MAPK and DN-ERK1/ERK2. Vitamin C also induced phosphorylation and enhanced the activities of p38 MAPK and ERK in BLMVECs in a time-dependent fashion. It was also evident that vitamin C induced translocation of PLD(1) and PLD(2), association of p38 MAPK and ERK with PLD(1) and PLD(2), threonine phosphorylation of PLD(1) and PLD(2) and SB203580- and PD98059-inhibitable threonine phosphorylation of PLD(1) in BLMVECs. Transient transfection of BLMVECs with DN-p38 MAPK and DN-ERK1/ERK2 resulted in marked attenuation of vitamin C-induced phosphorylation of threonine in PLD(1) and PLD(2). We, for the first time, showed that vitamin C at pharmacological doses, activated PLD in the lung microvascular ECs through oxidative stress and MAPK activation.  相似文献   

6.
The enzyme chondroitin polymerizing factor (ChPF) is primarily involved in extension of the chondroitin sulfate backbone required for the synthesis of sulfated glycosaminoglycan (sGAG). Transforming growth factor beta (TGF‐β) upregulates sGAG synthesis in nucleus pulposus cells; however, the mechanisms mediating this induction are incompletely understood. Our study demonstrated that ChPF expression was negatively correlated with the grade of degenerative intervertebral disc disease. Treatment of nucleus pulposus cells with TGF‐β induced ChPF expression and enhanced Smad2/3, RhoA/ROCK activation, and the JNK, p38, and ERK1/2 MAPK signaling pathways. Selective inhibitors of Smad2/3, RhoA or ROCK1/2, and knockdown of Smad3 and ROCK1 attenuated ChPF expression and sGAG synthesis induced by TGF‐β. In addition, we showed that RhoA/ROCK1 signaling upregulated ChPF via activation of the JNK pathway but not the p38 and ERK1/2 signaling pathways. Moreover, inhibitors of JNK, p38 and ERK1/2 activity also blocked ChPF expression and sGAG synthesis induced by TGF‐β in a Smad3‐independent manner. Collectively, our data suggest that TGF‐β stimulated the expression of ChPF and sGAG synthesis in nucleus pulposus cells through Smad3, RhoA/ROCK1 and the three MAPK signaling pathways. J. Cell. Biochem. 119: 566–579, 2018. © 2017 Wiley Periodicals, Inc.  相似文献   

7.
This study examined the upstream signaling pathways initiated by muscarinic m2 and m3 receptors that mediate sustained ERK1/2- and p38 MAP kinase-dependent phosphorylation and activation of the 85-kDa cytosolic phospholipase (cPL)A(2) in smooth muscle. The pathway initiated by m2 receptors involved sequential activation of Gbetagamma(i3), phosphatidylinositol (PI)3-kinase, Cdc42, and Rac1, p21-activated kinase (PAK1), p38 mitogen-activated protein (MAP) kinase, and cPLA(2), and phosphorylation of cPLA(2) at Ser(505). cPLA(2) activity was inhibited to the same extent (61 +/- 5 to 72 +/- 4%) by the m2 antagonist methoctramine, Gbeta antibody, pertussis toxin, the PI3-kinase inhibitor LY 294002, PAK1 antibody, the p38 MAP kinase inhibitor SB-203580, and a Cdc42/Rac1 GEF (Vav2) antibody and by coexpression of dominant-negative Cdc42 and Rac1 mutants. The pathway initiated by m3 receptors involved sequential activation of Galpha(q), PLC-beta1, PKC, ERK1/2, and cPLA(2), and phosphorylation of cPLA(2) at Ser(505). cPLA(2) activity was inhibited to the same extent (35 +/- 3 to 41 +/- 5%) by the m3 antagonist 4-diphenylacetoxy-N-methylpiperdine (4-DAMP), the phosphoinositide hydrolysis inhibitor U-73122, the PKC inhibitor bisindolylmaleimide, and the ERK1/2 inhibitor PD 98059. cPLA(2) activity was not affected in cells coexpressing dominant-negative RhoA and PLC-delta1 mutants, implying that PKC was not derived from phosphatidylcholine hydrolysis. The effects of ERK1/2 and p38 MAP kinase on cPLA(2) activity were additive and accounted fully for activation and phosphorylation of cPLA(2).  相似文献   

8.
Enhanced vascular arginase activity impairs endothelium-dependent vasorelaxation by decreasing l-arginine availability to endothelial nitric oxide (NO) synthase, thereby reducing NO production. Elevated angiotensin II (ANG II) is a key component of endothelial dysfunction in many cardiovascular diseases and has been linked to elevated arginase activity. We determined signaling mechanisms by which ANG II increases endothelial arginase function. Results show that ANG II (0.1 μM, 24 h) elevates arginase activity and arginase I expression in bovine aortic endothelial cells (BAECs) and decreases NO production. These effects are prevented by the arginase inhibitor BEC (100 μM). Blockade of ANG II AT(1) receptors or transfection with small interfering RNA (siRNA) for Gα12 and Gα13 also prevents ANG II-induced elevation of arginase activity, but siRNA for Gαq does not. ANG II also elevates active RhoA levels and induces phosphorylation of p38 MAPK. Inhibitors of RhoA activation (simvastatin, 0.1 μM) or Rho kinase (ROCK) (Y-27632, 10 μM; H1152, 0.5 μM) block both ANG II-induced elevation of arginase activity and phosphorylation of p38 MAPK. Furthermore, pretreatment of BAECs with p38 inhibitor SB-202190 (2 μM) or transfection with p38 MAPK siRNA prevents ANG II-induced increased arginase activity/expression and maintains NO production. Additionally, inhibitors of p38 MAPK (SB-203580, 5 μg·kg(-1)·day(-1)) or arginase (ABH, 8 mg·kg(-1)·day(-1)) or arginase gene knockout in mice prevents ANG II-induced vascular endothelial dysfunction and associated enhancement of arginase. These results indicate that ANG II increases endothelial arginase activity/expression through Gα12/13 G proteins coupled to AT(1) receptors and subsequent activation of RhoA/ROCK/p38 MAPK pathways leading to endothelial dysfunction.  相似文献   

9.
10.
11.
12.
13.
14.
Repetitive deformation enhances intestinal epithelial migration across tissue fibronectin. We evaluated the contribution of RhoA and its effectors Rho-associated kinase (ROK/ROCK) and mammalian diaphanous formins (mDia1) to deformation-induced intestinal epithelial motility across fibronectin and the responsible focal adhesion kinase (FAK), extracellular signal-regulated kinase (ERK), p38, and myosin light chain (MLC) signaling. We reduced RhoA, ROCK1, ROCK2, and mDia1 by smart-pool double-stranded short-interfering RNAs (siRNA) and pharmacologically inhibited RhoA, ROCK, and FAK in human Caco-2 intestinal epithelial monolayers on fibronectin-coated membranes subjected to 10% repetitive deformation at 10 cycles/min. Migration was measured by wound closure. Stimulation of migration by deformation was prevented by exoenzyme C3, Y27632, or selective RhoA, ROCK1, and ROCK2 or mDia1 siRNAs. RhoA, ROCK inhibition, or RhoA, ROCK1, ROCK2, mDia1, and FAK reduction by siRNA blocked deformation-induced nuclear ERK phosphorylation without preventing ERK phosphorylation in the cytoplasmic protein fraction. Furthermore, RhoA, ROCK inhibition or RhoA, ROCK1, ROCK2, and mDia1 reduction by siRNA also blocked strain-induced FAK-Tyr(925), p38, and MLC phosphorylation. These results suggest that RhoA, ROCK, mDia1, FAK, ERK, p38, and MLC all mediate the stimulation of intestinal epithelial migration by repetitive deformation. This pathway may be an important target for interventions to promote mechanotransduced mucosal healing during inflammation.  相似文献   

15.
16.
Focal adhesion kinase (FAK) has been shown to be activated in cardiac myocytes exposed to mechanical stress. However, details of how mechanical stimuli induce FAK activation are unknown. We investigated whether signaling events mediated by the RhoA/Rho-associated coiled coil-containing kinase (ROCK) pathway are involved in regulation of stretch-induced FAK phosphorylation at Tyr(397) in neonatal rat ventricular myocytes (NRVMs). Immunostaining showed that RhoA localized to regions of myofilaments alternated with phalloidin (actin) staining. The results of coimmunoprecipitation assays indicated that FAK and RhoA are associated in nonstretched NRVMs, but cyclic stretch significantly reduced the amount of RhoA recovered from anti-FAK immunoprecipitates. Cyclic stretch induced rapid and sustained (up to 2 h) increases in phosphorylation of FAK at Tyr(397) and ERK1/2 at Thr(202)/Tyr(204). Blockade of RhoA/ROCK signaling by pharmacological inhibitors of RhoA (Clostridium botulinum C3 exoenzyme) or ROCK (Y-27632, 10 micromol/l, 1 h) markedly attenuated stretch-induced FAK and ERK1/2 phosphorylation. Similar effects were observed in cells treated with the inhibitor of actin polymerization cytochalasin D. Transfection of NRVMs with RhoA antisense oligonucleotide attenuated stretch-induced FAK and ERK1/2 phosphorylation and expression of beta-myosin heavy chain mRNA. Similar results were seen in cells transfected with FAK antisense oligonucleotide. These findings demonstrate that RhoA/ROCK signaling plays a crucial role in stretch-induced FAK phosphorylation, presumably by coordinating upstream events operationally linked to the actin cytoskeleton.  相似文献   

17.
18.
We have previously reported that Fas-resistant A20 cells (FasR) have phospholipase D (PLD) activity upregulated by endogenous PLD2 overexpression. In the present study, we investigated how overexpressed PLD2 in FasR could generate survival signals by regulating the protein levels of anti-apoptotic Bcl-2 and Bcl-xL. To confirm the effect of PLD2 on Bcl-2 protein levels, we transfected PLD2 into wild-type murine B lymphoma A20 cells. The transfected cells showed markedly the increases in Bcl-2 and Bcl-xL protein levels, and became resistant to Fas-induced apoptosis, similar to FasR. Treatment of wild-type A20 cells with phosphatidic acid (PA), the metabolic end product of PLD2 derived from phosphatidylcholin, markedly increased levels of anti-apoptotic Bcl-2 and Bcl-xL proteins. Moreover, PA-induced expressions of Bcl-2 and Bcl-xL were enhanced by propranolol, an inhibitor of PA phospholydrolase (PAP), whereas completely blocked by mepacrine, an inhibitor of phospholipase A(2) (PLA(2)), suggesting that PLA(2) metabolite of PA is responsible for the increases in Bcl-2 and Bcl-xL protein levels. We further confirmed the involvement of arachidonic acid (AA) in PA-induced survival signals by showing that 1,2-dipalmitoyl-sn-glycero-3-phosphate (DPPA), PA without AA, was unable to increase Bcl-2 and Bcl-xL proteins. Moreover, PA notably increased cyclooxygenase (COX)-2 protein expression, and PA-induced expression of both Bcl-2 and Bcl-xL was inhibited by NS-398, a specific inhibitor of COX-2. Taken together, these findings demonstrate that PA generated by PLD2 plays an important role in cell survival during Fas-mediated apoptosis through the increased Bcl-2 and Bcl-xL protein levels which resulted from PLA(2) and AA-COX2 pathway.  相似文献   

19.
20.
This study was designed to determine whether sprint exercise activates signaling cascades linked to leptin actions in human skeletal muscle and how this pattern of activation may be interfered by glucose ingestion. Muscle biopsies were obtained in 15 young healthy men in response to a 30-s sprint exercise (Wingate test) randomly distributed into two groups: the fasting (n = 7, C) and the glucose group (n = 8, G), who ingested 75 g of glucose 1 h before the Wingate test. Exercise elicited different patterns of JAK2, STAT3, STAT5, ERK1/2, p38 MAPK phosphorylation, and SOCS3 protein expression during the recovery period after glucose ingestion. Thirty minutes after the control sprint, STAT3 and ERK1/2 phosphorylation levels were augmented (both, P < 0.05). SOCS3 protein expression was increased 120 min after the control sprint but PTP1B protein expression was unaffected. Thirty and 120 min after the control sprint, STAT5 phosphorylation was augmented (P < 0.05). Glucose abolished the 30 min STAT3 and ERK1/2 phosphorylation and the 120 min SOCS3 protein expression increase while retarding the STAT5 phosphorylation response to sprint. Activation of these signaling cascades occurred despite a reduction of circulating leptin concentration after the sprint. Basal JAK2 and p38 MAPK phosphorylation levels were reduced and increased (both P < 0.05), respectively, by glucose ingestion prior to exercise. During recovery, JAK2 phosphorylation was unchanged and p38 MAPK phosphorylation was transiently reduced when the exercise was preceded by glucose ingestion. In conclusion, sprint exercise performed under fasting conditions is a leptin signaling mimetic in human skeletal muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号