首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
We analyzed the behavior of interstitial telomeric sequences (ITSs) in the progeny of Chinese Hamster Ovary (CHO) cells exposed to the radiomimetic compound bleomycin (BLM) in order to determine if ITSs play some role in the long-term clastogenic effect of this antibiotic. To this end, CHO cells were treated with a single concentration of BLM (2.5μg/ml), and the frequency of unstable chromosomal aberrations was determined at several times after treatment (18h, and 6, 15 and 34/36 days) by using PNA-FISH with a pan-telomeric probe [(TTAGGG)n repeats]. Cytogenetic analysis revealed a higher frequency of aberrations at 18h and 6 days after treatment in BLM-exposed cultures vs. untreated cultures, although the yield of BLM-induced aberrations decreased on average five times 6 days after treatment compared with the one induced 18h after treatment. Moreover, no significant differences in the frequency of aberrations were observed between untreated and BLM-exposed cells at 15 or 34/36 days after treatment. These data indicate that, in terms of unstable aberrations, the in vitro clastogenic effect of BLM on CHO cells persists for at least 6 days but less than 15 days after exposure. In addition, we found that BLM induces ITSs instability, cytogenetically detectable as acentric fragments (18h after treatment) or additional (new) FISH signals (6 days after treatment). We propose that the delayed effect of BLM on ITSs mainly results from breakage of heterochromatic ITSs blocks and further insertion of these sequences at the sites of monochromatid breaks occurring at G2 phase of the cell cycle, since most of the additional FISH signals were present as single dots and located at interstitial sites of the involved chromosomes.  相似文献   

2.
We analyzed the chromosomal aberrations involving telomeres in the progeny of mammalian cells exposed to the radiomimetic compound bleomycin (BLM) in order to determine if this antineoplastic drug induces long-term telomere instability. To this end, rat cells (ADIPO-P2 cell line, derived from adipose cells from Sprague-Dawley rat) were treated with a single concentration of BLM (2.5μg/ml), and chromosomal aberrations were analyzed 18h and 10 days after treatment by using PNA-FISH with a pan-telomeric probe [(TTAGGG)n repeats]. Cytogenetic analysis revealed a higher frequency of aberrations at 18h and 10 days after treatment in BLM-exposed cultures vs. untreated cultures, although the yield of BLM-induced aberrations 10 days after treatment decreased about 25% compared with the one at 18h after treatment. Moreover, the level of telomerase activity in BLM-treated cells compared with that of untreated control cells was significantly higher at 10 days after treatment, but did not differ at 18h after treatment. These data indicate that in terms of unstable aberrations, the in vitro clastogenic effect of BLM on ADIPO-P2 cells persists for at least 10 days after exposure. In addition, our data demonstrate, for the first time, that BLM-induced telomere instability in mammalian cells (cytogenetically detectable as incomplete chromosome elements and telomere FISH signal loss and duplication) persists for several generations after exposure. Moreover, the appearance of telomere fusions in BLM-exposed cells 10 days after treatment suggests that this compound can induce delayed telomere instability. The increase in telomerase activity in BLM-exposed cells 10 days after treatment is accompanied by the presence of aberrations directly related to telomere dysfunction. This fact suggests that telomerase is not directly involved in BLM-induced telomere instability.  相似文献   

3.
Telomeres are composed of TTAGGG repeats and located at the ends of chromosomes. Telomeres protect chromosomes from instability in mammals, including mice and humans. Repetitive TTAGGG sequences are also found at intrachromosomal sites, where they are named as interstitial telomeric sequences (ITSs). Aberrant ITSs are implicated in chromosomal instability and found in cancer cells. Interestingly, in pigs, vertebrate telomere sequences TTAGGG (vITSs) are also localized at the centromeric region of chromosome 6, in addition to the end of all chromosomes. Surprisingly, we found that botanic telomere sequences, TTTAGGG (bITSs), also localize with vITSs at the centromeric regions of pig chromosome 6 using telomere fluorescence in situ hybridization (FISH) and by comparisons between several species. Furthermore, the average lengths of vITSs are highly correlated with those of the terminal telomeres (TTS). Also, pig ITSs show a high incidence of telomere doublets, suggesting that pig ITSs might be unstable and dynamic. Together, our results show that pig cells maintain the conserved telomere sequences that are found at the ITSs from of plants and other vertebrates. Further understanding of the function and regulation of pig ITSs may provide new clues for evolution and chromosomal instability.  相似文献   

4.
Ahmed S  Othman OE 《Mutation research》2003,541(1-2):115-121
Fasinex (triclabendazole) has been reported to be an active fasciolocidal agent used in humans and in farm animals. The clastogenic effects of fasinex were tested in lymphocyte cultures of the river buffalo at three final concentrations: 25, 50 and 100 microg/ml. Chromosomal aberrations, sister chromatid exchanges and micronucleus formation are the three cytogenetic parameters used in this study.The results demonstrated that the number of cells with different types of chromosomal aberrations, including chromatid breaks and gaps, isochromatid breaks and gaps and polyploidy, was increased significantly in cultures treated with different doses of fasinex compared to the control. This increase was dose-dependent where there was a positive correlation between increased drug concentration and induction of chromosomal aberrations.The frequency of sister chromatid exchanges and the formation of micronuclei in all lymphocyte cultures treated with different doses of fasinex were increased significantly compared to the control; these increases were also dose-dependent.In conclusion, the three cytogenetic parameters used to evaluate the effect of fasinex revealed that the drug has a strong clastogenic effect on river buffalo lymphocytes in vitro.  相似文献   

5.
Telomeres are nucleoprotein complexes protecting the physical ends of linear eukaryotic chromosomes and therefore helping to ensure their stability and integrity. Additionally, telomeric sequences can be localized in non-terminal regions of chromosomes, forming so-called interstitial telomeric sequences (ITSs). ITSs are traditionally considered to be relics of chromosomal rearrangements and thus very informative in the reconstruction of the evolutionary history of karyotype formation. We examined the distribution of the telomeric motifs (TTAGGG)n using fluorescence in situ hybridization (FISH) in 30 species, representing 17 families of squamate reptiles, and compared them with the collected data from another 38 species from literature. Out of the 68 squamate species analyzed, 35 possess ITSs in pericentromeric regions, centromeric regions and/or within chromosome arms. We conclude that the occurrence of ITSs is rather common in squamates, despite their generally conserved karyotypes, suggesting frequent and independent cryptic chromosomal rearrangements in this vertebrate group.  相似文献   

6.
Induction of chromosomal aberrations and sister-chromatid exchanges (SCEs) was studied in wild-type Chinese hamster ovary (CHO-K1) cells and its 2 X-ray-sensitive mutants xrs 5 and xrs 6 (known to be deficient in repair of DNA double-strand breaks (DSBs] by restriction endonucleases (REs) and inhibitors of DNA topoisomerase II known to induce DNA strand breaks. Five different types of REs, namely CfoI, EcoRI, HpaII (which induce cohesive DSBs), HaeIII and AluI (which induce blunt DSBs) were employed. REs that induce blunt-end DNA DSBs were found to be more efficient in inducing chromosomal aberrations than those inducing cohesive breaks. xrs 5 and xrs 6 mutants responded with higher sensitivity (50-100% increase in the frequency of aberrations per aberrant cell) to these REs than wild-type CHO-K1 cells. All these REs were also tested for their ability to induce SCEs. The frequency of SCEs increased in wild-type as well as mutant CHO cells, the induced frequency being about 2-fold higher in xrs mutants than in the wild-type cells. We also studied the effect of inhibitors of DNA topoisomerase II, namely 4'-(9-acridinylamino)methanesulfon-m-anisidide (m-AMSA) and etoposid (VP 16), at different stages of the cell cycle of these 3 types of cells. Both drugs increased the frequency of chromosomal aberrations in G2 cells. The mutants showed increased sensitivity to m-AMSA and VP 16, xrs 6 cells being 10- and 2-fold more sensitive than wild-type CHO-K1 cells respectively, and xrs 5 responding with 2-fold higher sensitivity than xrs 6 cells. G1 treatment of CHO cells with m-AMSA increased both chromosome- and chromatid-type aberrations, xrs mutants being about 3-fold more sensitive than CHO-K1 cells. The frequency of SCEs increased also after treatment of exponentially growing and S-phase CHO cells with m-AMSA and the higher sensitivity of xrs mutants (2-fold) was evident. The S-phase appeared to be a specific stage which is most prone for the induction of SCEs by m-AMSA. The results indicate that DNA DSBs induced by REs and inhibitors of DNA topoisomerase II correlate closely with induced chromosomal aberrations and SCEs in these cell lines, indicating that DSBs are responsible for the production of these 2 genetic endpoints.  相似文献   

7.
Chromosomal instability is the major form of genomic instability in cancer cells. Amongst various forms of chromosomal instability, pericentromeric or centromeric instability remains particularly poorly understood. In the present study, we found that pericentromeric instability, evidenced by dynamic formation of pericentromeric or centromeric rearrangements, breaks, deletions or iso-chromosomes, was a general phenomenon in human cells immortalized by expression of human papillomavirus type 16 E6 and E7 (HPV16 E6E7). In particular, for the first time, we surprisingly found a dramatic increase in the proportion of pericentromeric chromosomal aberrations relative to total aberrations in HPV16 E6E7-expressing cells 72 h after release from aphidicolin (APH)-induced replication stress, with pericentromeric chromosomal aberrations becoming the predominant type of structural aberrations (∼70% of total aberrations). In contrast, pericentromeric aberrations accounted for only about 20% of total aberrations in cells at the end of APH treatment. This increase in relative proportion of pericentromeric aberrations after release from APH treatment revealed that pericentromeric breaks induced by replication stress are refractory to prompt repair in HPV16 E6E7-expressing epithelial cells. Telomerase-immortalized epithelial cells without HPV16 E6E7 expression did not exhibit such preferential pericentromeric instability after release from APH treatment. Cancer development is often associated with replication stress. Since HPV16 E6 and E7 inactivate p53 and Rb, and p53 and Rb pathway defects are common in cancer, our finding that pericentromeric regions are refractory to prompt repair after replication stress-induced breakage in HPV16 E6E7-expressing cells may shed light on mechanism of general pericentromeric instability in cancer.  相似文献   

8.
The present study is a rare example of a detailed characterization of chromosomal aberrations by identification of individual chromosomes (or chromosome arms) involved in their formation in plant cells by using fluorescent in situ hybridization (FISH). In addition, the first application of more than 2 DNA probes in FISH experiments in order to analyse chromosomal aberrations in plant cells is presented. Simultaneous FISH with 5S and 25S rDNA and, after reprobing of preparations, telomeric and centromeric DNA sequences as probes, were used to compare the cytogenetic effects of 2 chemical mutagens: N-nitroso-N-methylurea (MNU) and maleic hydrazide (MH) on root tip meristem cells of Hordeum vulgare (2n=14). The micronucleus (MN) test combined with FISH allowed the quantitative analysis of the involvement of specific chromosome fragments in micronuclei formation and thus enabled the possible origin of mutagen-induced micronuclei to be explained. Terminal deletions were most frequently caused by MH and MNU. The analysis of the frequency of micronuclei with signals of the investigated DNA probes showed differences between the frequency of MH- and MNU-induced micronuclei with specific signals. The micronuclei with 2 signals, telomeric DNA and rDNA (5S and/or 25S rDNA), were the most frequently observed in the case of both mutagens, but with a higher frequency after treatment with MH (46%) than MNU (37%). Also, 10% of MH-induced micronuclei were characterized by the presence of only telomere DNA sequences, whereas there were almost 3-fold more in the case of MNU-induced micronuclei (28%). Additionally, by using FISH with the same probes, an attempt was made to identify the origin of chromosome fragments in mitotic anaphase.  相似文献   

9.
We studied clastogenic effects in peripheral lymphocytes of cotton-field workers who were exposed to different pesticides. All the cells were grown in RPMI 1640 medium for 48 and 72 h. The type of aberrations observed in the exposed group are gaps, breaks, dicentrics, exchanges, rings and polyploidy. The frequency of total chromosomal aberrations increased significantly in male pesticide applicators when compared to controls. A significant decrease in mitotic index was observed in the exposed group as compared to the control group. The 48-h cultures showed high incidence of chromosomal aberrations and low mitotic index when compared to 72-h cultures. The difference in chromosomal aberrations between 48- and 72-h cultures was not significant. 24 out of 26 individuals showed ill health effects such as severe giddiness and nervous disorders.  相似文献   

10.
To determine the effects of a defect in NHEJ on the induction of genomic instability by radiation, we investigated X-ray-induced delayed chromosomal aberrations such as dicentrics and fragments in scid mouse cells. We found that radiosensitive scid mouse cells are more susceptible than wild-type mouse cells to the induction of delayed chromosomal aberrations when the cells are exposed to an equivalent survival dose of X-rays. Telomere FISH analysis revealed that radiation enhances the induction of telomeric fusions where telomeric sequences remain at the fused position (tel+ end-fusions), suggesting that radiation induces telomere dysfunction. Moreover, formation of the tel+ end-fusions was found to be enhanced in scid mouse cells, suggesting that DNA-dependent protein kinase catalytic subunit (DNA-PKcs) plays a role in telomeric stabilization. Thus, the present study suggests that a cause of genomic instability is telomere dysfunction induced by radiation and that a defect in DNA-PKcs enhances the telomeric destabilization.  相似文献   

11.
1,1,1- and 1,1,3-trichloroacetones (TCA) result from the disinfection of municipal water supplies with chlorine, and are direct-acting mutagens in the Ames/Salmonella assay. The objective of this study was to further investigate the genotoxicity of these compounds in mammalian cells using an in vitro chromosomal aberration assay in Chinese hamster ovary (CHO) cells and the micronucleus and spermhead abnormality assays in mice. Both compounds induced significant increases in structural chromosomal aberrations in CHO cells in the presence and in the absence of rat S9 metabolic activation (MA). 1,1,3-TCA was more cytotoxic to CHO cells but 1,1,1-TCA resulted in a higher proportion of cells with aberrations. The clastogenic activities of both compounds were reduced in assays conducted with MA. Neither compound resulted in the induction of a significant increase in micronucleated polychromatic erythrocytes from bone marrow of Swiss-Webster mice when administered by oral gavage; nor were effects seen on the incidence of sperm with head-shape abnormalities, testis weight, or epididymal sperm concentration in B6C3F1 mice 21 or 35 days after treatment. These data indicate that the drinking water contaminants 1,1,1- and 1,1,3-TCA are clastogenic in vitro, but are not clastogenic to bone marrow cells in vivo, and do not adversely affect several indicators of testicular function in mice.  相似文献   

12.
It has been reported that low pH itself can be clastogenic to Chinese hamster ovary cells or mouse lymphoma L5178Y cells. On the other hand, there was no indication that low pH is clastogenic to rat or human lymphocytes. Therefore, in order to evaluate the generality of clastogenicity of low pH conditions, chromosomal aberration tests were carried out on Chinese hamster cell line cells (CHO-K1, CHL, Don and V79 379A) and human cells (HeLa and peripheral lymphocytes used as whole-blood cultures). The cytotoxicity of low pH to each cell line was also evaluated by counting surviving cells. The treatment medium used was Eagle's MEM containing 15 mM MES or Bis-Tris as an organic buffer to maintain the acidity of the medium for the 6-h or 24-h treatment period, and pH adjustment was done with NaOH or HCl. Chromosomal aberrations were induced at pH 6.5 or below in CHO or CHL cells, and the maximum frequency was 24.7% at pH 6.0 or 34% at pH 6.3, respectively. About 5-10% of Don or HeLa cells had aberrations over the range of pH 6.6-6.0 or pH 6.6-6.3, respectively. In V79 379A cells or human lymphocytes, however, aberrant cells amounted to about 8% at near pH 6.0, where cell survival was low (less than 20%). About 90% of aberrations induced in each cell line examined were chromatid-type gaps and breaks. When CHO or CHL cells were treated with acidic medium for 6 h plus 18 h recovery in fresh medium, about 20% of cells had aberrations including chromatid exchanges at pH 5.5 or pH 5.7, respectively. These results indicate that clastogenicity of low pH is a general finding, although the extent of it varies with cell type, and that the clastogenicity is associated with varying extents of cytotoxicity. The mechanisms of clastogenesis at low pH are not known, but might involve inhibition of DNA or protein synthesis or DNA-repair enzymes.  相似文献   

13.
Repair of single-strand breaks of DNA and simultaneous recovery of chromosomal aberrations were studied after treatment of barley seeds with the monofunctional alkylating chemical mutagen, propyl methanesulfonate in vivo. In soaked seeds the diminution of single-strand breaks of DNA induced by PMS was correlated with the decrease of chromosomal aberrations, whereas in dried seeds the repair of DNA breaks was depressed and, in accord with this, the frequency of chromosomal aberrations increased. The prolonged storage of seeds led to a more delayed repair of chromosomal aberrations in dry seeds and a more delayed accelerated repair in soaked seeds.  相似文献   

14.
We examined the effects of 18 h of incubation of Chinese hamster ovary (CHO K1) cells with cycloheximide, hydroxyurea, and aphidicolin. Treatment of cells with cycloheximide alone at a concentration adequate to inhibit DNA synthesis to less than 10% of control was significantly less cytotoxic and clastogenic than treatment with hydroxyurea or aphidicolin, did not induce unbalanced cellular growth, and had no effect on the frequency of resistant cells in methotrexate selections compared with control cells. When combined with hydroxyurea or aphidicolin and compared with the effects of either drug alone, cycloheximide blocked the induction of unbalanced growth during drug treatment, reduced the frequency of chromosomal aberrations in recovering cell populations, and decreased cell killing. In addition, the increased frequency of methotrexate-resistant cells observed after treatment with hydroxyurea or aphidicolin was eliminated when cycloheximide was present during drug treatment.  相似文献   

15.
We determined the kinetics of the induction of chromosomal aberrations and micronuclei (MN) by mitomycin C (MMC, 0.1 µg/ml) in Chinese hamster ovary (CHO) cells treated with cytochalasin B (Cyt-B, 3 µg/ml). In cells treated with Cyt-B as well as with Cyt-B plus MMC the highest yield of binucleated cells was obtained 24 h after treatment. After 40 h of treatment with Cyt-B the frequency of MN in binucleated cells was significantly higher than that observed at previous times in the same cultures as well as in controls. In cultures treated with MMC the frequency of MN increased with time, reaching the highest value at 24 h. The frequency of chromosomal aberrations was also significantly higher in cells treated both with Cyt-B and Cyt-B plus MMC than in controls and exceeded that of MN in parallel cultures. These data confirm the capacity of MMC to induce chromosomal alterations in mammalian cells; in particular they indicate that Cyt-B is able to induce cytogenetic effects in CHO cells. Using immunofluorescence microscopy, after reaction with CREST antikinetochore antibodies, we found that in cells treated with Cyt-B or Cyt-B plus MMC the frequency of MN without kinetochore was, respectively, about 70 and 85%, indicating that under our experimental conditions MN originate mainly from acentric chromatid fragments. Present data suggest that the method based on the blockage of cytokinesis by Cyt-B normally used in the MN assay should be reconsidered.  相似文献   

16.
A M Khalil 《Mutation research》1989,224(4):503-506
Human lymphocyte cultures were treated with increasing concentrations (8.0 X 10(-8) M to 8.0 X 10(-5) M) of sodium selenite and selenomethionine 24 h after stimulation with phytohemagglutinin and were scored for chromosomal aberrations at 48 h. The yield of abnormal metaphases was dependent on the dose and the form of selenium used. At 8.0 X 10(-5) M the proportion of aberrant cells reached 53.5% and 43.0% for selenite and selenomethionine, respectively. The selenium-induced chromosomal aberrations were primarily of the chromatid type and included breaks and fragments. Chromosomal exchanges were less frequent and included triradials and quadriradials. These results confirm that selenium is clastogenic for cultured human lymphocytes.  相似文献   

17.
A procedure is described for the poration of living CHO cells with the bacterial cytotoxin streptolysin O (SLO) which allows the introduction into cells of the restriction endonuclease Pvu II to mimic and model the effects of ionising radiation in causing chromosomal damage. The dependence of this clastogenic effect of Pvu II on SLO concentration was measured by assaying the formation of micronuclei in cytokinesis-blocked binucleate cells. The optimum concentration was found to be 0.045 U/ml. Using the micronucleus assay, the time-course of expression of chromosome damage was investigated and found to show a biphasic kinetic with time. Using a sampling time of 30 h, a dose-effect curve for micronucleus induction by Pvu II was generated. Using this optimized SLO treatment protocol, the frequency of metaphase chromosome damage was subsequently investigated and found to be also linearly related to Pvu II concentration and total aberrations were approximately double the frequency of micronuclei. The induction and repair kinetics of DNA double-strand breaks were investigated in CHO cells treated with SLO and Pvu II using the neutral filter elution technique at pH 9.6. The data presented show that SLO can be used as an alternative method for porating cells to allow the introduction of restriction endonucleases into cells.  相似文献   

18.
J K Lin  S F Tseng 《Mutation research》1992,265(2):203-210
The frequencies of chromosomal aberrations (CA) and sister-chromatid exchanges (SCE) in Chinese hamster cells were significantly increased by the direct-acting mutagen N-nitroso-2-acetylaminofluorene (N-NO-AAF) at the concentration of 0.1 mM. N-NO-AAF was prepared by nitrosation of the protohepatocarcinogen 2-acetylaminofluorene. The induced CA, which included chromatid breaks, chromatid exchanges, chromosome breaks, and chromosome ring formation were significantly potentiated by the presence of sodium arsenite (10 microM), but not by hydroxyurea (20 mM) or cytosine arabinoside (25 microM). On the other hand, the clastogenic effect of N-NO-AAF was effectively inhibited by sodium selenite (100 microM). Arsenite (10 microM) was shown to be moderately active in CA induction which was partially blocked by the presence of selenite (10 nM). N-Nitroso compounds such as N-nitroso-N-methylurea, N-nitroso-N-ethylurea and N-methyl-N'-nitro-N-nitrosoguanidine were equally or more active in the induction of CA and SCE in CHO cells when compared with N-NO-AAF. The cell cycle was significantly delayed by the intervention of N-NO-AAF.  相似文献   

19.
The clastogenic potential of the intercalating compound ellipticine, an antitumor alkaloid, has been demonstrated in mammalian cells. To characterize the mechanism of action of this drug over the cell cycle, human lymphocyte cultures from 2 healthy donors were treated with 3 micrograms/ml ellipticine in 30-min pulses during different phases of the cell cycle and analyzed for chromosomal aberrations and sister-chromatid exchanges. The G2 phase was most sensitive in terms of induction of aberrations, followed by S and G1. Chromatid-type aberrations were the most common type of chromosomal damage. Induction of SCEs was significantly high only after treatment at G1, when the frequencies of SCEs doubled. The post-treatment effect of lymphocytes with inhibitors of DNA repair, 10(-3) M caffeine and 5 x 10(-6) M 1-beta-D-arabinofuranosylcytosine, was also tested by adding 3 micrograms/ml ellipticine at G2 in 30-min pulses and immediately followed by caffeine and/or ara-C during the last 3 h before harvesting. Three experiments performed on blood from 3 donors showed a moderate potentiation effect on the frequency of chromatid-type aberrations (about 2-3 times) by both inhibitors. Likewise, a 3-fold increase was observed in the frequencies of chromosomal aberrations when caffeine and ara-C were combined. The present data demonstrate that posttreatment with caffeine and ara-C at G2 can modify the response of human lymphocytes treated with ellipticine by increasing the clastogenic action of this compound or by changing the cell-cycle progression.  相似文献   

20.
The clastogenic activity of hydroquinone (HQ) in germ cells of male mice was evaluated by analysis of chromosomal aberrations in primary spermatocytes and differentiating spermatogonia. In the first experiment with treated spermatocytes the most sensitive stage of meiotic prophase to aberration induction by HQ was determined. Testicular material was sampled for microscopic analysis of cells in diakinesis-metaphase I at 1, 5, 9, 11, and 12 days after treatment with 80 mg/kg of HQ, corresponding to treated diplotene, pachytene, zygotene, leptotene and preleptotene. The frequencies of cells with structural chromosome aberrations peaked at 12 days after treatment (p less than 0.01). This indicates that the preleptotene when DNA synthesis occurred was the most sensitive stage of meiotic prophase. In the second experiment the dose response was determined 12 days post treatment by applying 2 additional doses of 40 mg/kg and 120 mg/kg. The clastogenic effects induced by 40 and 80 mg/kg were significantly different from the controls (p less than or equal to 0.01) and higher than the results obtained with 120 mg/kg of HQ. A humped dose-effect relationship was observed. In a third experiment the same doses were used to analyse chromosomal aberrations in dividing spermatogonia of mice 24 h after treatment with HQ. All the administered doses gave results statistically different from the control values (p less than or equal to 0.01) and the data were fitted to a linear equation. HQ was found to be clastogenic in male mouse germ cells. It is concluded that the clastogenic effect in male germ cells is of the same order of magnitude as in mouse bone marrow cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号