首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yao G  Zong Y  Gu S  Zhou J  Xu H  Mathews II  Jin R 《The Biochemical journal》2011,438(2):255-263
The AMPA (α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid) subfamily of iGluRs (ionotropic glutamate receptors) is essential for fast excitatory neurotransmission in the central nervous system. The malfunction of AMPARs (AMPA receptors) has been implicated in many neurological diseases, including Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis. The active channels of AMPARs and other iGluR subfamilies are tetramers formed exclusively by assembly of subunits within the same subfamily. It has been proposed that the assembly process is controlled mainly by the extracellular ATD (N-terminal domain) of iGluR. In addition, ATD has also been implicated in synaptogenesis, iGluR trafficking and trans-synaptic signalling, through unknown mechanisms. We report in the present study a 2.5 ? (1 ?=0.1 nm) resolution crystal structure of the ATD of GluA1. Comparative analyses of the structure of GluA1-ATD and other subunits sheds light on our understanding of how ATD drives subfamily-specific assembly of AMPARs. In addition, analysis of the crystal lattice of GluA1-ATD suggests a novel mechanism by which the ATD might participate in inter-tetramer AMPAR clustering, as well as in trans-synaptic protein-protein interactions.  相似文献   

2.
Differential regulation of ionotropic glutamate receptors   总被引:2,自引:0,他引:2       下载免费PDF全文
Ionotropic glutamate receptors (iGluRs), a family of ligand-gated ion channels, are responsible for the majority of fast excitatory neurotransmission in the central nervous system. Within this family, different members serve distinct roles at glutamatergic synapses. Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors mediate fast depolarization while N-methyl-D-aspartate (NMDA) receptors mediate the slower component of the excitatory postsynaptic potential. These disparate functions suggest alternate modes of regulation. In this work, we show that endogenous regulators of iGluRs have different abilities to bind to specific domains of NMDA NR1-1b and AMPA GluR2 subunits. We have previously shown that the sulfated neurosteroids pregnenolone sulfate and 3α-hydroxy-5β-pregnan-20-one sulfate bind to the extracellular glutamate-binding core (S1S2) of the GluR2 subunit. Here we show that neither neurosteroid binds to the S1S2 domain of the NMDA NR1-1b subunit. This NR1-1b NMDA domain does, however, bind to the endogenous polyamines spermine and spermidine as well as Zn(II). Binding of the polyamines and Zn(II) to the S1S2 domain of the GluR2 subunit was not observed. This binding of Zn(II) and polyamines to the S1S2 domain of the NR1-1b subunit defines a new binding site for each of these modulators.  相似文献   

3.
N-methyl-d-aspartate (NMDA) receptors, one of the three main types of ionotropic glutamate receptors (iGluRs), are involved in excitatory synaptic transmission, and their dysfunction is implicated in various neurological disorders. NMDA receptors, heterotetramers typically composed of GluN1 and GluN2 subunits, are the only members of the iGluR family that bind allosteric modulators at their amino-terminal domains (ATDs). We used luminescence resonance energy transfer to characterize the conformational changes the receptor undergoes upon binding ifenprodil, a synthetic compound that specifically inhibits activation of NMDA receptors containing GluN2B. We found that ifenprodil induced an overall closure of the GluN2B ATD without affecting conformation of the GluN1 ATD or the upper lobes of the ATDs, the same mechanism whereby zinc inhibits GluN2A. These data demonstrate that the conformational changes induced by zinc and ifenprodil represent a conserved mechanism of NMDA receptor inhibition. Additionally, we compared the structural mechanism of zinc inhibition of GluN1–GluN2A receptors to that of ifenprodil inhibition of GluN1–GluN2B. The similarities in the conformational changes induced by inhibitor binding suggest a conserved structural mechanism of inhibition independent of the binding site of the modulator.  相似文献   

4.
Ligand-gated ion channels undergo conformational changes that transfer the energy of agonist binding to channel opening. Within ionotropic glutamate receptor (iGluR) subunits, this process is initiated in their bilobate ligand binding domain (LBD) where agonist binding to lobe 1 favors closure of lobe 2 around the agonist and allows formation of interlobe hydrogen bonds. AMPA receptors (GluAs) differ from other iGluRs because glutamate binding causes an aspartate-serine peptide bond in a flexible part of lobe 2 to rotate 180° (flipped conformation), allowing these residues to form cross-cleft H-bonds with tyrosine and glycine in lobe 1. This aspartate also contacts the side chain of a lysine residue in the hydrophobic core of lobe 2 by a salt bridge. We investigated how the peptide flip and electrostatic contact (D655-K660) in GluA3 contribute to receptor function by examining pharmacological and structural properties with an antagonist (CNQX), a partial agonist (kainate), and two full agonists (glutamate and quisqualate) in the wildtype and two mutant receptors. Alanine substitution decreased the agonist potency of GluA3(i)-D655A and GluA3(i)-K660A receptor channels expressed in HEK293 cells and differentially affected agonist binding affinity for isolated LBDs without changing CNQX affinity. Correlations observed in the crystal structures of the mutant LBDs included the loss of the D655-K660 electrostatic contact, agonist-dependent differences in lobe 1 and lobe 2 closure, and unflipped D(A)655-S656 bonds. Glutamate-stimulated activation was slower for both mutants, suggesting that efficient energy transfer of agonist binding within the LBD of AMPA receptors requires an intact tether between the flexible peptide flip domain and the rigid hydrophobic core of lobe 2.  相似文献   

5.
In newborn pigs, vasodilation of pial arterioles in response to glutamate is mediated via carbon monoxide (CO), a gaseous messenger endogenously produced from heme degradation by a heme oxygenase (HO)-catalyzed reaction. We addressed the hypothesis that ionotropic glutamate receptors (iGluRs), including N-methyl-D-aspartic acid (NMDA)- and 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl) propanoic acid (AMPA)/kainate-type receptors, expressed in cortical astrocytes mediate glutamate-induced astrocyte HO activation that leads to cerebral vasodilation. Acute vasoactive effects of topical iGluR agonists were determined by intravital microscopy using closed cranial windows in anesthetized newborn pigs. iGluR agonists, including NMDA, (±)1-aminocyclopentane-cis-1,3-dicarboxylic acid (cis-ACPD), AMPA, and kainate, produced pial arteriolar dilation. Topical L-2-aminoadipic acid, a gliotoxin that selectively disrupts glia limitans, reduced vasodilation caused by iGluR agonists, but not by hypercapnia, bradykinin, or sodium nitroprusside. In freshly isolated and cultured cortical astrocytes constitutively expressing HO-2, iGluR agonists NMDA, cis-ACPD, AMPA, and kainate rapidly increased CO production two- to threefold. Astrocytes overexpressing inducible HO-1 had high baseline CO but were less sensitive to glutamate stimulation of CO production when compared with HO-2-expressing astrocytes. Glutamate-induced astrocyte HO-2-mediated CO production was inhibited by either the NMDA receptor antagonist (R)-3C4HPG or the AMPA/kainate receptor antagonist DNQX. Accordingly, either antagonist abolished pial arteriolar dilation in response to glutamate, NMDA, and AMPA, indicating functional interaction among various subtypes of astrocytic iGluRs in response to glutamate stimulation. Overall, these data indicate that the astrocyte component of the neurovascular unit is responsible for the vasodilation response of pial arterioles to topically applied glutamate via iGluRs that are functionally linked to activation of constitutive HO in newborn piglets.  相似文献   

6.
J. Neurochem. (2012) 121, 597-606. ABSTRACT: In cultured rat neocortical interneurons, we have studied the effect of long-term application of NMDA or AMPA on the surface density of the NMDA (GluN) receptor subunits GluN1 and GluN2B. Stimulation of Ca(2+) -permeable AMPA (GluA) receptors located on the interneurons decreased the response of GluN receptors. The reduction was caused by a decrease in the surface density of GluN1/GluN2B subunits. In contrast, stimulation of GluN receptors located on the interneurons enhanced the surface density of GluN1/GluN2B subunits. Both effects could be induced by network activation.  相似文献   

7.
Ionotropic glutamate receptors are widely distributed in the central nervous system and play a major role in excitatory synaptic transmission. All three ionotropic glutamate subfamilies (i.e. AMPA-type, kainate-type, and NMDA-type) assemble as tetramers of four homologous subunits. There is good evidence that both heteromeric AMPA and kainate receptors have a 2:2 subunit stoichiometry and an alternating subunit arrangement. Recent studies based on presumed structural homology have indicated that NMDA receptors adopt the same arrangement. Here, we use atomic force microscopy imaging of receptor-antibody complexes to show that whereas the GluA1/GluA2 AMPA receptor assembles with an alternating (i.e. 1/2/1/2) subunit arrangement, the GluN1/GluN2A NMDA receptor adopts an adjacent (i.e. 1/1/2/2) arrangement. We conclude that the two types of ionotropic glutamate receptor are built in different ways from their constituent subunits. This surprising finding necessitates a reassessment of the assembly of these important receptors.  相似文献   

8.
9.
N-methyl-D-aspartate (NMDA) receptors are obligate heterotetrameric ligand-gated ion channels that play critical roles in learning and memory. Here, using targeted molecular dynamics simulations, we developed an atomistic model for the gating of the GluN1/GluN2A NMDA receptor. Upon agonist binding, lobe closure of the ligand-binding domain produced outward pulling of the M3-D2 linkers, leading to outward movements of the C-termini of the pore-lining M3 helices and opening of the channel. The GluN2A subunits, similar to the distal (B/D) subunits in the homotetrameric GluA2 α-amino-3-hydroxy-5-methyl-4-isoxazoleproprionate receptor, had greater M3 outward movements and thus contributed more to channel gating than the GluN1 subunits. Our gating model is validated by functional studies, including cysteine modification data indicating wider accessibility to the GluN1 M3 helices than to the GluN2A M3 helices from the lumen of the open channel, and reveals why the Lurcher mutation in GluN1 has a stronger ability in maintaining channel opening than the counterpart in GluN2A. The resulting structural model for the open state provides an explanation for the Ca2+ permeability of NMDA receptors, and the structural differences between the closed and open states form the basis for drug design.  相似文献   

10.
NMDA receptors are ligand-gated ion channels that mediate excitatory neurotransmission in the brain. They are tetrameric complexes composed of glycine-binding GluN1 and GluN3 subunits together with glutamate-binding GluN2 subunits. Subunit-selective antagonists that discriminate between the glycine sites of GluN1 and GluN3 subunits would be valuable pharmacological tools for studies on the function and physiological roles of NMDA receptor subtypes. In a virtual screening for antagonists that exploit differences in the orthosteric binding site of GluN1 and GluN3 subunits, we identified a novel glycine site antagonist, 1-thioxo-1,2-dihydro-[1,2,4]triazolo[4,3-a]quinoxalin-4(5H)-one (TK40). Here, we show by Schild analysis that TK40 is a potent competitive antagonist with Kb values of 21–63 nm at the GluN1 glycine-binding site of the four recombinant GluN1/N2A-D receptors. In addition, TK40 displayed >100-fold selectivity for GluN1/N2 NMDA receptors over GluN3A- and GluN3B-containing NMDA receptors and no appreciable effects at AMPA receptors. Binding experiments on rat brain membranes and the purified GluN1 ligand-binding domain using glycine site GluN1 radioligands further confirmed the competitive interaction and high potency. To delineate the binding mechanism, we have solved the crystal structure of the GluN1 ligand-binding domain in complex with TK40 and show that TK40 binds to the orthosteric binding site of the GluN1 subunit with a binding mode that was also predicted by virtual screening. Furthermore, the structure reveals that the imino acetamido group of TK40 acts as an α-amino acid bioisostere, which could be of importance in bioisosteric replacement strategies for future ligand design.  相似文献   

11.
Ionotropic glutamate receptors function can be affected by neurosteroids, both positively and negatively. N-methyl-D-aspartate (NMDA) receptor responses to exogenously applied glutamate are potentiated or inhibited (depending on the receptor subunit composition) by pregnenolone sulphate (PS) and inhibited by pregnanolone sulphate (3alpha5betaS). While PS effect is most pronounced when its application precedes that of glutamate, 3alpha5betaS only binds to receptors already activated. Synaptically activated NMDA receptors are inhibited by 3alpha5betaS, though to a lesser extent than those tonically activated by exogenous glutamate. PS, on the other hand, shows virtually no effect on any of the models of synaptically activated NMDA receptors. The site of neurosteroid action at the receptor molecule has not yet been identified, however, the experiments indicate that there are at least two distinct extracellularly located binding sites for PS mediating its potentiating and inhibitory effects respectively. Experiments with chimeric receptors revealed the importance of the extracellular loop connecting the third and the fourth transmembrane domain of the receptor NR2 subunit for the neurosteroid action. alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA)/kainate receptors are inhibited by both PS and 3alpha5betaS. These neurosteroids also affect AMPA receptors-mediated synaptic transmission, however, in a rather indirect way, through presynaptically located targets of action.  相似文献   

12.
Ionotropic glutamate receptors (iGluRs) mediate the majority of fast excitatory synaptic neurotransmission in the central nervous system. The selective assembly of iGluRs into AMPA, kainate, and N-methyl-d-aspartic acid (NMDA) receptor subtypes is regulated by their extracellular amino-terminal domains (ATDs). Kainate receptors are further classified into low-affinity receptor families (GluK1-GluK3) and high-affinity receptor families (GluK4-GluK5) based on their affinity for the neurotoxin kainic acid. These two families share a 42% sequence identity for the intact receptor but only a 27% sequence identity at the level of ATD. We have determined for the first time the high-resolution crystal structures of GluK3 and GluK5 ATDs, both of which crystallize as dimers but with a strikingly different dimer assembly at the R1 interface. By contrast, for both GluK3 and GluK5, the R2 domain dimer assembly is similar to those reported previously for other non-NMDA iGluRs. This observation is consistent with the reports that GluK4-GluK5 cannot form functional homomeric ion channels and require obligate coassembly with GluK1-GluK3. Our analysis also reveals that the relative orientation of domains R1 and R2 in individual non-NMDA receptor ATDs varies by up to 10°, in contrast to the 50° difference reported for the NMDA receptor GluN2B subunit. This restricted domain movement in non-NMDA receptor ATDs seems to result both from extensive intramolecular contacts between domain R1 and domain R2 and from their assembly as dimers, which interact at both R1 and R2 domains. Our results provide the first insights into the structure and function of GluK4-GluK5, the least understood family of iGluRs.  相似文献   

13.
Excitatory synaptic transmission in the brain is mediated by ligand-gated ion channels (iGluRs) activated by glutamate. Distinct from other neurotransmitter receptors, the extracellular domains of iGluRs are loosely packed assemblies with two clearly distinct layers, each of which has both local and global 2-fold axes of symmetry. By contrast, the iGluR transmembrane segments have 4-fold symmetry and share a conserved pore loop architecture found in tetrameric voltage-gated ion channels. The striking layered architecture of iGluRs revealed by the 3.6?? resolution structure of an AMPA receptor homotetramer likely arose from gene fusion events that occurred early in evolution. Although this modular design has greatly facilitated biophysical and structural studies on individual iGluR domains, and suggested conserved mechanisms for iGluR gating, recent work is beginning to reveal unanticipated diversity in the structure, allosteric regulation, and assembly of iGluR subtypes.  相似文献   

14.
Fast excitatory neurotransmission is mediated largely by ionotropic glutamate receptors (iGluRs), tetrameric, ligand‐gated ion channel proteins comprised of three subfamilies, AMPA, kainate and NMDA receptors, with each subfamily sharing a common, modular‐domain architecture. For all receptor subfamilies, active channels are exclusively formed by assemblages of subunits within the same subfamily, a molecular process principally encoded by the amino‐terminal domain (ATD). However, the molecular basis by which the ATD guides subfamily‐specific receptor assembly is not known. Here we show that AMPA receptor GluR1‐ and GluR2‐ATDs form tightly associated dimers and, by the analysis of crystal structures of the GluR2‐ATD, propose mechanisms by which the ATD guides subfamily‐specific receptor assembly.  相似文献   

15.
N-Methyl-d-aspartate (NMDA) receptors play critical roles in complex brain functions as well as pathogenesis of neurodegenerative diseases. There are many NMDA isoforms and subunit types that, together with subtype-specific assembly, give rise to significant functional heterogeneity of NMDA receptors. Conventional NMDA receptors are obligatory heterotetramers composed of two glycine-binding NR1 subunits and two glutamate-binding NR2 subunits. When individually expressed in heterogeneous cells, most of the NR1 splice variants and the NR2 subunits remain in the endoplasmic reticulum (ER) and do not form homomeric channels. The mechanisms underlying NMDA receptor trafficking and functional expression remain uncertain. Using truncated and chimeric NMDA receptor subunits expressed in heterogeneous cells and hippocampal neurons, together with immunostaining, biochemical, and functional analyses, we found that the NR2A amino-terminal domain (ATD) contains an ER retention signal, which can be specifically masked by the NR1a ATD. Interestingly, no such signal was found in the ATD of the NR2B subunit. We further identified the A2 segment of the NR2A ATD to be the primary determinant of ER retention. These findings indicate that NR2A-containing NMDA receptors may undergo a different ER quality control process from NR2B-containing NMDA receptors.Ionotropic glutamate receptors (iGluRs)2 mediate most of the excitatory neurotransmission in the central nervous system. They play key roles in complex brain functions as well as in the pathogenesis of neurodegenerative diseases. Based on pharmacological properties and sequence similarities, iGluRs can be grouped into three major subtypes: GluR1 to -4 subunits form α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors, GluR5 to -7 and KA1 and -2 subunits make up kainate receptors, and NR1 together with NR2A to -D subunits comprise the NMDA receptors (1). All iGluR subunits share a unique membrane topology with a large extracellular NH2-terminal domain, three transmembrane segments (TM1 (transmembrane domain 1), TM3, and TM4), a P-loop region, and a cytoplasmic COOH terminus (2, 3). Based on the sequence homology to bacterial periplasmic binding proteins, the NH2-terminal domain of iGluRs can be divided into two domains in tandem: the amino-terminal domain (ATD), which includes the first 400 or so amino acids (4), and the following S1 domain preceding TM1, which forms the ligand-binding domain together with the extracellular loop between TM3 and TM4 (S2 domain) (5, 6).Among iGluRs, NMDA receptors are special in that conventional NMDA receptors are obligatory tetrameric membrane proteins composed of two glycine-binding NR1 and two glutamate-binding NR2 subunits. The NR1 subunit is essential for the formation of functional NMDA receptor channel, whereas the NR2 subunit modifies channel properties, such as current kinetics and channel conductance (1). The major NR1 splice variant and the NR2 subunits are retained in the ER when expressed alone in heterogeneous cells. Only when expressed together do they form functional receptors on the cell surface (79). In the last decade, enormous progress has been made in understanding the phenomenology and mechanisms of functional plasticity of NMDA receptors. However, much less is known about the mechanisms underlying the ER retention of NMDA receptor subunits. Previous studies focused on the COOH terminus have shown that the NR1a subunit contains an ER retention signal, RRR, in the C1 cassette, whereas a motif, HLFY, found in the NR2B subunit immediately following the TM4 (10) or, at least, the presence of any two amino acid residues after NR2 TM4 (11) is required for the export of NR1-NR2 complexes from the ER. Recently, novel ER retention signals were identified in the TM3 of both NR1 and NR2B subunits. In addition, TM3 of both NR1 and NR2B and TM4 of NR1 are necessary for masking ER retention signals found in TM3 (12).In the present study, we focused on the functional role of the ATD in the surface expression of NMDA receptors. Interestingly, we found an ER retention signal located in the ATD of the NR2A subunit but not in the corresponding domain of the NR2B. It is suggested that NR2A-containing NMDA receptors may undergo an ER quality control process different from that of NR2B-containing NMDA receptors.  相似文献   

16.
The defining functional feature of N-methyl-d-aspartate (NMDA) receptors is activation gating, the energetic coupling of ligand binding into opening of the associated ion channel pore. NMDA receptors are obligate heterotetramers typically composed of glycine-binding GluN1 and glutamate-binding GluN2 subunits that gate in a concerted fashion, requiring all four ligands to bind for subsequent opening of the channel pore. In an individual subunit, the extracellular ligand-binding domain, composed of discontinuous polypeptide segments S1 and S2, and the transmembrane channel-forming domain, composed of M1-M4 segments, are connected by three linkers: S1-M1, M3-S2, and S2-M4. To study subunit-specific events during pore opening in NMDA receptors, we impaired activation gating via intrasubunit disulfide bonds connecting the M3-S2 and S2-M4 in either the GluN1 or GluN2A subunit, thereby interfering with the movement of the M3 segment, the major pore-lining and channel-gating element. NMDA receptors with gating impairments in either the GluN1 or GluN2A subunit were dramatically resistant to channel opening, but when they did open, they showed only a single-conductance level indistinguishable from wild type. Importantly, the late gating steps comprising pore opening to its main long-duration open state were equivalently affected regardless of which subunit was constrained. Thus, the NMDA receptor ion channel undergoes a pore-opening mechanism in which the intrasubunit conformational dynamics at the level of the ligand-binding/transmembrane domain (TMD) linkers are tightly coupled across the four subunits. Our results further indicate that conformational freedom of the linkers between the ligand-binding and TMDs is critical to the activation gating process.  相似文献   

17.
The alpha-amino-3-hydroxyl-5-methyl-4-isoxazolepropionic acid (AMPA) subtype of ionotropic glutamate receptors (iGluRs) mediates fast excitatory neurotransmission in the mammalian brain. Although the most N-terminal leucine/isoleucine/valine-binding protein (LIVBP) domain is suggested to play a role in the initial assembly of iGluR subunits, it is unclear how this domain is arranged and functions in intact iGluRs. Similarly, although recent crystallographic analyses indicate that the isolated ligand-binding lysine/arginine/ornithine-binding protein domain forms a 2-fold symmetric dimer, the subunit stoichiometry of intact iGluRs remains elusive. Here, we developed a new approach to address these issues. The LIVBP domain of the GluR1 subunit of AMPA receptors was replaced by leucine-zipper peptides designed to form stable symmetric dimers, trimers, tetramers, or pentamers. All these mutant GluR1s were expressed in human embryonic kidney 293 cells and were transported to the cell surface as well as wild type GluR1. Functional and biochemical analyses indicated that these oligomerizing peptides specifically controlled the formation of the expected number of subunits in a channel complex. However, the channel function was only restored by the tetramer-forming peptide. Although the purified LIVBP domain of GluR1 formed a dimmer in solution, a dimer-forming peptide could not restore the function of GluR1. Moreover, a cross-linking assay indicated that four LIVBP domains are located in proximity to each other. These results suggest that the function of the LIVBP domain is not simply to form initial dimers but to adopt a conformation compatible with the overall tetrameric arrangement of subunits in intact AMPA receptors.  相似文献   

18.
Jackson AC  Nicoll RA 《Neuron》2011,70(2):178-199
Ionotropic glutamate receptors (iGluRs) underlie rapid, excitatory synaptic signaling throughout the CNS. After years of intense research, our picture of iGluRs has evolved from them being companionless in the postsynaptic membrane to them being the hub of dynamic supramolecular signaling complexes, interacting with an ever-expanding litany of other proteins that regulate their trafficking, scaffolding, stability, signaling, and turnover. In particular, the discovery that transmembrane AMPA receptor regulatory proteins (TARPs) are AMPA receptor auxiliary subunits that are critical determinants of their trafficking, gating, and pharmacology has changed the way we think about iGluR function. Recently, a number of novel transmembrane proteins have been uncovered that may also serve as iGluR auxiliary proteins. Here we review pivotal developments in our understanding of the role of TARPs in AMPA receptor trafficking and gating, and provide an overview of how newly discovered transmembrane proteins expand our view of iGluR function in the CNS.  相似文献   

19.
NMDA receptors (NMDARs) form glutamate-gated ion channels that play a critical role in CNS physiology and pathology. Together with AMPA and kainate receptors, NMDARs are known to operate as tetrameric complexes with four membrane-embedded subunits associating to form a single central ion-conducting pore. While AMPA and some kainate receptors can function as homomers, NMDARs are obligatory heteromers composed of homologous but distinct subunits, most usually of the GluN1 and GluN2 types. A fundamental structural feature of NMDARs, that of the subunit arrangement around the ion pore, is still controversial. Thus, in a typical NMDAR associating two GluN1 and two GluN2 subunits, there is evidence for both alternating 1/2/1/2 and non-alternating 1/1/2/2 arrangements. Here, using a combination of electrophysiological and cross-linking experiments, we provide evidence that functional GluN1/GluN2A receptors adopt the 1/2/1/2 arrangement in which like subunits are diagonal to one another. Moreover, based on the recent crystal structure of an AMPA receptor, we show that in the agonist-binding and pore regions, the GluN1 subunits occupy a "proximal" position, closer to the central axis of the channel pore than that of GluN2 subunits. Finally, results obtained with reducing agents that differ in their membrane permeability indicate that immature (intracellular) and functional (plasma-membrane inserted) pools of NMDARs can adopt different subunit arrangements, thus stressing the importance of discriminating between the two receptor pools in assembly studies. Elucidating the quaternary arrangement of NMDARs helps to define the interface between the subunits and to understand the mechanism and pharmacology of these key signaling receptors.  相似文献   

20.
Ionotropic glutamate receptors (iGluRs) bind agonists in a domain that has been crystallized and shown to have a bilobed structure. Eukaryotic iGluRs also possess a second extracellular N-terminal domain related to the bacterial periplasmic binding protein LIVBP. In NMDA receptors, the high-affinity Zn inhibition is eliminated by mutations in the LIVBP-like domain of the NR2A subunit. Using LIVBP structure, we have modeled this domain as two lobes connected by a hinge and show that six residues controlling Zn inhibition form two clusters facing each other across a central cleft. Upon Zn binding the two lobes close tightly around the divalent cation. Thus, the extracellular region of NR2A consists of a tandem of Venus flytrap domains, one binding the agonist and the other a modulatory ligand. Such a functional organization may apply to other eukaryotic iGluRs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号