首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Recent data from a national survey highlighted a significant difference in obesity rates in young fragile X males (31%) compared to age matched controls (18%). Fragile X syndrome (FXS) is the most common cause of intellectual disability in males and the most common single gene cause of autism. This X-linked disorder is caused by an expansion of a trinucleotide CGG repeat (>200) on the promotor region of the fragile X mental retardation 1 gene (FMR1). As a result, the promotor region often becomes methylated which leads to a deficiency or absence of the FMR1 protein (FMRP). Common characteristics of FXS include mild to severe cognitive impairments in males but less severe cognitive impairment in females. Physical features of FXS include an elongated face, prominent ears, and post-pubertal macroorchidism. Severe obesity in full mutation males is often associated with the Prader-Willi phenotype (PWP) which includes hyperphagia, lack of satiation after meals, and hypogonadism or delayed puberty; however, there is no deletion at 15q11-q13 nor uniparental maternal disomy. Herein, we discuss the molecular mechanisms leading to FXS and the Prader-Willi phenotype with an emphasis on mouse FMR1 knockout studies that have shown the reversal of weight increase through mGluR antagonists. Finally, we review the current medications used in treatment of FXS including the atypical antipsychotics that can lead to weight gain and the research regarding the use of targeted treatments in FXS that will hopefully have a significantly beneficial effect on cognition and behavior without weight gain.  相似文献   

3.
Disrupted metabotropic glutamate receptor 5 (mGluR5) signaling is implicated in many neuropsychiatric disorders, including autism spectrum disorder, found in fragile X syndrome (FXS). Here we report that intracellular calcium responses to the group I mGluR agonist (S)−3,5‐dihydroxyphenylglycine (DHPG) are augmented, and calcium‐dependent mGluR5‐mediated mechanisms alter the differentiation of neural progenitors in neurospheres derived from human induced pluripotent FXS stem cells and the brains of mouse model of FXS. Treatment with the mGluR5 antagonist 2‐methyl‐6‐(phenylethynyl)‐pyridine (MPEP) prevents an abnormal clustering of DHPG‐responsive cells that are responsive to activation of ionotropic receptors in mouse FXS neurospheres. MPEP also corrects morphological defects of differentiated cells and enhanced migration of neuron‐like cells in mouse FXS neurospheres. Unlike in mouse neurospheres, MPEP increases the differentiation of DHPG‐responsive radial glial cells as well as the subpopulation of cells responsive to both DHPG and activation of ionotropic receptors in human neurospheres. However, MPEP normalizes the FXS‐specific increase in the differentiation of cells responsive only to N ‐methyl‐d ‐aspartate (NMDA) present in human neurospheres. Exposure to MPEP prevents the accumulation of intermediate basal progenitors in embryonic FXS mouse brain suggesting that rescue effects of GluR5 antagonist are progenitor type‐dependent and species‐specific differences of basal progenitors may modify effects of MPEP on the cortical development. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 419–437, 2017  相似文献   

4.
Fragile X syndrome (FXS) is a well-recognized mental retardation syndrome with characteristic facial features and behavioural phenotype. Monosomy 21 is a rare cytogenetic aberration for which clinical features were incompletely defined since full monosomy 21 is incompatible with life. A 5-year-old male patient with FXS and low-grade mosaicism for full monosomy 21 (46,XY[96%]/45,XY,-21[4%]) is presented. He had lack of speech and severely impaired social skills, hyperactivity, stereotypical hand movements, a special interest towards moving colourful items and a short attention span for other objects around. He had macrocephaly, a rather long face, prominent occiput and prominent midface, retrognathia, down-slanting palpebral fissures, hypertelorism and cup-shaped, posteriorly rotated and low-set ears. Full monosomy in the aberrant cell line was proven by whole chromosome painting. FXS was previously reported to accompany sex chromosome aneuploidies; however, to the best of our knowledge, the present patient is the first FXS patient with an aberration involving autosomes. He contributes to the current knowledge on monosomy 21 phenotype, having dysmorphic facial findings despite the concurrent phenotypic expression of the FXS. As a last conclusion, cytogenetic analysis must be done to all mentally retarded patients with minor dysmorphic features.  相似文献   

5.
Recently we have shown that the metabotropic glutamate 5 (mGlu5) receptor can be expressed on nuclear membranes of heterologous cells or endogenously on striatal neurons where it can mediate nuclear Ca2+ changes. Here, pharmacological, optical, and genetic techniques were used to show that upon activation, nuclear mGlu5 receptors generate nuclear inositol 1,4,5-trisphosphate (IP3) in situ. Specifically, expression of an mGlu5 F767S mutant in HEK293 cells that blocks Gq/11 coupling or introduction of a dominant negative Galphaq construct in striatal neurons prevented nuclear Ca2+ changes following receptor activation. These data indicate that nuclear mGlu5 receptors couple to Gq/11 to mobilize nuclear Ca2+. Nuclear mGlu5-mediated Ca2+ responses could also be blocked by the phospholipase C (PLC) inhibitor, U73122, the phosphatidylinositol (PI) PLC inhibitor 1-O-octadecyl-2-O-methyl-sn-glycero-3-phosphorylcholine (ET-18-OCH3), or by using small interfering RNA targeted against PLCbeta1 demonstrating that PI-PLC is involved. Direct assessment of inositol phosphate production using a PIP2/IP3 "biosensor" revealed for the first time that IP3 can be generated in the nucleus following activation of nuclear mGlu5 receptors. Finally, both IP3 and ryanodine receptor blockers prevented nuclear mGlu5-mediated increases in intranuclear Ca2+. Collectively, this study shows that like plasma membrane receptors, activated nuclear mGlu5 receptors couple to Gq/11 and PLC to generate IP3-mediated release of Ca2+ from Ca2+-release channels in the nucleus. Thus the nucleus can function as an autonomous organelle independent of signals originating in the cytoplasm, and nuclear mGlu5 receptors play a dynamic role in mobilizing Ca2+ in a specific, localized fashion.  相似文献   

6.
Coupling of the group I metabotropic glutamate receptors, mGlu1a and mGlu5a, to the cAMP response element binding protein (CREB) has been studied in Chinese hamster ovary cell lines where receptor expression is under the control of an inducible promoter. Both receptors stimulate CREB phosphorylation with similar time courses, and agonist potency was also comparable between the two receptors. Stimulation of cells in Ca(2+)-free medium containing EGTA (100 microm), with or without the additional depletion of intracellular stores, caused marked decreases in agonist-mediated responses in both cell lines. Down-regulation of protein kinase C (PKC) activity by phorbol ester treatment, or treatment with the broad spectrum PKC inhibitor Ro 31-8220, partially attenuated both mGlu1a and mGlu5a receptor-mediated responses. Furthermore, stimulation of cells in the absence of extracellular Ca(2+) following prior PKC down-regulation resulted in additive inhibitory effects. The involvement of extracellular signal-regulated kinases (ERK1/2), Ca(2+)/calmodulin or Ca(2+)/calmodulin-dependent protein kinases was assessed using pharmacological inhibitors. Results indicated that coupling of the group I mGlu receptors to CREB phosphorylation occurs independently of these pathways. Thus, although the [Ca(2+)](i) signatures activated by these mGlu receptors differ, they couple to CREB with comparable potency and recruit similar downstream components to execute CREB phosphorylation.  相似文献   

7.
Mouse embryonic stem (ES) cells were stimulated to differentiate either as adherent monolayer cultures in DMEM/F12 supplemented with N2/B27, or as floating embryoid bodies (EBs) exposed to 1 microM retinoic acid (RA) for 4 days, starting from 4 DIV, and subsequently re-plated in DMEM/F12 medium. Adherent monolayer cultures of ES cells expressed mGlu5 receptors throughout the entire differentiation period. Selective pharmacological blockade of mGlu5 receptors with methyl-6-(phenylethynyl)-pyridine (MPEP) (1 microM, added once a day) accelerated the appearance of the neuronal marker, beta-tubulin. In addition, treatment with MPEP increased the number of cells expressing glutamate decarboxylase-65/67 (GAD(65/67)), a marker of GABAergic neurons. In floating EBs, mGlu5 receptors are progressively replaced by mGlu4 receptors. The orthosteric mGlu4/6/7/8 receptor agonist, L-2-amino-4-phosphonobutanoate (L-AP4), or the selective mGlu4 receptor enhancer, PHCCC,--both combined with RA at concentrations of 30 microM--increased the expression of both beta-tubulin and GAD(65/67), inducing the appearance of fully differentiated neurons that released GABA in response to membrane depolarization. We conclude that mGlu receptor subtypes regulate neuronal differentiation of ES cells in a context-dependent manner, and that subtype-selective ligands of these receptors might be used for the optimization of in vitro protocols aimed at producing GABAergic neurons from ES cells.  相似文献   

8.
The selective group-III metabotropic glutamate receptor agonist, L-serine-O-phosphate (L-SOP), when injected bilaterally into the inferior colliculus of the sound sensitive genetically epilepsy-prone (GEP) rats produces a short proconvulsant excitation followed by a long phase of protection against sound-induced seizures lasting for 2-4 days. We have studied this prolonged suppression of audiogenic seizures using pharmacological and molecular biological approaches including semiquantitative RT-PCR and western blotting. The intracerebroventricular injection of the protein synthesis inhibitor cycloheximide (120 microg) 30 min beforehand significantly reduces the proconvulsant seizure activity and the prolonged anticonvulsant effect of intracollicular L-SOP (500 nmol/side). The sensitive semiquantitative RT-PCR revealed a significant up-regulation in mGlu(4) and mGlu(7) mRNA levels in the inferior colliculus at 2 days (maximum suppression of audiogenic seizures) after intracollicular L-SOP injection compared with the non-injected, 2-day post-vehicle treated and 7-day (return to expressing audiogenic seizures) post-drug or vehicle-treated groups. No significant changes were observed in mGlu(6) or mGlu(8) mRNA expression levels in drug-treated compared with control groups. Examination of mGlu(4a) and mGlu(7a) protein levels using western blotting showed a significant increase in mGlu(7a) but no significant change in mGlu(4a) protein levels 2 days after L-SOP treatment compared with the control groups (non-injected and 2-day vehicle-injected group). These results suggest that up-regulation of mGlu(7) receptors is involved in the prolonged anticonvulsant effect of L-SOP against sound-induced seizures in GEP rats. The potential use of mGlu(7) agonists as novel anti-epileptic agents merits investigation.  相似文献   

9.
Fragile X syndrome (FXS) is the most commonly inherited form of mental impairment and autism. Current understanding of the molecular and cellular mechanisms underlying FXS symptoms is derived mainly from studies on the hippocampus and cortex. However, FXS is also associated with strong emotional symptoms, which are likely to involve changes in the amygdala. Unfortunately, the synaptic basis of amygdalar dysfunction in FXS remains largely unexplored. Here we describe recent findings from mouse models of FXS that have identified synaptic defects in the basolateral amygdala that are in many respects distinct from those reported earlier in the hippocampus. Long-term potentiation and surface expression of AMPA-receptors are impaired. Further, presynaptic defects are seen at both excitatory and inhibitory synapses. Remarkably, some of these synaptic defects in the amygdala are also amenable to pharmacological rescue. These results also underscore the need to modify the current hippocampus-centric framework to better explain FXS-related synaptic dysfunction in the amygdala.  相似文献   

10.
Group I mGlu receptors have been implicated in the control of brain dopamine release. However, the receptor subtype involved and the precise site of action have not been determined. In this study we show that (R,S)3,5-dihydroxyphenylglycine (DHPG; 6 and 60 nmol ICV), a selective group I mGlu receptor agonist, raised extracellular dopamine respectively by 176% and 243% of basal values in the medial prefrontal cortex as assessed by in vivo microdialysis in conscious rats. (R,S)2-chloro-5-hydroxyphenylglycine (60 nmol ICV), a selective mGlu5 receptor agonist, raised extracellular dopamine by 396% of basal values. Intra-VTA DHPG (0.6–6 nmol) mimicked ICV injection whereas intracortical infusion (1–1000 µmol/L) had no effect. DHPG-induced rise of extracellular dopamine was reversed by tetrodotoxin and by the selective mGlu1 and mGlu5 receptor antagonists 7(hydroxyimino)cyclopropa[b]chromen-1a-carboxylate (CPCCOEt) and 2-methyl-6-(phenylethynyl)pyridine (MPEP) either ICV or into the ventrotegmental area (VTA), suggesting that neuronal release and both mGlu1 and mGlu5 receptors were involved. These results support the existence of functional mGlu1 and mGlu5 receptors in the VTA regulating the release of dopamine in the medial prefrontal cortex.  相似文献   

11.
Moving from early studies, we here review the most recent evidence linking metabotropic glutamate (mGlu) receptors to processes of neurodegeneration/neuroprotection. The use of knockout mice and subtype-selective drugs has increased our knowledge of the precise role played by individual mGlu receptor subtypes in these processes. Activation of mGlu1 and mGlu5 receptors may either amplify or reduce neuronal damage depending on the context and the nature of the toxic insults. In contrast, mGlu1 and mGlu5 receptors antagonists are consistently protective in in vitro and in vivo models of neuronal death. A series of studies suggest that mGlu1 receptor antagonists or negative allosteric modulators (NAMs) are promising candidates for the treatment of ischemic brain damage, whereas mGlu5 receptor NAMs, which have been clinically developed for the treatment of Parkinson's disease (PD) and l-DOPA-induced dyskinesias, protect nigro-striatal dopaminergic neurons against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) toxicity in mice and monkeys. Activation of glial mGlu3 receptors promotes the formation of various neurotrophic factors, such as transforming growth factor-β (TGF-β), glial-derived neurotrophic factor (GDNF), nerve growth factor (NGF), and brain-derived neurotrophic factor (BDNF). Hence, selective mGlu3 receptor agonists or positive allosteric modulators (PAMs) (not yet available) are potentially helpful in the treatment of chronic neurodegenerative disorders such as PD, Alzheimer's disease (AD), and amyotrophic lateral sclerosis. Selective mGlu2 receptor PAMs should be used with caution in AD patients because these drugs are shown to amplify β-amyloid neurotoxicity. Finally, mGlu4 receptor agonists/PAMs share with mGlu5 receptor NAMs the ability to improve motor symptoms associated with PD and attenuate nigro-striatal degeneration at the same time. No data are yet available on the role of mGlu7 and mGlu8 receptors in neurodegeneration/neuroprotection.  相似文献   

12.
Pancreatic islets contain ionotropic glutamate receptors that can modulate hormone secretion. The purpose of this study was to determine whether islets express functional group III metabotropic glutamate (mGlu) receptors. RT-PCR analysis showed that rat islets express the mGlu8 receptor subtype. mGlu8 receptor immunoreactivity was primarily displayed by glucagon-secreting alpha-cells and intrapancreatic neurons. By demonstrating the immunoreactivities of both glutamate and the vesicular glutamate transporter 2 (VGLUT2) in these cells, we established that alpha-cells express a glutamatergic phenotype. VGLUT2 was concentrated in the secretory granules of islet cells, suggesting that glutamate might play a role in the regulation of glucagon processing. The expression of mGlu8 by glutamatergic cells also suggests that mGlu8 may function as an autoreceptor to regulate glutamate release. Pancreatic group III mGlu receptors are functional because mGlu8 receptor agonists inhibited glucagon release and forskolin-induced accumulation of cAMP in isolated islets, and (R,S)-cyclopropyl-4-phosphonophenylglycine, a group III mGlu receptor antagonist, reduced these effects. Because excess glucagon secretion causes postprandial hyperglycemia in patients with type 2 diabetes, group III mGlu receptor agonists could be of value in the treatment of these patients.  相似文献   

13.
The calcium-sensing receptor (CaR) is a G-protein-coupled receptor that displays 19-25% sequence identity to the gamma-aminobutyric acid type B (GABAB) and metabotropic glutamate (mGlu) receptors. All three groups of receptors have a large amino-terminal domain (ATD), which for the mGlu receptors has been shown to bind the endogenous agonist. To investigate whether the agonist-binding domain of the CaR also is located in the ATD, we constructed a chimeric receptor named Ca/1a consisting of the ATD of CaR and the seven transmembrane region and C terminus of mGlu1a. The Ca/1a receptor stimulated inositol phosphate production when exposed to the cationic agonists Ca2+, Mg2+, and Ba2+ in transiently transfected tsA cells (a transformed HEK 293 cell line). The pharmacological profile of Ca/1a (EC50 values of 3.3, 2.6, and 3.9 mM for these cations, respectively) was very similar to that of the wild-type CaR (EC50 values of 3.2, 4.7, and 4.1 mM, respectively). For the mGlu1a receptor, it has been shown that Ser-165 and Thr-188, which are located in the ATD, are involved in the agonist binding. An alignment of CaR with the mGlu receptors showed that these two amino acid residues have been conserved in CaR as Ser-147 and Ser-170, respectively. Each of these residues was mutated to alanines and tested pharmacologically using the endogenous agonist Ca2+. CaR-S147A showed an impaired function as compared with wild-type CaR both with respect to potency of Ca2+ (4-fold increase in EC50) and maximal response (79% of wild-type response). CaR-S170A showed no significant response to Ca2+ even at 50 mM concentration. In contrast, each of the two adjacent mutations, S169A and S171A, resulted in pharmacological profiles almost identical to that of the wild-type receptor. These data demonstrate that Ser-170 and to some extent Ser-147 are involved in the Ca2+ activation of the CaR, and taken together, our results reveal a close resemblance of the activation mechanism between the CaR and the mGlu receptors.  相似文献   

14.

mGlu1 and mGlu5 metabotropic glutamate receptors are expressed in the vertebrate retina, and are co-localized in some retinal neurons. It is believed that both receptors are coupled to polyphosphoinositide (PI) hydrolysis in the retina and their function may diverge in some cells because of a differential engagement of downstream signaling molecules. Here, we show that it is only the mGlu1 receptor that is coupled to PI hydrolysis in the retina. We used either bovine retinal slices or intact mouse retinas challenged with the mixed mGlu1/5 receptor agonist, DHPG. In both models, DHPG-stimulated PI hydrolysis was abrogated by the selective mGlu1 receptor antagonist, JNJ16259685, but was insensitive to the mGlu5 receptor antagonist, MPEP. In addition, the PI response to DHPG was unchanged in the retina of mGlu5?/? mice but was abolished in the retina of crv4 mice lacking mGlu1 receptors. Stimulation of the mitogen-activated protein kinase pathway by DHPG in intact mouse retinas were also entirely mediated by mGlu1 receptors. Our data provide the first example of a tissue in which a biochemically detectable PI response is mediated by mGlu1, but not mGlu5, receptors. Hence, bovine retinal slices might be used as a model for the functional screening of mGlu1 receptor ligands. In addition, the mGlu1 receptor caters the potential as a drug target in the experimental treatment of degenerative disorders of the retina.

  相似文献   

15.
The coupling of the group I metabotropic glutamate receptors, mGlu1a and mGlu5a, to the extracellular signal-regulated protein kinase (ERK) pathway has been studied in Chinese hamster ovary cell-lines where receptor expression is under inducible control. Both mGlu receptors stimulated comparable, robust and agonist concentration-dependent ERK activations in the CHO cell-lines. The mGlu1a receptor-mediated ERK response was almost completely attenuated by pertussis toxin (PTx) pretreatment, whereas the mGlu5a-ERK response, and the phosphoinositide response to activation of either receptor, was PTx-insensitive. mGlu1a and mGlu5a receptor coupling to ERK occurred via mechanisms independent of phosphoinositide 3-kinase activity and intracellular and/or extracellular Ca2+ concentration. While acute treatment with a protein kinase C (PKC) inhibitor did not attenuate agonist-stimulated ERK activation, down-regulation of PKCs by phorbol ester treatment for 24 h did attenuate both mGlu1a and mGlu5a receptor-mediated responses. Further, inhibition of Src non-receptor tyrosine kinase activity by PP1 attenuated the ERK response generated by both receptor subtypes, but only mGlu1a receptor-ERK activation was attenuated by PDGF receptor tyrosine kinase inhibitor AG1296. These findings demonstrate that, although expressed in a common cell background, these closely related mGlu receptors utilize different G proteins to cause ERK activation and may recruit different tyrosine kinases to facilitate this response.  相似文献   

16.
Methamphetamine (METH) is a highly addictive psychostimulant with no therapeutics registered to assist addicts in discontinuing use. Glutamatergic dysfunction has been implicated in the development and maintenance of addiction. We sought to assess the involvement of the metabotropic glutamate 5 receptor (mGlu5) in behaviours relevant to METH addiction because this receptor has been implicated in the actions of other drugs of abuse, including alcohol, cocaine and opiates. mGlu5 knockout (KO) mice were tested in intravenous self-administration, conditioned place preference and locomotor sensitization. Self-administration of sucrose was used to assess the response of KO mice to a natural reward. Acquisition and maintenance of self-administration, as well as the motivation to self-administer METH was intact in mGlu5 KO mice. Importantly, mGlu5 KO mice required more extinction sessions to extinguish the operant response for METH, and exhibited an enhanced propensity to reinstate operant responding following exposure to drug-associated cues. This phenotype was not present when KO mice were tested in an equivalent paradigm assessing operant responding for sucrose. Development of conditioned place preference and locomotor sensitization were intact in KO mice; however, conditioned hyperactivity to the context previously paired with drug was elevated in KO mice. These data demonstrate a role for mGlu5 in the extinction and reinstatement of METH-seeking, and suggests a role for mGlu5 in regulating contextual salience.  相似文献   

17.
Glutamate, the primary excitatory neurotransmitter in the central nervous system (CNS), exerts neuromodulatory actions via the activation of metabotropic glutamate (mGlu) receptors. There are eight known mGlu receptor subtypes (mGlu1-8), which are widely expressed throughout the brain, and are divided into three groups (I–III), based on signalling pathways and pharmacological profiles. Group III mGlu receptors (mGlu4/6/7/8) are primarily, although not exclusively, localised on presynaptic terminals, where they act as both auto- and hetero-receptors, inhibiting the release of neurotransmitter. Until recently, our understanding of the role of individual group III mGlu receptor subtypes was hindered by a lack of subtype-selective pharmacological tools. Recent advances in the development of both orthosteric and allosteric group III-targeting compounds, however, have prompted detailed investigations into the possible functional role of these receptors within the CNS, and revealed their involvement in a number of pathological conditions, such as epilepsy, anxiety and Parkinson’s disease. The heterogeneous expression of group III mGlu receptor subtypes throughout the brain, as well as their distinct distribution at glutamatergic and GABAergic synapses, makes them ideal targets for therapeutic intervention. This review summarises the advances in subtype-selective pharmacology, and discusses the individual roles of group III mGlu receptors in physiology, and their potential involvement in disease.  相似文献   

18.
Small molecule mGluR1 enhancers, which are 9H-xanthene-9-carboxylic acid [1,2,4]oxadiazol-3-yl- and (2H-tetrazol-5-yl)-amides, have been previously reported. Fluorinated 9H-xanthene-9-carboxylic acid oxazol-2-yl-amides with improved pharmacokinetic properties have been designed and synthesized as useful pharmacological tools for the study of the physiological roles mediated by mGlu1 receptors. The synthesis and the structure–activity relationship of this class of positive allosteric modulators of mGlu1 receptors will be discussed in detail.  相似文献   

19.
Metabotropic glutamate receptors (mGluR) are present in cells of the nervous system, where they are activated by one of the main neurotransmitters, glutamate. They are also expressed in cells outside the nervous system. We identified and characterized two receptors belonging to group I mGluR, mGlu1R and mGlu5R, in human cell lines of lymphoid origin and in resting and activated lymphocytes from human peripheral blood. Both are highly expressed in the human Jurkat T cell line, whereas mGlu5R is expressed only in the human B cell line SKW6.4. In blood lymphocytes, mGlu5R is expressed constitutively, whereas mGlu1R is expressed only upon activation via the T cell receptor-CD3 complex. Group I receptors in the central nervous system are coupled to phospholipase C, whereas in blood lymphocytes, activation of mGlu5R does not trigger this signaling pathway, but instead activates adenylate cyclase. On the other hand, mGlu5R does not mediate ERK1/2 activation, whereas mGlu1R, which is coupled neither to phospholipase C nor to calcium channels and whose activation does not increase cAMP, activates the mitogen-activated protein kinase cascade. The differential expression of mGluR in resting and activated lymphocytes and the different signaling pathways that are triggered when mGlu1Rs or mGlu5Rs are activated point to a key role of glutamate in the regulation of T cell physiological function. The study of the signaling pathways (cAMP production and ERK1/2 phosphorylation) and the proliferative response obtained in the presence of glutamate analogs suggests that mGlu1R and mGlu5R have distinct functions. mGlu5R mediates the reported inhibition of cell proliferation evoked by glutamate, which is reverted by the activation of inducible mGlu1R. This is a novel non-inhibitory action mechanism for glutamate in lymphocyte activation. mGlu1R and mGlu5R thus mediate opposite glutamate effects in human lymphocytes.  相似文献   

20.
Group II metabotropic glutamate receptors (mGluRs) couple to the inhibitory G-protein Gi. The group II mGluRs include two subtypes, mGlu2 and mGlu3, and their pharmacological activation produces analgesic effects in inflammatory and neuropathic pain states. However, the specific contribution of each one of the two subtypes has not been clarified due to the lack of selective orthosteric ligands that can discriminate between mGlu2 and mGlu3 subtypes. In this study we used mGlu2 or mGlu3 knock-out mice to dissect the specific role for these two receptors in the endogenous control of inflammatory pain and their specific contribution to the analgesic activity of mixed mGlu2/3 receptor agonists. Our results showed that mGlu2-/- mice display a significantly greater pain response compared to their wild type littermates. Interestingly the increased pain sensitivity in mGlu2-/- mice occurred only in the second phase of the formalin test. No differences were observed in the first phase. In contrast, mGlu3-/- mice did not significantly differ from their wild type littermates in either phase of the formalin test. When systemically injected, a single administration of the mGlu2/3 agonist, LY379268 (3 mg/kg, ip), showed a significant reduction of both phases in wild-type mice and in mGlu3-/- but not in mGlu2-/- mice. However tolerance to the analgesic effect of LY379268 (3 mg/kg, ip) in mGlu3-/- mice developed following 5 consecutive days of injection. Taken together, these results demonstrate that: (i) mGlu2 receptors play a predominant role over mGlu3 receptors in the control of inflammatory pain in mice; (ii) the analgesic activity of mixed mGlu2/3 agonists is entirely mediated by the activation of the mGlu2 subtype and (iii) the development of tolerance to the analgesic effect of mGlu2/3 agonists develops despite the lack of mGlu3 receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号