首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent investigations of water balance in sea snakes demonstrated that amphibious sea kraits (Laticauda spp.) dehydrate in seawater and require fresh water to restore deficits in body water. Here, we report similar findings for Pelamis platurus, a viviparous, pelagic, entirely marine species of hydrophiine ("true") sea snake. We sampled snakes at Golfo de Papagayo, Guanacaste, Costa Rica and demonstrated they do not drink seawater but fresh water at variable deficits of body water incurred by dehydration. The threshold dehydration at which snakes first drink fresh water is -18.3 ± 1.1 % (mean ± SE) loss of body mass, which is roughly twice the magnitude of mass deficit at which sea kraits drink fresh water. Compared to sea kraits, Pelamis drink relatively larger volumes of water and make up a larger percentage of the dehydration deficit. Some dehydrated Pelamis also were shown to drink brackish water up to 50% seawater, but most drank at lower brackish values and 20% of the snakes tested did not drink at all. Like sea kraits, Pelamis dehydrate when kept in seawater in the laboratory. Moreover, some individuals drank fresh water immediately following capture, providing preliminary evidence that Pelamis dehydrate at sea. Thus, this widely distributed pelagic species remains subject to dehydration in marine environments where it retains a capacity to sense and to drink fresh water. In comparison with sea kraits, however, Pelamis represents a more advanced stage in the evolutionary transition to a fully marine life and appears to be less dependent on fresh water.  相似文献   

2.
Lee MS 《Biology letters》2005,1(2):227-230
A molecular phylogeny was used to refute the marine scenario for snake origins. Nuclear gene sequences suggested that snakes are not closely related to living varanid lizards, thus also apparently contradicting proposed relationships between snakes and marine mosasaurs (usually considered to be varanoids). However, mosasaurs share derived similarities with both snakes and living varanids. A reanalysis of the morphological data suggests that, if the relationships between living taxa are constrained to the proposed molecular tree, with fossil forms allowed to insert in their optimal positions within this framework, mosasaurs cluster with snakes rather than with varanids. Combined morphological and molecular analyses also still unite marine lizards with snakes. Thus, the molecular data do not refute the phylogenetic evidence for a marine origin of snakes.  相似文献   

3.
Effects of epibiosis on consumer–prey interactions   总被引:20,自引:0,他引:20  
Wahl  M.  Hay  M. E.  Enderlein  P. 《Hydrobiologia》1997,355(1-3):49-59
In many benthic communities predators play a crucialrole in the population dynamics of their prey. Surfacecharacteristics of the prey are important forrecognition and handling by the predator. Because theestablishment of an epibiotic assemblage on thesurface of a basibiont species creates a new interfacebetween the epibiotized organism and its environment,we hypothesised that epibiosis should have an impacton consumer–prey interactions. In separateinvestigations, we assessed how epibionts onmacroalgae affected the susceptibility of the latterto herbivory by the urchin Arbacia punctulataand how epibionts on the blue mussel Mytilusedulis affected its susceptibility to predation bythe shore crab Carcinus maenas.Some epibionts strongly affected consumer feedingbehavior. When epibionts were more attractive thantheir host, consumer pressure increased. Whenepibionts were less attractive than their host or whenthey were repellent, consumer pressure decreased. Insystems that are controlled from the top-down,epibiosis can strongly influence community dynamics.For the Carcinus/Mytilus system that westudied, the in situ distribution of epibiontson mussels reflected the epibiosis-determinedpreferences of the predator. Both direct and indirecteffects are involved in determining theseepibiont-prey–consumer interactions.  相似文献   

4.
Epibiosis or fouling on living organisms can have direct and indirect detrimental effects, in particular on photosynthetic organisms such as seaweeds. It thus seems reasonable to hypothesize that macroalgae have been selected for the presence or induction of antifouling (AF) defences. The red seaweed Cryptonemia seminervis is usually found in nature with an elevated cover of epibionts. To assess the effect of epibiosis on the susceptibility of this seaweed to herbivory and fouling, the abundance of fouling was evaluated and compared to herbivore consumption (by amphipods and sea urchins) of fouled (bryozoan and sponge) and non-fouled C. seminervis. Attachment of the mussel Perna perna to surfaces treated with extracts from seaweeds with and without epibionts was also assessed. Epibiosis corresponded to ca. 51% of the blade surface of C. seminervis, sometimes covering as much as 90% and up to 51% of the thallus weight, encompassing mainly the bryozoan Membranipora membranacea and an unidentified sponge. Algae colonized by M. membranacea were preferred compared to algae devoid of epibionts, a 'shared doom' effect, either by the amphipod Elasmopus brasiliensis or by the urchin Lytechinus variegatus (p < 0.01). Sponge epibiosis also increased consumption by both herbivores (p < 0.001), suggesting that epibionts may act as lures to herbivores, attracting consumers that otherwise would not feed significantly on the seaweed. Foods containing extracts from fouled C. seminervis were preferred by urchins over the alga devoid of epibionts. However, extracts from fouled alga inhibited mussel attachment when compared to epibiont-free alga. Differences might be a direct detrimental effect of the presence of epibionts. On the other hand, epibiosis may induce the production of AF defences in C. seminervis.  相似文献   

5.
Secondarily marine vertebrates are thought to live independently of fresh water. Here, we demonstrate a paradigm shift for the widely distributed pelagic sea snake, Hydrophis (Pelamis) platurus, which dehydrates at sea and spends a significant part of its life in a dehydrated state corresponding to seasonal drought. Snakes that are captured following prolonged periods without rainfall have lower body water content, lower body condition and increased tendencies to drink fresh water than do snakes that are captured following seasonal periods of high rainfall. These animals do not drink seawater and must rehydrate by drinking from a freshwater lens that forms on the ocean surface during heavy precipitation. The new data based on field studies indicate unequivocally that this marine vertebrate dehydrates at sea where individuals may live in a dehydrated state for possibly six to seven months at a time. This information provides new insights for understanding water requirements of sea snakes, reasons for recent declines and extinctions of sea snakes and more accurate prediction for how changing patterns of precipitation might affect these and other secondarily marine vertebrates living in tropical oceans.  相似文献   

6.
Epibiosis or fouling on living organisms can have direct and indirect detrimental effects, in particular on photosynthetic organisms such as seaweeds. It thus seems reasonable to hypothesize that macroalgae have been selected for the presence or induction of antifouling (AF) defences. The red seaweed Cryptonemia seminervis is usually found in nature with an elevated cover of epibionts. To assess the effect of epibiosis on the susceptibility of this seaweed to herbivory and fouling, the abundance of fouling was evaluated and compared to herbivore consumption (by amphipods and sea urchins) of fouled (bryozoan and sponge) and non-fouled C. seminervis. Attachment of the mussel Perna perna to surfaces treated with extracts from seaweeds with and without epibionts was also assessed. Epibiosis corresponded to ca. 51% of the blade surface of C. seminervis, sometimes covering as much as 90% and up to 51% of the thallus weight, encompassing mainly the bryozoan Membranipora membranacea and an unidentified sponge. Algae colonized by M. membranacea were preferred compared to algae devoid of epibionts, a ‘shared doom’ effect, either by the amphipod Elasmopus brasiliensis or by the urchin Lytechinus variegatus (p < 0.01). Sponge epibiosis also increased consumption by both herbivores (p < 0.001), suggesting that epibionts may act as lures to herbivores, attracting consumers that otherwise would not feed significantly on the seaweed. Foods containing extracts from fouled C. seminervis were preferred by urchins over the alga devoid of epibionts. However, extracts from fouled alga inhibited mussel attachment when compared to epibiont-free alga. Differences might be a direct detrimental effect of the presence of epibionts. On the other hand, epibiosis may induce the production of AF defences in C. seminervis.  相似文献   

7.
The shrimp Rimicaris exoculata from hydrothermal vents on the Mid-Atlantic Ridge (MAR) harbours bacterial epibionts on specialized appendages and the inner surfaces of its gill chamber. Using comparative 16S rRNA sequence analysis and fluorescence in situ hybridization (FISH), we examined the R. exoculata epibiosis from four vents sites along the known distribution range of the shrimp on the MAR. Our results show that R. exoculata lives in symbiosis with two types of filamentous epibionts. One belongs to the Epsilonproteobacteria, and was previously identified as the dominant symbiont of R. exoculata. The second is a novel gammaproteobacterial symbiont that belongs to a clade consisting exclusively of sequences from epibiotic bacteria of hydrothermal vent animals, with the filamentous sulfur oxidizer Leucothrix mucor as the closest free-living relative. Both the epsilon- and the gammaproteobacterial symbionts dominated the R. exoculata epibiosis at all four MAR vent sites despite striking differences between vent fluid chemistry and distances between sites of up to 8500 km, indicating that the symbiosis is highly stable and specific. Phylogenetic analyses of two mitochondrial host genes showed little to no differences between hosts from the four vent sites. In contrast, there was significant spatial structuring of both the gamma- and the epsilonproteobacterial symbiont populations based on their 16S rRNA gene sequences that was correlated with geographic distance along the MAR. We hypothesize that biogeography and host-symbiont selectivity play a role in structuring the epibiosis of R. exoculata.  相似文献   

8.
Predator-prey interactions are key factors in the evolution of defensive tactics. In snakes, shy organisms from which direct evidence of predator-prey interactions is difficult to obtain, injuries are potential indicators of both the nature and frequency of interactions. We studied the incidence of tail breakage and body scarring in the ladder snake, Rhinechis scalaris, an actively foraging Mediterranean snake, and tested several hypotheses that link body injuries and snake life-history traits, mainly under sexual and ontogenetic aspects. Evidence is presented supporting an ontogenetic shift in the frequency of tail breakage, with the incidence of tail loss increasing as a logistic function of snake size. We relate this finding to the adaptive significance of ontogenetic shifts in dorsal pattern and the reaction of snakes to approaching predators; small individuals are more likely to remain immobile than are medium to large individuals, the former aided by a concealing dorsal pattern with transverse lines, and the latter by a striped pattern. This species exhibited sex differences in body scarring but not in tail breakage, nor did we encounter evidence to suggest that snakes experience multiple tail breaks over time, thus failing to support the sexual difference and multiple tail breakage hypotheses. Moreover, we failed to find a lower frequency of body scarring than tail breakage; hence, our results do not afford evidence that frequency of tail breakage represents an inefficiency of predators in catching or dispatching ophidian prey.  相似文献   

9.
We report the first recorded capture of a blue-banded sea snake(Laticauda laticaudata Linnaeus, 1758, Jobeuntti Kun Badabam in Korean) in South Korea based on one male specimen collected from Marado-ri, Seogwiposi, Jeju-do on 20 October 2016. The morphological features of the lateral nostrils, the much wider ventrals than adjacent dorsals, the horizontally undivided rostral, the two prefrontals, and the uniform black bands on the body indicate that the specimen is L. laticaudata. An analysis of the partial mitochondrial cytochrome b gene sequence indicated that the specimen fits well into the known L. laticaudata phylogenetic group, which confirms that the sea krait is L. laticaudata. Including this report, five species of sea snakes(L. laticaudata, L. semifasciata, Hydrophis platurus, H. cyanocinctus, and H. melanocephalus) have now been reported in Korean waters.  相似文献   

10.
Najash rionegrina Apesteguía & Zaher, 2006 , a terrestrial fossil snake from the Upper Cretaceous of Argentina, represents the first known snake with a sacrum associated with robust, well‐developed hind limbs. Najash rionegrina documents an important gap in the evolutionary development towards limblessness, because its phylogenetic affinities suggest that it is the sister group of all modern snakes, including the limbed Tethyan snakes Pachyrhachis, Haasiophis, and Eupodophis. The latter three limbed marine fossil snakes are shown to be more derived morphologically, because they lack a sacrum, but have articulated lymphapophyses, and their appendicular skeleton is enclosed by the rib cage, as in modern snakes.  相似文献   

11.
We describe and interpret the functional morphology of skin of the Yellow-bellied sea snake, Hydrophis platurus. This is the only pelagic sea snake, and its integument differs from what is known for other species of snakes. In gross appearance, the scales of H. platurus consist of non-overlapping, polygonal knobs with flattened outer surfaces bearing presumptive filamentous sensillae. The deep recesses between scales (‘hinge’) entrap and wick water over the body surface, with mean retention of 5.1 g/cm of skin surface, similar to that determined previously for the roughened, spiny skin of marine file snakes, Acrochordus granulatus. This feature possibly serves to maintain the skin wet when the dorsal body protrudes above water while floating on calm oceanic slicks where they forage. In contrast with other snakes, including three species of amphibious, semi-marine sea kraits (Laticauda spp.), the outer corneous β-protein layer consists of a syncytium that is thinner than seen in most other species. The subjacent α-layer is also thin, and lipid droplets and lamellar bodies are seen among the immature, cornifying α-cells. A characteristic mesos layer, comprising the water permeability barrier, is either absent or very thin. These features are possibly related to (1) permeability requirements for cutaneous gas exchange, (2) reduced gradient for water efflux compared with terrestrial environments, (3) less need for physical protection in water compared with terrestrial ground environments, and (4) increased frequency of ecdysis thought to be an anti-fouling mechanism. The lipogenic features of the α-layer possibly compensate for the reduced or absent mesos layer, or produce layers of cells that comprise what functionally might be termed a mesos layer, but where the organization of barrier lipids nonetheless appears less robust than what is characteristically seen in squamates.  相似文献   

12.
In this study, we describe for the first time the composition of epibiotic protozoan communities on juvenile southern king crabs Lithodes santolla. Basibionts were collected in subantarctic bays near Santa Ana Point (Magellan Strait, Chile). Seven epibiotic protozoan ciliates were found: Ephelota gemmipara, Ephelota gigantea, Podophrya fixa, Acineta tuberosa, Zoothamnium duplicatum, Chilodochona quennerstedti and Gymnodinioides sp. The mean number of epibionts per crab was 99 (maximum 897). Both Ephelota species were the most abundant and most widely distributed epibionts on the crab examined. The lengths of basibionts were correlated with the number of epibionts, indicating a relationship between the age of the crab and the state of epibiosis. Epibionts differed in their distribution patterns along the anteroposterior axis of the crab. Less abundant species tended to occupy sites that are not colonized by the predominant Ephelota species. Maxillipeds and pereiopods were most densely colonized by epibionts. The behaviours of epibionts and basibionts related to epibiosis are discussed. The recent studies about invasive lithodids in Antarctic areas enhance the interest for the epibiotic communities colonizing these crustaceans, which can illustrate changes in biodiversity and state of these environments.  相似文献   

13.
The yellow-bellied sea snake, Pelamis platurus (Elapidae, Hydrophiinae), has the largest distribution of any snake species, and patterns related to its distribution and regional color variation suggest there is population structuring in this species. Here, we use mitochondrial (ND4, Cyt-b) and nuclear (RAG-1) DNA to (1) test whether genetic variation is associated with local variation in color pattern, and (2) assess whether large-scale patterns of genetic variation are correlated with geographic distribution across the Pacific Ocean. We found low levels of genetic variation and shallow population structure that are correlated with local variation in color pattern and with geographic distribution. The low levels of genetic divergence indicate a relatively high rate of gene flow throughout the Pacific region and/or a recent expansion of range, both of which could be attributable to the passive drifting of these snakes on oceanic surface currents. The mtDNA data conform closely to a model of past exponential population growth, and this may have been associated with the species' large eastward and westward expansion of range. The pattern of low nucleotide and high haplotype diversity suggests that this population growth occurred in the relatively recent past. Data from drifting buoys can potentially act as informative models for predicting patterns of drifting in Pelamis and for generating additional testable hypotheses relating to its population structure and biogeography. Future studies should employ nuclear microsatellite markers to investigate population structure in this species at a finer scale. The exploitation of oceanic currents as a novel and highly efficient dispersal mechanism has likely facilitated gene flow throughout the Pacific Ocean in this uniquely pelagic species of sea snake, resulting in a distribution spanning over half of the earth's circumference.  相似文献   

14.
Macroalgae have to cope with multiple natural enemies, such as herbivores and epibionts. As these are harmful for the host, the host is expected to show resistance to them. Evolution of resistance is complicated by the interactions among the enemies and the genetic correlations among resistances to different enemies. Here, we explored genetic variation in resistance to epibiosis and herbivory in the brown alga Fucus vesiculosus, both under conditions where the enemies coexisted and where they were isolated. F. vesiculosus showed substantial genetic variation in the resistance to both epibiosis and grazing. Grazing pressure on the alga was generally lower in the presence than in the absence of epibiota. Furthermore, epibiosis modified the susceptibility of different algal genotypes to grazing. Resistances to epibiosis and grazing were independent when measured separately for both enemies but positively correlated when both these enemies coexisted. Thus, when the enemies coexisted, the fate of genotypes with respect to these enemies was intertwined. Genotypic correlation between phlorotannins, brown-algal phenolic secondary metabolites, and the amount of epibiota was negative, indicating that these compounds contribute to resistance to epibiosis. In addition, phlorotannins correlated also with the resistance to grazing, but this correlation disappeared when grazing occurred in the absence of epibiota. This indicates that the patterns of selection for the type of the resistance as well as for the resistance traits vary with the occurrence patterns of the enemies.  相似文献   

15.
The extent to which populations are connected by dispersal influences all aspects of their biology and informs the spatial scale of optimal conservation strategies. Obtaining direct estimates of dispersal is challenging, particularly in marine systems, with studies typically relying on indirect approaches to evaluate connectivity. To overcome this challenge, we combine information from an eight-year mark-recapture study with high-resolution genetic data to demonstrate extremely low dispersal and restricted gene flow at small spatial scales for a large, potentially mobile marine vertebrate, the turtleheaded sea snake (Emydocephalus annulatus). Our mark-recapture study indicated that adjacent bays in New Caledonia (<1.15 km apart) contain virtually separate sea snake populations. Sea snakes could easily swim between bays but rarely do so. Of 817 recaptures of marked snakes, only two snakes had moved between bays. We genotyped 136 snakes for 11 polymorphic microsatellite loci and found statistically significant genetic divergence between the two bays (F(ST)= 0.008, P < 0.01). Bayesian clustering analyses detected low mixed ancestry within bays and genetic relatedness coefficients were higher, on average, within than between bays. Our results indicate that turtleheaded sea snakes rarely venture far from home, which has strong implications for their ecology, evolution, and conservation.  相似文献   

16.
The Cenozoic marked a period of dramatic ecological opportunity in Earth history due to the extinction of non-avian dinosaurs as well as to long-term physiographic changes that created new biogeographic theaters and new habitats. Snakes underwent massive ecological diversification during this period, repeatedly evolving novel dietary adaptations and prey preferences. The evolutionary tempo and mode of these trophic ecological changes remain virtually unknown, especially compared with co-radiating lineages of birds and mammals that are simultaneously predators and prey of snakes. Here, we assemble a dataset on snake diets (34,060 observations on the diets of 882 species) to investigate the history and dynamics of the multidimensional trophic niche during the global radiation of snakes. Our results show that per-lineage dietary niche breadths remained remarkably constant even as snakes diversified to occupy disparate outposts of dietary ecospace. Rapid increases in dietary diversity and complexity occurred in the early Cenozoic, and the overall rate of ecospace expansion has slowed through time, suggesting a potential response to ecological opportunity in the wake of the end-Cretaceous mass extinction. Explosive bursts of trophic innovation followed colonization of the Nearctic and Neotropical realms by a group of snakes that today comprises a majority of living snake diversity. Our results indicate that repeated transformational shifts in dietary ecology are important drivers of adaptive radiation in snakes and provide a framework for analyzing and visualizing the evolution of complex ecological phenotypes on phylogenetic trees.

The Cenozoic marked a period of dramatic ecological opportunity in Earth history due to the extinction of non-avian dinosaurs and long-term physiographic changes. This phylogenetic natural history study offers new insights into the evolution of snake ecological diversity after the end-Cretaceous mass extinction, as they took advantage of these new opportunities.  相似文献   

17.
Relationships between the major lineages of snakes are assessed based on a phylogenetic analysis of the most extensive phenotypic data set to date (212 osteological, 48 soft anatomical, and three ecological characters). The marine, limbed Cretaceous snakes Pachyrhachis and Haasiophis emerge as the most primitive snakes: characters proposed to unite them with advanced snakes (macrostomatans) are based on unlikely interpretations of contentious elements or are highly variable within snakes. Other basal snakes include madtsoiids and Dinilysia--both large, presumably non-burrowing forms. The inferred relationships within extant snakes are broadly similar to currently accepted views, with scolecophidians (blindsnakes) being the most basal living forms, followed by anilioids (pipesnakes), booids and booid-like groups, acrochordids (filesnakes), and finally colubroids. Important new conclusions include strong support for the monophyly of large constricting snakes (erycines, boines. pythonines), and moderate support for the non-monophyly of the trophidophiids' (dwarf boas). These phylogenetic results are obtained whether varanoid lizards, or amphisbaenians and dibamids, are assumed to be the nearest relatives (outgroups) of snakes, and whether multistate characters are treated as ordered or unordered. Identification of large marine forms, and large surface-active terrestrial forms, as the most primitive snakes contradicts with the widespread view that snakes arose via minute, burrowing ancestors. Furthermore, these basal fossil snakes all have long flexible jaw elements adapted for ingesting large prey ('macrostomy'), suggesting that large gape was primitive for snakes and secondarily reduced in the most basal living foms (scolecophidians and anilioids) in connection with burrowing. This challenges the widespread view that snake evolution has involved progressive, directional elaboration of the jaw apparatus to feed on larger prey.  相似文献   

18.
广东省养蛇业的现状与发展策略的研究   总被引:1,自引:0,他引:1  
常弘  卢开和 《蛇志》2004,16(4):5-9
目的探讨广东省蛇类养殖业的现状与发展的策略方法在全省范围内按各市县养殖场逐个进行实地考查,调查蛇类养殖场的分布、规模、面积、养殖技术和投资金额以及蛇的种类、数量、来源和贸易情况,分析蛇类养殖存在的问题和经营利用的可能性。并以表格的形式搜集各养蛇场的基础资料、近年来的养殖情况及意见和建议。结果3个养殖最成功的蛇场饲养的主要蛇种类有眼镜蛇、眼镜王蛇、滑鼠蛇、乌梢蛇,目前已基本上解决了蛇类养殖的难题,掌握了蛇类冬眠和管理等关键技术,蛇类存栏量都达到10万条以上,存栏的个体都在第三代以上;养殖成本明显下降,经济效益可观。结论眼镜蛇、眼镜王蛇、滑鼠蛇、乌梢蛇是人工养殖成功的种类,提出发展我国蛇类产业的具体措施和策略,为蛇类养殖产业化、规模化和集约化提出合理化的建议。  相似文献   

19.
Derived large-mouthed snakes (macrostomatans) possess numerous specializations in their skull and lower jaws that allow them to consume large vertebrate prey. In contrast, basal snakes lack these adaptations and feed primarily on small prey items. The sequence of osteological and behavioral modifications involved in the evolution of the macrostomatan condition has remained an open question because of disagreement about the origin and interrelationships of snakes, the paucity of well-preserved early snake fossils on many continental landmasses, and the lack of information about the feeding ecology of early snakes. We report on a partial skeleton of a new 3.5-m-long snake, Sanajeh indicus gen. et sp. nov., recovered from Upper Cretaceous rocks of western India. S. indicus was fossilized in association with a sauropod dinosaur egg clutch, coiled around an egg and adjacent to the remains of a ca. 0.5-m-long hatchling. Multiple snake-egg associations at the site strongly suggest that S. indicus frequented nesting grounds and preyed on hatchling sauropods. We interpret this pattern as “ethofossil” preservation of feeding behavior. S. indicus lacks specializations of modern egg-eaters and of macrostomatans, and skull and vertebral synapomorphies place it in an intermediate position in snake phylogeny. Sanajeh and its large-bodied madtsoiid sister taxa Yurlunggur camfieldensis and Wonambi naracoortensis from the Neogene of Australia show specializations for intraoral prey transport but lack the adaptations for wide gape that characterize living macrostomatan snakes. The Dholi Dungri fossils are the second definitive association between sauropod eggs and embryonic or hatchling remains. New fossils from western India provide direct evidence of feeding ecology in a Mesozoic snake and demonstrate predation risks for hatchling sauropod dinosaurs. Our results suggest that large body size and jaw mobility afforded some non-macrostomatan snakes a greater diversity of prey items than previously suspected on the basis of extant basal snakes.  相似文献   

20.
The sense of smell relies on the diversity of olfactory receptor (OR) repertoires in vertebrates. It has been hypothesized that different types of ORs are required in terrestrial and marine environments. Here we show that viviparous sea snakes, which do not rely on a terrestrial environment, have significantly lost ORs compared with their terrestrial relatives, supporting the hypothesis. On the other hand, oviparous sea snakes, which rely on a terrestrial environment for laying eggs, still maintain their ORs, reflecting the importance of the terrestrial environment for them. Furthermore, we found one Colubroidea snake (including sea snakes and their terrestrial relatives)‐specific OR subfamily which had diverged widely during snake evolution after the blind snake–Colubroidea snake split. Interestingly, no pseudogenes are included in this subfamily in sea snakes, and this subfamily seems to have been expanding rapidly even in an underwater environment. These findings suggest that the Colubroidea‐specific ORs detect nonvolatile odorants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号