首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Genomic imprinting is widely conserved amongst placental mammals. Imprinted expression of IGF2R, however, differs between mice and humans. In mice, Igf2r imprinted expression is seen in all fetal and adult tissues. In humans, adult tissues lack IGF2R imprinted expression, but it is found in fetal tissues and Wilms' tumors where it is polymorphic and only seen in a small proportion of tested samples. Mouse Igf2r imprinted expression is controlled by the Air (Airn) ncRNA whose promoter lies in an intronic maternally-methylated CpG island. The human IGF2R gene carries a homologous intronic maternally-methylated CpG island of unknown function. Here, we use transfection and transgenic studies to show that the human IGF2R intronic CpG island is a ncRNA promoter. We also identify the same ncRNA at the endogenous human locus in 16–40% of Wilms' tumors. Thus, the human IGF2R gene shows evolutionary conservation of key features that control imprinted expression in the mouse.  相似文献   

3.
The insulin-like growth factor type 1 receptor (IGF 1R) mediates the acute metabolic effects of IGF I as well as IGF I-stimulated cell proliferation and protection from apoptosis. IGF binding proteins (IGFBPs) can modulate these responses. We, therefore, investigated whether intrinsic IGFBPs interfere with IGF I-induced regulation of IGF 1R expression and with the biological response to IGF I in two human tumor cell lines, the non-small-cell lung cancer cell line A549 and the osteoblastic osteosarcoma cell line Saos-2/B-10. We compared the growth rates, IGFBP production, IGF I binding characteristics, IGF 1R protein and mRNA levels, and the acute IGF I response (stimulation of glycogen synthesis) after pretreatment of the cells in serum-free medium with or without added IGF I or medium supplemented with 5% fetal calf serum (FCS). In contrast to A549 cells, which produce IGF I and significant amounts of IGFBPs, survival and proliferation of Saos-2/B-10 cells, which do not produce IGF I or significant amounts of IGFBPs, depended on the addition of exogenous IGF I. IGF I increased the concentration of IGFBP-2 and -3 and decreased the concentration of IGFBP-4 in the medium of A549 cells. As compared to FCS, IGF I pretreatment in both cell lines decreased the number of specific IGF I binding sites, down-regulated total and membrane IGF 1R protein, and largely reduced or abolished the acute IGF I response without affecting IGF 1R mRNA levels. The data suggest that the IGF 1R protein of the two cell lines is translationally and/or posttranslationally down-regulated by its ligand in the presence and in the absence of locally produced IGFBPs and that the cell lines have retained this negative feedback to counteract IGF I stimulation.  相似文献   

4.
BackgroundInsulin-like growth factor 2 (IGF2), an essential component of the stem cell niche, has been reported to modulate the proliferation and differentiation of stem cells. Previously, a continuous expression of IGF2 in tissues was reported to maintain the self-renewal ability of several types of stem cells. Therefore, in this study, we investigated the expression of IGF2 in adipose tissues and explored the effects of IGF2 on adipose-derived stromal cells (ADSCs) in vitro.MethodsThe expression pattern of IGF2 in rat adipose tissues was determined by gene expression and protein analyses. The effect of IGF2 on proliferation, stemness-related marker expression and adipogenic and osteogenic differentiation was systematically investigated. Furthermore, antagonists of IGF2-specific receptors—namely, BMS-754807 and picropodophyllin—were added to explore the underlying signal transduction mechanisms.ResultsIGF2 levels displayed a tendency to decrease with age in rat adipose tissues. After the addition of IGF2, isolated ADSCs displayed higher proliferation and expression of the stemness-related markers NANOG, OCT4 and SOX2 and greater differentiation potential to adipocytes and osteoblasts. Additionally, both type 1 insulin-like growth factor receptor (IGF-1R) and insulin receptor (IR) participated in the IGF2-mediated promotion of stemness in ADSCs.ConclusionsOur findings indicate that IGF2 could enhance the stemness of rat ADSCs via IGF-1R and IR and may highlight an effective method for the expansion of ADSCs for clinical application.  相似文献   

5.
6.
7.
Signalling through the IGF1R [type 1 IGF (insulin-like growth factor) receptor] and canonical Wnt signalling are two signalling pathways that play critical roles in regulating neural cell generation and growth. To determine whether the signalling through the IGF1R can interact with the canonical Wnt signalling pathway in neural cells in vivo, we studied mutant mice with altered IGF signalling. We found that in mice with blunted IGF1R expression specifically in nestin-expressing neural cells (IGF1RNestin−KO mice) the abundance of neural β-catenin was significantly reduced. Blunting IGF1R expression also markedly decreased: (i) the activity of a LacZ (β-galactosidase) reporter transgene that responds to Wnt nuclear signalling (LacZTCF reporter transgene) and (ii) the number of proliferating neural precursors. In contrast, overexpressing IGF-I (insulin-like growth factor I) in brain markedly increased the activity of the LacZTCF reporter transgene. Consistently, IGF-I treatment also markedly increased the activity of the LacZTCF reporter transgene in embryonic neuron cultures that are derived from LacZTCF Tg (transgenic) mice. Importantly, increasing the abundance of β-catenin in IGF1RNestin−KO embryonic brains by suppressing the activity of GSK3β (glycogen synthase kinase-3β) significantly alleviated the phenotypic changes induced by IGF1R deficiency. These phenotypic changes includes: (i) retarded brain growth, (ii) reduced precursor proliferation and (iii) decreased neuronal number. Our current data, consistent with our previous study of cultured oligodendrocytes, strongly support the concept that IGF signalling interacts with canonical Wnt signalling in the developing brain to promote neural proliferation. The interaction of IGF and canonical Wnt signalling plays an important role in normal brain development by promoting neural precursor proliferation.  相似文献   

8.
The insulin-like growth factors 2 (IGF2) is a peptide hormone that binds to the insulin-like growth factor 1 receptor (IGF1R) and is abundantly stored in bone. IGF1R is deeply involved in the pathogenesis of many cancers that growth within bone and is also involved in osteoclast biology. Among different cell lines representative of osteolytic tumors, we found a very high expression of IGF2 in SH-SY5Y cells derived from neuroblastoma (NB). We previously showed that NB cells induce an osteolytic process through the Osteoprotegerin/RANKL/RANK and the canonical Wnt pathway system. Here, we hypothesized that NB promotes osteoclastogenesis also via IGF2. First, we demonstrated the presence of IGF1R on the osteoclast basolateral membrane, and we observed a cyclic IGF1R activation along with the differentiation process, also when induced by SH-SY5Y. Moreover, we found that IGF2 mRNA expression in SH-SY5Y cells was further increased when co-cultured with mesenchymal stromal cells, suggesting that IGF2 is important for NB interaction with the bone microenvironment. Finally, the treatment of SH-SY5Y cells with an anti-IGF2 siRNA or the addition of anti-IGF1R molecules impaired NB-induced osteoclastogenesis, even though the chemoattraction of monocytes by NB cells was unaffected. Our findings suggest that in IGF2-producing osteolytic tumors IGF1R is a good candidate for targeted therapies in combination with conventional drugs.  相似文献   

9.
Muscle growth is a complex phenomenon regulated by many factors, whereby net growth results from the combined action of synthesis and turnover. In pigs, two quantitative trait nucleotides (QTN) are known to have an important influence on muscle growth and fat deposition: one QTN is located in the ryanodine receptor 1 (RYR1) gene (RYR1 g.1843C>T) and the other, a paternally expressed QTN, is in the insulin-like growth factor 2 (IGF2) gene (IGF2 intron3-g.3072G>A). The mutation in IGF2 abrogates in vitro interaction with a repressor, which leads to a threefold increase of IGF2 expression in post-natal muscle. The family of the calpains, a family of Ca(2+)-sensitive muscle endopeptidases, and their specific inhibitor calpastatin play an important role in post-natal protein degradation, also influencing muscle and carcass traits. This study investigated the possible interactions between the genotypes of the RYR1 and IGF2 QTN on IGF2 expression. Samples were taken from several muscles and from pigs at several ages, and messenger RNA expression levels were measured using a real-time quantification assay. IGF2 expression in m. longissimus dorsi of animals with mutations in both IGF2 and RYR1 was significantly lower than in animals that inherited the IGF2 mutation but were homozygous wildtype for RYR1.  相似文献   

10.
环状RNA(circular RNA, circRNA)作为竞争性内源RNA(competitive endogenous RNA, ceRNA)在细胞分化调控中发挥着重要作用。本研究旨在对猪环状RNA IGF1R(circular RNA insulin-like growth factor 1 receptor, circIGF1R)进行鉴定及分析,探明其表达规律,构建猪circIGF1R相关的ceRNA调控网络,并探究其异位表达对小鼠间充质干细胞(C3H10T1/2)成脂分化的调控作用。通过正反向引物PCR、Sanger测序、RNase R酶消化检测和qRT-PCR验证circIGF1R是胰岛素样生长因子1受体(insulin-like growth factor 1 receptor, IGF1R)第二外显子形成的circRNA,它在猪各组织中均有表达,且其表达量在脂肪组织中随日龄增加呈上升趋势;使用miRDB、TargetScan和miRWalk在线软件预测circIGF1R靶基因,运用RNAhybrid软件进行结合位点预测,使用DAVID生物信息功能分析软件对候选靶基因进行GO和KEGG富集分析,运用Cytoscape软件构建ceRNA网络,基于基因表达相关性和预测的靶标关系,绘制了GO和KEGG富集分析及构建了ceRNA网络;双荧光素酶报告基因分析证明circIGF1R及FABP4可与ssc (Sus scrofa chromosome) -miR-133a-5p结合;成功构建circIGF1R过表达载体,在间充质干细胞C3H10T1/2中异位表达,过表达circIGF1R后关键成脂调控因子CEBPα、CEBPβ、FABP4和PPARγ极显著升高(P<0.01),脂滴数量显著增加。本研究结果证明,circIGF1R在猪脂肪组织中存在,并且可能通过ceRNA机制正调控C3H10T1/2细胞成脂分化,为进一步研究circIGF1R调控猪前体肌内脂肪细胞成脂分化奠定理论基础。  相似文献   

11.
Vu TH  Li T  Nguyen D  Nguyen BT  Yao XM  Hu JF  Hoffman AR 《Genomics》2000,64(2):132-143
  相似文献   

12.
13.
Mechanical loading of the skeleton, as achieved during daily movement and exercise, preserves bone mass and stimulates bone formation, whereas skeletal unloading from prolonged immobilization leads to bone loss. A functional interplay between the insulin-like growth factor 1 receptor (IGF1R), a major player in skeletal development, and integrins, mechanosensors, is thought to regulate the anabolic response of osteogenic cells to mechanical load. The mechanistic basis for this cross-talk is unclear. Here we report that integrin signaling regulates activation of IGF1R and downstream targets in response to both IGF1 and a mechanical stimulus. In addition, integrins potentiate responsiveness of IGF1R to IGF1 and mechanical forces. We demonstrate that integrin-associated kinases, Rous sarcoma oncogene (SRC) and focal adhesion kinase (FAK), display distinct actions on IGF1 signaling; FAK regulates IGF1R activation and its downstream effectors, AKT and ERK, whereas SRC controls signaling downstream of IGF1R. These findings linked to our observation that IGF1 assembles the formation of a heterocomplex between IGF1R and integrin β3 subunit indicate that the regulation of IGF1 signaling by integrins proceeds by direct receptor-receptor interaction as a possible means to translate biomechanical forces into osteoanabolic signals.  相似文献   

14.
15.
Type 1 insulin-like growth factor receptor (IGF1R) is a membrane-spanning glycoprotein of the insulin receptor family that has been implicated in a variety of cancers. The key questions related to molecular mechanisms governing ligand recognition by IGF1R remain unanswered, partly due to the lack of testable structural models of apo or ligand-bound receptor complexes. Using a homology model of the IGF1R ectodomain IGF1RΔβ, we present the first experimentally consistent all-atom structural models of IGF1/IGF1RΔβ and IGF2/IGF1RΔβ complexes. Our explicit-solvent molecular dynamics (MD) simulation of apo-IGF1RΔβ shows that it displays asymmetric flexibility mechanisms that result in one of two binding pockets accessible to growth factors IGF1 and IGF2, as demonstrated via an MD-assisted Monte Carlo docking procedure. Our MD-generated ensemble of structures of apo and IGF1-bound IGF1RΔβ agrees reasonably well with published small-angle X-ray scattering data. We observe simultaneous contacts of each growth factor with sites 1 and 2 of IGF1R, suggesting cross-linking of receptor subunits. Our models provide direct evidence in favor of suggested electrostatic complementarity between the C-domain (IGF1) and the cysteine-rich domain (IGF1R). Our IGF1/IGF1RΔβ model provides structural bases for the observation that a single IGF1 molecule binds to IGF1RΔβ at low concentrations in small-angle X-ray scattering studies. We also suggest new possible structural bases for differences in the affinities of insulin, IGF1, and IGF2 for their noncognate receptors.  相似文献   

16.
Bos taurus is a good model for embryo biotechnologies such as nuclear transfer. However, animals produced from these technologies often suffer from large calf syndrome, suggesting fetal growth dysregulation. The imprinted fetal mitogen IGF2 is clustered with H19 and the two genes are co-regulated in humans and mice. Although the allelic expression pattern of IGF2/H19 has been elucidated in agricultural species such as sheep and cattle, the underlying mechanism of their imprinting regulation has not been characterized. Using bisulfite sequencing the methylation status of 44 CpG sites in a CpG rich intergenic region of IGF2/H19 in the liver, brain, lung, kidney and placenta of control calves (produced by conventional breeding). One fragment containing 16 CpG sites was differentially methylated region (DMR), and thus may be important in regulating IGF2/H19 allelic expression.The DMR in tissues from cloned term calves that either died immediately after birth or were sacrificed due to complications shortly thereafter were examined. There were significant variations in the methylation of this DMR in some of the cloned animals compared to the controls. Most of the observed variations tended toward hypomethylation. The hypomethylation of this DMR in the liver and placenta of clones correlates with the previous observation of abnormal, biallelic expression of the H19 allele in those clones [Zhang, S., Kubota, C., Yang, L., Zhang, Y., Page, R., O’Neill, M., Yang, X., Tian, X.C., 2004. Genomic imprinting of H19 in naturally reproduced and cloned cattle. Biol. Reprod.] but not with allelic expression of IGF2 (as determined in this study). These data suggest that this DMR is involved in H19 allelic expression, but that other mechanisms probably regulate the expression of IGF2/H19. Contrary to global hypermethylation observed in cloned embryos, putative imprinting control regions can display hypomethylation trends in specific organs of cloned calves.  相似文献   

17.
Insulin-like growth factor 2 receptor (IGF2R) is responsible for degradation of the muscle development initiator, IGF2, and thus it can be used as a marker for selection strategies in the farm animals. The aim of this study was to search for polymorphisms in three coding loci of IGF2R, and to analyze their effect on the growth traits and on the expression levels of IGF2R and IGF2 genes in the gluteus medius muscle of Egyptian buffaloes. A novel A266C SNP was detected in the coding sequences of the third IGF2R locus (at nucleotide number 51 of exon 23) among Egyptian water buffaloes. This SNP was non-synonymous mutation and led to replacement of Y (tyrosine) amino acid (aa) by D (aspartic acid) aa. Three different single-strand conformation polymorphism patterns were observed in the third IGF2R locus: AA, AC, and CC with frequencies of 0.555, 0.195, and 0.250, respectively. Statistical analysis showed that the homozygous AA genotype significantly associated with the average daily gain than AC and CC genotypes from birth to 9 mo of age. Expression analysis showed that the A266C SNP was correlated with IGF2, but not with IGF2R, mRNA levels in the gluteus medius muscle of Egyptian buffaloes. The highest IGF2 mRNA level was estimated in the muscle of animals with the AA homozygous genotype as compared to the AC heterozygotes and CC homozygotes. We conclude that A266C SNP at nucleotide number 51 of exon 23 of the IGF2R gene is associated with the ADG during the early stages of life (from birth to 9 mo of age) and this effect is accompanied by, and may be caused by, increased expression levels of the IGF2 gene.  相似文献   

18.
19.
20.
Imprinted genes are known to be crucial for placental development and fetal growth in mammals, but no primary epigenetic abnormality in placenta has been documented to compromise human fetal growth. Imprinted genes demonstrate parent-of-origin-specific allelic expression that is epigenetically regulated i.e. extrinsic to the primary DNA sequence. To undertake an epigenetic analysis of poor fetal growth in placentae and cord blood tissues, we first established the tissue-specific patterns of methylation and imprinted gene expression for two imprinting clusters (KvDMR and H19 DMR) on chromosome 11p15 in placentae and neonatal blood for 20 control cases and 24 Small for Gestational Age (SGA) cases. We confirmed that, in normal human placenta, the H19 promoter is unmethylated. In contrast, most other human tissues show paternal methylation. In addition, we showed that the IGF2 DMR2, also paternally methylated in most human tissues, exhibits hypomethylation in placentae. However, in neonatal blood DNA, these two regions maintain the differential methylation status seen in most other tissues. Significantly, we have been able to demonstrate that placenta does maintain differential methylation at the imprinting control regions H19 DMR and KvDMR. Of note, in one SGA placenta, we found a methylation alteration at the H19 DMR and concomitant biallelic expression of the H19 gene, suggesting that loss of imprinting at H19 is one cause of poor fetal growth in humans. Of particular interest, we demonstrated also a decrease in IGF2 mRNA levels in all SGA placentae and showed that the decrease is, in most cases, independent of H19 regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号