首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hamster mitochondrial DNA is cleaved into two fragments (4.2 and 11.4 kilobase pairs of DNA (kb)) by the restriction enzyme, Eco RI. Recombinant DNA molecules formed in vitro between an Escherichia coli plasmid, Co1E1 - Ampr, and Eco RI-digested hamster mitochondrial DNA were transformed into E. coli K12. The translation products of the parent plasmid, Co1E1 - Ampr, and recombinant plasmid DNAs containing (i) the 4.2 kb mitochondrial DNA fragment and (ii) the 11.4 kb fragment were characterized on sodium dodecyl sulfate-polyacrylamide gels using bacterial mini-cell lysates. The Co1E1 - Ampr plasmid specifies at least six polypeptides whose structural genes comprise 56% of the plasmid DNA. Insertion of hamster mitochondrial DNA at the Eco RI site of the plasmid alters the relative rate of synthesis of these six polypeptides and induces the occurrence of a new band on sodium dodecyl sulfate-polyacrylamide gels which is probably not specified by the inserted mitochondrial DNA sequences.  相似文献   

2.
Photoaffinity labeling with 8-azidoadenosine 3':5'-monophosphate is a highly selective method for probing the cAMP-binding sites of the regulatory subunits of cAMP-dependent protein kinase and for identifying specific residues that are in close proximity to the cAMP-binding sites. The cAMP-binding site of a mutant RI-subunit has been characterized here and contrasted to the native RI-subunit. This mutant RI-subunit was generated by oligonucleotide-directed muta-genesis and lacks the entire second cAMP-binding domain which includes both of the residues, Trp260 and Tyr371, that are photolabeled in the native RI-subunit. The mutant RI-subunit, nevertheless, is photoaffinity-labeled with high efficiency, and the residue covalently modified was identified as Tyr244. The position of Tyr244 based on a computer graphic model of cAMP-binding site A is proposed and correlated with the presumed locations of Tyr371 and Trp260 in the native R-subunit. Photoaffinity labeling also can be used to detect functional cAMP-binding sites following electrophoretic transfer of the denatured protein to nitrocellulose. Labeling of the immobilized protein on nitrocellulose required a functional cAMP-binding site A that can be photoaffinity-labeled in solution based on the following criteria. 1) The type I R-subunit is photolabeled, whereas the type II R-subunit is not. A primary feature which distinguishes these two R-subunits is that the RI-subunit is photolabeled at both sites A and B, whereas covalent modification of the RII-subunit occurs only at site B. 2) The truncated mutant of the RI-subunit which lacks the entire second cAMP-binding domain can be photolabeled on nitrocellulose. 3) A mutant RI-subunit which can no longer be photolabeled in site B is still photolabeled on nitrocellulose. 4) A mutation which abolished cAMP binding to site A also abolished photoaffinity labeling after transfer to nitrocellulose.  相似文献   

3.
Chicken muscle adenylate kinase was produced in a large amount in Escherichia coli cells harboring an expression plasmid, pKK-cAKl-1. The plasmid was constructed by placing the cDNA sequence for chicken muscle adenylate kinase after the tac promoter. After induction by isopropyl-beta-D-thiogalactopyranoside, the enzyme protein amounted to about 10% of the bacterial proteins. The enzyme was readily purified in two steps by using phosphocellulose and Sephadex G-100 columns. The apparent molecular weight of the enzyme produced in E. coli was estimated to be 22,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, in agreement with the value deduced from the cDNA sequence. Ten amino acids in the NH2-terminal region were determined, and were identical with the sequence deduced from the cDNA sequence except that the terminal methionine was absent. Michaelis constants for ATP, ADP, and AMP of the enzyme thus synthesized were essentially identical to those determined with the enzyme in crude extracts of chicken skeletal muscle.  相似文献   

4.
Complementary DNAs that encode two forms of the alpha subunit (Gs alpha) of the guanine nucleotide-binding protein responsible for stimulation of adenylate cyclase (Gs) have been inserted into plasmid vectors for expression in Escherichia coli. Following transformation of either of these plasmids into E. coli K38, Gs alpha accumulates to 0.4-0.8 mg/liter (approximately 0.1% of total protein), as judged by immunoblot analysis with specific antisera. Based on deduced amino acid sequence, the two cDNAs should encode proteins with molecular weights of 44,500 and 46,000, respectively (Robishaw, J.D., Smigel, M. D., and Gilman, A. G. (1986) J. Biol. Chem. 261, 9587-9590). Expression of these cDNAs in E. coli yields proteins that co-migrate on sodium dodecyl sulfate-polyacrylamide gels with the Gs alpha subunits from S49 lymphoma cell membranes, with apparent molecular weights of 45,000 and 52,000, respectively. Low levels of activity are detected in the 100,000 X g supernatant after lysis and fractionation of E. coli expressing either form of Gs alpha. Partial purification of Gs alpha from E. coli lysates yields preparations in which significant and stable activity can be assayed. Both forms of Gs alpha migrate through sucrose gradients as soluble, monodisperse species in the absence of detergent. As expressed in E. coli, both forms of Gs alpha can reconstitute isoproterenol-, guanine nucleotide-, and fluoride-stimulated adenylate cyclase activity in S49 cyc-cell membranes to approximately the same degree and can be ADP-ribosylated with [32P]NAD+ and cholera toxin. However, based on the specific activity of purified rabbit liver Gs, only 1-2% of the Gs alpha expressed in E. coli appears to be active. Incubation of partially purified fractions of recombinant Gs alpha with guanosine 5'-(3-O-thio)triphosphate and resolved beta gamma subunits isolated from purified bovine brain G proteins results in a 7-10-fold increase in Gs activity. Incubation of bovine brain beta gamma with recombinant Gs alpha also leads to a dramatic increase in observed levels of cholera toxin-catalyzed [32P]ADP-ribosylation.  相似文献   

5.
We report the first high-level expression of a mammalian thioltransferase (glutaredoxin) in Escherichia coli. A NcoI site (CCATGG) was introduced into the cDNA encoding pig liver thioltransferase (glutaredoxin) by site-directed mutagenesis, in which the first G of the original sequence, GCATGG, was replaced by a C. The altered cDNA was cloned into an expression vector, plasmid pKK233-2, between the unique NcoI and HindIII sites and expressed in E. coli JM105 at a high level (8% of total soluble protein) after 6 h of isopropyl-beta-D-thiogalactopyranoside induction. The soluble and unfused product was measured by the thiol-transferase thiol-disulfide exchange assay and immunoblotting analysis. The recombinant enzyme was purified to a single band as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and isoelectric focusing. The amino acid composition of the expressed enzyme agreed with that of the known sequence of pig liver thioltransferase (glutaredoxin). N-terminal sequence analysis revealed that unlike the native pig liver protein which is N-acetylated, the recombinant enzyme was unblocked at the N terminus (alanine). Various kinetic properties of the recombinant enzyme with regard to the exchange reaction were identical with those of the native enzyme.  相似文献   

6.
The gene coding for the Escherichia coli enzyme 7,8-dihydro-6-hydroxymethylpterin-pyrophosphokinase has been cloned and sequenced. This gene, designated folK, codes for a protein of 159 amino acids, including an amino-terminal methionine. The protein was overexpressed in E. coli MC4100 by cloning the gene behind the lacUV5 promoter in a high-copy-number plasmid. The enzyme was purified to homogeneity. Amino-terminal analysis of the purified protein showed that the amino-terminal methionine had been removed. The compositional molecular mass (17,945 Da) was identical to the molecular mass determined by mass spectrometry. The enzyme was observed to have a large number of proline residues and migrated anomalously in sodium dodecyl sulfate-polyacrylamide gels, with an apparent molecular mass of 23,000 Da.  相似文献   

7.
8.
A lambda placMu1 insertion was made into araE, the gene for arabinose-proton symport in Escherichia coli. A phage containing an araE'-'lacZ fusion was recovered from the lysogen and its restriction map compared with that of the 61-min region of the E. coli genome to establish the gene order thyA araE orf lysR lysA galR; araE was transcribed toward orf. A 4.8-kilobase SalI-EcoRI DNA fragment containing araE was subcloned from the phage lambda d(lysA+ galR+ araE+) into the plasmid vector pBR322. From this plasmid a 2.8-kilobase HincII-PvuII DNA fragment including araE was sequenced and also subcloned into the expression vector pAD284. The araE gene was 1416-base pairs long, encoding a hydrophobic protein of 472 amino acids with a calculated Mr of 51,683. The amino acid sequence was homologous with the xylose-proton symporter of E. coli and the glucose transporters from a human hepatoma HepG2 cell line, human erythrocytes, and rat brain. The overexpressed araE gene product was identified in Coomassie-stained sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels of cell membranes as a protein of apparent Mr 35,000 +/- 1,150. Arabinose protected this protein against reaction with N-ethylmaleimide.  相似文献   

9.
Intestinal calcium binding proteins (ICaBP's) constitute a group of small vitamin D inducible proteins considered to play an important role in the absorption of dietary calcium. The mammalian ICaBP's are representatives of the "EF-hand" family of calcium binding proteins. As a first step in the application of protein engineering techniques to the study of structure-function relationships in mammalian ICaBP's, we have synthesized a gene encoding the minor A form (the native form lacking the two N-terminal amino acids) of bovine ICaBP employing a rapid, microscale gene synthesis technique based on "shotgun ligation" of sets of oligonucleotides. Expression of the synthetic gene from a plasmid containing the tac promoter in a lon protease deficient strain of Escherichia coli yielded the desired product at a level of about 1-2 wt % of total protein. During the purification of the ICaBP expressed in E. coli, a contaminant was strongly adhering to it but was efficiently removed by gel filtration after denaturation with urea. The minor A form of ICaBP produced in E. coli was characterized by its mobility during sodium dodecyl sulfate-polyacrylamide gel electrophoresis and by its total amino acid composition, partial amino acid sequence, UV absorption spectrum, and 360-MHz 1H NMR spectrum, showing beyond reasonable doubt its identity with the minor A form of ICaBP obtained from bovine intestines.  相似文献   

10.
ABM508 is a recombinant fusion protein consisting of the N-terminal 485 amino acids of diphtheria toxin joined to alpha-melanocyte-stimulating hormone. When expressed in Escherichia coli under the control of the tox promoter and signal sequence, ABM508 is severely degraded. When overexpressed from a thermoinducible lambda pR promoter fusion, ABM508 is largely insoluble. We compared the expression of ABM508 (501 amino acids) to a full-length mutant form of the toxin (CRM197; 535 amino acids) and found that CRM197 showed minimal proteolysis. Thus, the removal of the C-terminal 50 amino acids of the toxin destabilizes the protein, making it a target for proteases. Proteolysis of ABM508 could be reduced by removal of the tox signal sequence (thereby directing the protein to the cytoplasm) and growth in lon and htpR mutant strains of E. coli. We also showed that the solubility of tox gene products expressed in E. coli was directly related to the growth temperature of the culture. Thus, a fragment A fusion protein (223 amino acids), ABM508, and CRM197 were found in soluble extracts when expressed at 30 degrees C but could not be released by the same procedures after growth at 42 degrees C. On the basis of these observations, we fused the coding sequences for mature ABM508 to the trc promoter (inducible at 30 degrees C by isopropyl-beta-D-thiogalactoside) and expressed this construct in a lon htpR strain of E. coli. This plasmid made 10 mg of soluble tox protein per liter of culture (7.7% of the total cell protein) or 14 times more than our previous maximal level. Extracts from lon htpR cells harboring this plasmid had high levels of ADP-ribosyltransferase activity, and although proteolysis still occurred, the major tox product corresponded to full-length ABM508.  相似文献   

11.
Murine cDNA that encodes neuromodulin, a neurospecific calmodulin binding protein, was inserted into the plasmid pKK223-3 for expression in Escherichia coli. After being transformed into E. coli strain SG20252 (lon-), the expression vector directed the synthesis of a protein that was recognized by polyclonal antibodies raised against bovine neuromodulin. The recombinant protein expressed in E. coli was found to be tightly associated with insoluble cell material and was extractable only with guanidine hydrochloride or sodium dodecyl sulfate. Following solubilization with guanidine hydrochloride, the protein was purified to apparent homogeneity by a single CaM-Sepharose affinity column step with a yield of 0.2 mg of protein/L of E. coli culture. The availability of the purified recombinant neuromodulin made it possible to answer several specific questions concerning the structure and function of the protein. Despite the fact that murine neuromodulin is 12 amino acid residues shorter than the bovine protein and the recombinant protein expressed in E. coli may lack any posttranslational modifications, the two proteins displayed similar biochemical properties in almost all respects examined. They both had higher affinity for CaM-Sepharose in the absence of Ca2+ than in its presence; they were both phosphorylated in vitro by protein kinase C in a Ca2+- and phospholipid-dependent manner; neither form of the proteins was autophosphorylated, and the phosphorylated form of the proteins did not bind calmodulin. The recombinant neuromodulin and neuromodulin purified from bovine brain had similar, but not identical, affinities of calmodulin, indicating that the palmitylation of the protein that occurs in animal cells is not crucial for calmodulin interactions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Complementary DNA clones encoding 3 alpha-hydroxysteroid dehydrogenase (3 alpha HSD) were isolated from a rat liver cDNA lambda gt11 expression library using monoclonal antibodies as probes. The sizes of the cDNA inserts ranged from 1.3-2.3 kilobases. Sequence analysis indicated that variation in the DNA size was due to heterogeneity in the length of 3' noncoding sequences. A full-length cDNA clone of 1286 basepairs contained an open reading frame encoding a protein of 322 amino acids with an estimated mol wt of 37 kDa. When expressed in E. coli, the encoded protein migrated to the same position on sodium dodecyl sulfate-polyacrylamide gels as the enzyme purified from rat liver cytosols. The protein expressed in bacteria was highly active in androsterone reduction in the presence of NAD as cofactor, and this activity was inhibited by indomethacin, a potent inhibitor of 3 alpha HSD. The predicted amino acid sequence of 3 alpha HSD was related to sequences of several other enzymes, including bovine prostaglandin F synthase, human chlordecone reductase, human aldose reductase, human aldehyde reductase, and frog lens epsilon-crystalline, suggesting that these proteins belong to the same gene family.  相似文献   

13.
The regulatory (R) subunit of cAMP-dependent protein kinase from the yeast Saccharomyces cerevisiae was expressed in Escherichia coli by engineering the gene for yeast R, BCY1, into an E. coli expression vector that contained a promoter from phage T7. Oligonucleotide-directed mutagenesis was used to create an NdeI restriction site at the natural ATG of the yeast R. This facilitated construction of the T7 expression vector so that the sequence of the protein produced was identical to the natural R subunit. Yeast R was highly expressed in a soluble form. 20 mg of purified yeast R was obtained from 4 liters of E. coli. N-terminal amino acid sequencing revealed that the expressed protein began with the natural sequence. 60% of the molecules contained an N-terminal methionine, and 40% initiated with valine, the second amino acid of yeast R. The protein produced in E. coli migrated on a sodium dodecyl sulfate-polyacrylamide gel with an Mr of 52,000. The yeast R bound 2 mol of cAMP/mol of R monomer with a Kd of 76 nM. The protein was treated with urea to remove bound cAMP. Sedimentation values before and after the urea treatment were identical (s20,w = 5.1). Addition of purified R subunit to a preparation of yeast C subunit (TPK1) rendered catalytic activity cAMP-dependent with an activity ratio of 4.6. The yeast R was autophosphorylated by yeast C to a level of 0.8 mol of phosphate/mol of R monomer. By these criteria, the R subunit produced in E. coli was structurally and functionally identical to the natural yeast R subunit and similar to mammalian type II R subunits.  相似文献   

14.
M Cuillel  M Milleville  J C D'Halluin 《Gene》1987,55(2-3):295-301
We have constructed a plasmid encoding the protein IIIa gene of human adenovirus type 2. The gene was expressed under the control of the hybrid tac (trp-lac) promoter; the protein was synthesized at levels up to 5% of newly synthesized protein after IPTG induction. The protein IIIa produced in Escherichia coli has an apparent Mr on sodium dodecyl sulfate-polyacrylamide gels of 67 kDa, and was revealed with anti-adenovirus serum in Western blotting. The protein IIIa produced in bacteria was phosphorylated in the presence of [gamma-32P]ATP.  相似文献   

15.
The complete coding sequence for human glucose-6-phosphate-dehydrogenase (G6PD) was inserted downstream from the tac promoter of a plasmid, pJF118EH, which also carries the lacIq repressor gene. When Escherichia coli strains (that are unable to grow on glucose due to the absence of functional zwf (G6PD-) and pgi genes) were transformed with this plasmid (pAC1), they were able to grow on glucose as sole carbon source. The rate of growth on glucose was faster in the presence of the inducer of the tac promoter, isopropyl-beta-D-thiogalactopyranoside (IPTG). Extracts of the transformed cells contained a G6PD activity that was not detectable in the parental strains and that was inducible by IPTG. The G6PD activities from normal E. coli and from pAC1-transformed cells comigrated with human G6PD when subjected to electrophoresis on agarose gels. However, when denatured, the G6PD produced by pAC1 was, like the human enzyme, distinguishable from the E. coli-encoded enzyme on the basis of its immunoreactivity with antibody specific for human G6PD. Therefore, human G6PD can be expressed in E. coli and can function to complement the bacterial enzyme deficiency.  相似文献   

16.
H-protein, a component of the glycine cleavage system with lipoic acid as a prosthetic group, was expressed in Escherichia coli using a T7 RNA polymerase plasmid expression system. After induction with 25 microM isopropyl-beta-D-thiogalactopyranoside, bacteria harboring the recombinant plasmid expressed mature bovine H-protein as a soluble form at a level of about 10% of the total bacterial protein. Little of the H-protein was lipoylated in E. coli cultured without added lipoate, but when the cells were cultured in medium supplemented with 30 microM lipoate, about 10% of the recombinant protein expressed was the correctly lipoylated active form, 10% was an inactive aberrantly modified form, presumably with an octanoyl group, and the remaining 80% was the unlipoylated apoform. Each of the three forms was purified to homogeneity and shown to have the same NH2-terminal amino acid sequence as that of native bovine H-protein. The specific activity of the lipoylated form of H-protein expressed was consistent with that of H-protein purified from bovine liver. The purified recombinant apo-H-protein was lipoylated and consequently activated in vitro with lipoyl-AMP as a lipoyl donor by lipoyltransferase purified 150-fold from bovine liver mitochondria. The lipoylation was dependent on lipoyl-AMP, apo-H-protein, and lipoyltransferase. The partially purified lipoyltransferase had no lipoate-activating activity. These results provide the first evidence that in mammals two consecutive reactions are required for the attachment of lipoic acid to the acceptor protein: the activation of lipoic acid to lipoyl-AMP catalyzed by lipoate-activating enzyme and the transfer of the lipoyl group to an N epsilon-amino group of a lysine residue to apoprotein by lipoyl-AMP:N epsilon-lysine lipoyltransferase.  相似文献   

17.
The yeast plasma membrane ATPase gene PMA1 was cloned into Escherichia coli using the high expression tac and T7 promoters. The gene product is toxic to the bacterial cell leading to very low expression levels and arrested growth of the host cell within minutes of induction. The expressed protein is immunologically cross-reactive with the yeast ATPase, comigrates with the original protein in sodium dodecyl sulfate-polyacrylamide gels, and is isolated in the E. coli membrane fraction. The partially purified protein exhibits ATPase activity.  相似文献   

18.
The recent cloning of human androgen receptor (AR) cDNAs in this and other laboratories has provided valuable probes for investigating the structure and function of the AR at the molecular level. We now report the overexpression of a region of the human AR containing both the DNA- and hormone-binding domains in E. coli, which provides a means to produce large amounts of AR for analysis and use in functional studies. Under isopropyl-beta-D-thiogalactopyranoside induction, a tripartite protein, consisting of beta-galactosidase, a collagenase recognition site, and AR polypeptide, was produced in E. coli JM109 using pSS20 a as a vector. About 1 mg of the fused AR could be recovered per liter bacterial culture. The induced protein could readily be detected in a sodium dodecyl sulfate-polyacrylamide gel by Coomassie blue staining. Its identity was confirmed by Western blot analysis using antibodies to both beta-galactosidase and the AR. Scatchard analysis of the androgen-binding activity of the hybrid AR revealed high affinity binding to the synthetic androgen, Mibolerone (Kd, approximately 1.2 nM). Competition studies demonstrated the fusion protein's specificity for androgens. The hybrid receptor formed immune complexes with human anti-AR serum that sedimented at about 19S in 10-50% linear sucrose gradients containing 0.4 M KCl. Gel band shift assays revealed that the hybrid receptor protein forms specific complexes with a synthetic steroid response element derived from the mouse mammary tumor virus long terminal repeat region. These results demonstrate that the recombinant AR expressed in E. coli possesses many of the functional properties characteristic of DNA- and steroid-binding domains of the native AR.  相似文献   

19.
A full-length cDNA clone, pKK-DTD4, complementary to rat liver cytosolic DT-diaphorase [NAD(P)H:quinone oxidoreductase (EC 1.6.99.2)] mRNA was expressed in Escherichia coli. The pKK-DTD4 cDNA was obtained by extending the 5'-end sequence of a rat liver DT-diaphorase cDNA clone, pDTD55, to include an ATG initiation codon and the NH2-terminal codons using polymerase chain reaction (PCR). Restriction sites for EcoRI and HindIII were incorporated at the 5'- and 3'-ends of the cDNA, respectively, by the PCR reaction. The resulting full-length cDNA was inserted into an expression vector, pKK2.7, at the EcoRI and HindIII restriction sites. E. coli strain AB1899 was transformed with the constructed expression plasmid, and DT-diaphorase was expressed under the control of the tac promotor. The expressed DT-diaphorase exhibited high activity of menadione reduction and was inhibited by dicumarol at a concentration of 10(-5)M. After purification by Cibacron Blue affinity chromatography, the expressed enzyme migrated as a single band on 12.5% sodium dodecyl sulfate-polyacrylamide gel with a molecular weight equivalent to that of the purified rat liver cytosolic DT-diaphorase. The purified expressed protein was recognized by polyclonal antibodies against rat liver DT-diaphorase on immunoblot analysis. It utilized either NADPH or NADH as electron donor at equal efficiency and displayed high activities in reduction of menadione, 1,4-benzoquinone, and 2,6-dichlorophenolindophenol which are typical substrates for DT-diaphorase. The expressed DT-diaphorase exhibited a typical flavoprotein spectrum with absorption peaks at 380 and 452 nm. Flavin content determination showed that it contained 2 mol of FAD per mole of the enzyme. Edman protein sequencing of the first 20 amino acid residues at the NH2 terminus of the expressed protein indicated that the expressed DT-diaphorase is not blocked at the NH2 terminus and has an alanine as the first amino acid. The remaining 19 amino acid residues at the NH2 terminus were identical with those of the DT-diaphorase purified from rat liver cytosol.  相似文献   

20.
P Sommer  C Bormann    F Gtz 《Applied microbiology》1997,63(9):3553-3560
Streptomyces cinnamomeus Tü89 secretes a 30-kDa esterase and a 50-kDa lipase. The lipase-encoding gene, lipA, was cloned from genomic DNA into Streptomyces lividans TK23 with plasmid vector pIJ702. Two lipase-positive clones were identified; each recombinant plasmid had a 5.2-kb MboI insert that contained the complete lipA gene. The two plasmids differed in the orientation of the insert and the degree of lipolytic activity produced. The lipA gene was sequenced; lipA encodes a proprotein of 275 amino acids (29,213 Da) with a pI of 5.35. The LipA signal peptide is 30 amino acids long, and the mature lipase sequence is 245 amino acids long (26.2 kDa) and contains six cysteine residues. The conserved catalytic serine residue of LipA is in position 125. Sequence similarity of the mature lipases (29% identity, 60% similarity) was observed mainly in the N-terminal 104 amino acids with the group II Pseudomonas lipases; no similarity to the two Streptomyces lipase sequences was found. lipA was also expressed in Escherichia coli under the control of lacZ promoter. In the presence of the inducer isopropyl-beta-D-thiogalactopyranoside (IPTG), growth of the E. coli clone was severely affected, and the cells lysed in liquid medium. Lipase activity in the E. coli clone was found mainly in the pellet fraction. In sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis, three additional protein bands of 50, 29, and 27 kDa were visible. The 27-kDa protein showed lipolytic activity and represents the mature lipase; the 29- and 50-kDa forms showed no activity and very probably represent the unprocessed form and a dimeric misfolded form, respectively. For higher expression of lipA in S. lividans, the gene was cloned next to the strong aphII promoter. In contrast to the lipA-expressing E. coli clone, S. cinnamomeus and the corresponding S. lividans clone secreted only an active protein of 50 kDa. The lipase showed highest activity with C6 and C18 triglycerides; no activity was observed with phospholipids, Tween 20, or p-nitrophenylesters. Upstream of lipA and in the same orientation, an open reading frame, orfA, is found whose deduced protein sequence (519 amino acids) shows similarity to various membrane-localized transporters. Downstream of lipA and in the opposite orientation, an open reading frame, orfB (encoding a 199-amino-acid protein) is found, which shows no conspicuous sequence similarity to known proteins, other than an NAD and flavin adenine dinucleotide binding-site sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号