首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Germination represents a limiting stage of plant life cycle. One of the underlying metabolic activities following imbibition of seed is the reserve mobilization. Seeds of bean (Phaseolus vulgaris L. var. soisson nain hatif) were germinated by soaking in distilled water or 200?μM CuCl(2). Storage proteins breakdown and amino acids freeing from reserve tissues were investigated. Compared to the control, Cu caused a reduction in germination rate, embryo growth, and in mobilization of cotyledonary biomass. The failure in albumin and globulin hydrolysis after the exposure to the pollutant was argued by (1) higher contents of remaining proteins than control ones, (2) persistence of some polypeptide bands resolved by polyacrylamide gel electrophoresis of albumin and globulin-rich fractions, and (3) decrease in the availability of amino acids. Nitrogen starvation in embryonic axis should be associated with the Cu-imposed delay in growth.  相似文献   

2.
Post-germinative growth in castor bean ( Ricinus communis L. cv. Hale) seedlings was investigated to determine whether lipolytic enzyme synthesis and lipid breakdown was a function of the embryo axis or simply based on a source-sink mechanism connected with sucrose produced during mobilization of storage lipid. Endosperm and cotyledons were excised from the embryo axis at 24 h intervals and were then incubated in Petri dishes containing water or 0.1 M sucrose for 24 h. Excised endosperm showed similar or higher malate synthase (MS, EC 4.1.3.2) and isocitrate lyase (ICL, EC 4.1.3.1) activities and increased lipolysis when compared with endosperm obtained from similarly intact seedlings of the same age. In contrast, cotyledonary ICL and MS activity was up to 50% lower and lipolysis was only slightly affected in excised material when compared with cotyledons obtained from intact seedlings. Incubating endosperm in sucrose had no effect on the development of the above enzyme activities or lipid content, when compared with material incubated in water only. In contrast, cotyledonary MS and ICL activities were up to 70% lower in sucrose and lipolysis substantially inhibited. Lipid breakdown and the development of lipolytic enzyme activity in cotyledons seem to be dependent on the presence of the endosperm. It is concluded that enzyme regulation in castor bean seedlings cannot entirely be explained by axis control or source-sink relationships.  相似文献   

3.
Cytochemical staining of sections prepared for light microscopy,electron microscope sections, and sodium dodecyl sulphate-polyacrylamidegel electrophoresis reveal that, following imbibition, storageproteins are mobilized from the protein bodies of the endospermof castor bean (Ricinus communis L. cv. Hale). This is accompaniedby fusion of protein bodies to form a central vacuole, beforeall the protein is hydrolyzed. Mobilization of the US crystalloidprotein complex and of the 2S albumin fraction commences 2 dafter imbibition and is completed within 2 d. This loss of proteinis accompanied by an increase in activity of three proteolyticenzymes, one carboxypeptidase and two -SH-dependent aminopeptidases.In contrast to the 11S and 2S protein fractions the lectins,located within the protein body, are mobilized only slowly andare present after the other proteins have been completely brokendown. Hence lectins may have a role other than as storage proteins. Key words: Castor bean, Protein breakdown, Storage protein, Lectin, Vacuolation, Seed germination  相似文献   

4.
Salinity reduced mung bean (Vigna radiata Wilczek) radicle and root elongation, delayed and inhibited hypocotyl elongation and mobilization of reserves from the cotyledons to the embryo axis. Fresh and dry masses and water content of the embryo axes were reduced. Under salinity, a net leakage of K to the media increased with time and increasing NaCl concentrations. Sugars present in the cotyledons of seeds were of primary importance for growth of the embryo axis upto 18 h after sowing whereas breakdown of starch by amylase contributed later, the contribution being delayed and reduced with increasing NaCl concentration. Even when amylase activity in the cotyledons was progressively reduced with increasing NaCl concentration, the increasing contents of soluble sugars in the cotyledons indicated that sugars were not limiting for mung bean seedling growth under salinity.  相似文献   

5.
Background: The orientation of the mitotic spindle influences the asymmetric distribution of cytoplasmic determinants and the positioning of the sibling cell, and therefore has important influences on cell-fate determination and patterning of the embryo. Both the establishment of an axis of polarity and the adjustment of this axis with respect to the coordinates of the embryo have to be controlled. None of the genes identified so far that are involved in these processes seems to have been conserved between flies and nematodes.Results: Here, we show that the bazooka gene encodes a protein with three putative protein-interaction motifs known as PDZ domains and is the first Drosophila representative of the par gene family of Caenorhabditis elegans, members of which are required for establishment of anterior–posterior polarity of the nematode embryo. The bazooka RNA and protein were found to be restricted to the apical cortical cytoplasm of epithelial cells and neuroblasts. Embryos that were mutant for bazooka frequently failed to coordinate the axis of cell polarity with that of the embryo. This was manifested as defective spindle orientation and mispositioning of the daughter cell after division.Conclusions: The Drosophila gene bazooka is likely to be part of a regulatory mechanism required to coordinate the axis of polarity of a cell with that of the embryo. The PDZ domains of Bazooka provide several protein–protein interfaces, which possibly participate in the assembly of a multiprotein complex at the apical pole.  相似文献   

6.
Partial peptide sequence of a 36 kDa protein from common bean embryo axes showed 100% identity with a reported β-subunit of a heterotrimeric G protein from soybean. Analysis of the full sequence showed 96.6% identity with the reported soybean Gβ-subunit, 86% with RACK1B and C from Arabidopsis and 66% with human and mouse RACK1, at the amino acid level. In addition, it showed 85.5, 85 and 83% identities with arcA from Solanum lycopersicum , Arabidopsis (RACK1A) and Nicotiana tabacum , respectively. The amino acid sequence displayed seven WD40 domains and two sites for activated protein kinase C binding. The protein showed a constant expression level but the mRNA had a maximum at 32 h post-imbibition. Western immunoblotting showed the protein in vegetative plant tissues, and in both microsomal and soluble fractions from embryo axes. Synthetic auxin treatment during germination delayed the peak of RACK1 mRNA expression to 48 h but did not affect the protein expression level while the polar auxin transport inhibitor, naphtylphtalamic acid had no effect on either mRNA or protein expression levels. Southern blot and genomic DNA amplification revealed a small gene family with at least one member without introns in the genome. Thus, the RACK1/arcA homolog from common bean has the following features: (1) it is highly conserved; (2) it is both soluble and insoluble within the embryo axis; (3) it is encoded by a small gene family; (4) its mRNA has a peak of expression at the time point of germination stop and (5) its expression is only slightly affected by auxin but unaffected by an auxin transport blocker.  相似文献   

7.
Separation of an extract of cotyledons of Phaseolus vulgarison a column of Sephadex G-200 revealed three amylolytic fractions.The slower migrating fraction hydrolyzed/ß-Limit dextrinazure and was inhibited by EDTA. The activity of this fractionwas enhanced by the embryo axis and this effect could be fullyreplaced by kinetin or benzyladenine. These results suggestthat the bean embryo axis exerts a promotive influence on theactivity of a-amylase in the cotyledons and that this effectis mediated by cytokinins. The other two amylolytic fractions did not show a-amylase activity.No effect of the embryo axis or of cytokinins on their activitycould be noted. 1Present address: The Thimann Laboratories, University of California,Santa Cruz, California, U.S.A. (Received June 27, 1979; )  相似文献   

8.
OPIK  HELGI 《Annals of botany》1985,56(4):453-466
Completely anhydrous fixation with acrolein vapour or osmiumtetroxide vapour was applied to tissues of air-dry seeds: thecoleoptile of wheat (Trilicum aestivum), and plumule and radicleof mung bean (Vigna radiata). Great shrinkage of cells and organelleswas noted, but all the usual organelles could be identified,except for Golgi bodies and (in most cases) ribosomes. The endoplasmicreticulum was very abundant and endoplasmic reticulum tubuleswere closely associated with the storage organelles, namelylipid bodies in the wheat coleoptile, and protein bodies inthe mung bean embryo axis. Aqueous fixation resulted in considerabledistortion of cellular structure. Triticum aestivum L., wheat, Vigna radiata L., mung bean, seed, fine structure, anhydrous fixation  相似文献   

9.
Kennode, A. R, and Bewley, J. D. 1988. The role of maturationdrying in the transition from seed development to germination.V. Responses of the immature castor bean embryo to isolationfrom the whole seed; a comparison with premature desiccation.—J.exp. Bot. 39: 487–497. Desiccation is an absolute requirement for germination and post-germinativegrowth of whole seeds of the castor bean, whether desiccationis imposed prematurely during development, at 35 d after pollination(DAP) or occurs naturally during late maturation (50–60DAP). Desiccation also plays a direct role in the inductionof post-germinative enzyme synthesis in the cotyledons of embryosin the intact seed; this event is not simply due to the presenceof a growing axis. Isolation of embryos from the developingcastor bean seed at 35 DAP results in both germination and growth,despite the absence of a desiccation event. We have comparedthe metabolic consequences of premature drying of whole seeds(35 DAP) and isolation of the developing 35 DAP embryos. Inboth cases, hydrolytic events involved in the mobilization ofstored protein reserves proceed in a similar manner and mirrorthose events occurring within germinated mature seeds. Thereare differences, however, for post-germinative enzyme (LeuNAaseand isocitrate lyase) production occurs to a lesser extent innon-dried isolated embryos than in those from prematurely dried(35 DAP) whole seeds, or from mature dry (whole) seeds. Desiccationof the 35 DAP whole seed does not alter the subsequent responseof the embryo upon isolation. Thus, while drying does not affectthe metabolism of isolated embryos, it has a profound effecton that of embryos within the intact seed. Tissues surroundingthe embryo in the developing intact seed (viz. the endosperm)maintain its metabolism in a developmental mode and inhibitgermination. This effect of the surrounding tissues can onlybe overcome by drying or by their removal. Key words: Metabolism, isolation, desiccation, embryo, endosperm, castor bean, development, germination  相似文献   

10.
During mid-development (25–40 d after pollination: DAP)of the castor bean seed the amount of abscisic acid (ABA) increasesin both the endosperm and the embryo, declining substantiallythereafter until there is little present in the mature dry (60DAP) seed. Premature desiccation of the seed at 35 DAP alsoleads to a major decline in ABA within the embryo and endosperm.Partial water loss from the seed at 35 DAP which, like naturaland premature desiccation, leads to subsequent germination uponreturn of the seed to full hydration, causes a much smallerdecline in ABA levels. In contrast, ABA declines substantiallyin the non-dried (hydrated) control at 35 DAP, but the seedsdo not germinate. Hence, a clear negative correlation betweenABA content and germinability is not observed. Both drying,whether natural or imposed prematurely, and partial drying decreasethe sensitivity of the isolated embryo to exogenous ABA by about10-fold. The protein synthetic response of the castor bean embryo exposedto 0.1 mol m–3 ABA following premature desiccation exhibitssome similarity to the response of the non-dried developingembryo—in both cases the synthesis of some developmentalproteins is enhanced by ABA, and germination is suppressed.Germination of mature seeds is also suppressed by 0.1 mol m–3ABA, but the same developmental proteins are not synthesized.In the cotyledons of prematurely-desiccated seed, some proteinsare hydrolysed upon imbibition in 0.1 mol m–3 ABA, a phenomenonthat occurs also in the cotyledons of similarly treated matureembryos, but not in developing non-dried embryos. Hence theembryo exhibits an ‘intermediate’ response uponrehydration in 0.1 mol m–3 ABA following premature desiccation;viz. some of the responses are developmental and some germinative.Following natural or imposed drying, the isolated embryo becomesrelatively insensitive to 0.01 mol m–3 ABA: germinationis elicited and post-germinative reserve breakdown occurs inthe radicle and cotyledons. The reduced sensitivity of the embryoto ABA as a consequence of desiccation may be an important factorin eliciting the switch to germination and growth within thewhole seed. Key words: Abscisic acid, desiccation, astor bean endosperm, seed development, germination, protein synthesis, isolated embryos, hormone sensitivity  相似文献   

11.
The RRM-type RNA binding protein Orb plays a central role in the establishment of polarity in the Drosophila egg and embryo. In addition to its role in the formation and initial differentiation of the egg chamber, orb is required later in oogenesis for the determination of the dorsoventral (DV) and anteroposterior (AP) axes. In DV axis formation, Orb protein is required to localize and translate gurken mRNA at the dorsoanterior part of the oocyte. In AP axis formation, Orb is required for the translation of oskar mRNA. In each case, Orb protein is already localized at the appropriate sites within the oocyte before the arrival of the mRNAs encoding axis determinants. We present evidence that an autoregulatory mechanism is responsible for directing the on site accumulation of Orb protein in the Drosophila oocyte. This orb autoregulatory activity ensures the accumulation of high levels of Orb protein at sites in the oocyte that contain localized orb message.  相似文献   

12.
A systematic study was carried out to optimize regeneration and Agrobacterium tumefaciens-mediated transformation of four common bean (Phaseolus vulgaris L.) cultivars; Red Hawk, Matterhorn, Merlot, and Zorro, representing red kidney, great northern, small red, and black bean commercial classes, respectively. Regeneration capacity of leaf explants, stem sections, and embryo axes were evaluated on 30 media each containing Murashige and Skoog (MS) medium and different combinations of plant growth regulators. For stem sections and leaf explants, none of the media enabled plant regeneration from any of the four cultivars tested, indicating the recalcitrance of bean regeneration from these tissues. In contrast, several media enabled multiple shoot production from embryo axis explants, although optimal regeneration media was genotype-dependent. Under optimal regeneration conditions, multiple shoots, 2.3–10.8 on average for each embryogenic explant, were induced from embryo axis explants at frequencies of 93 % for ‘Merlot’, 80 % for ‘Matterhorn’, 73 % for ‘Red Hawk’, and 67 % for ‘Zorro’. Transient expression studies monitored by an intron-interrupted gusA on explants transformed with A. tumefaciens strains GV3101, LBA4404, and EHA105 indicated that all three A. tumefaciens strains tested were efficient in gene delivery. Gene delivery depended on parameters including strain of A. tumefaciens, co-cultivation time, explant type, and bean genotype. Agroinfiltration also enhanced gene delivery. Kanamycin-resistant and GUS-positive calluses were induced from leaf, stem, and embryo axis explants. Chimeric transformants were obtained from embryo axis explants and showed partial GUS-staining. Lack of efficient regeneration from non-meristem containing tissues is the main limitation for stable transformation of common bean.  相似文献   

13.
Tiedemann J  Neubohn B  Müntz K 《Planta》2000,211(1):1-12
The temporal and spatial patterns of storage-globulin mobilization were immunohistochemically pursued in the embryonic axis and cotyledons of vetch seed (Vicia sativa L.) during germination and early seedling growth. Embryonic axes as well as cotyledons of mature seeds contain protein bodies with stored globulins. Prevascular strands of axes and cotyledons, the radicle and epidermal layers of axis organs were nearly exclusively stained by vicilin antibodies whereas the cotyledonous storage mesophyll gave similar staining for vicilin and legumin. Globulin breakdown started locally where growth and differentiation commenced in the axis. There, vicilin mobilization preceded legumin mobilization. Thus vicilin represents the initial source of amino acids for early growth and differentiation processes in vetch. Legumin presumably only serves as a bulk amino acid source for subsequent seedling growth during postgerminative globulin degradation. During the first 2–3 d after the start of imbibition the axis was depleted of globulins whereas no decrease in immunostainability was detected in the cotyledons except in their vascular strands where immunostainability was almost completely lost at this time. Continuous vascular strands were established at the third day when globulin breakdown was finished in the axis but had just started in the cotyledon mesophyll. Protein mobilization proceeded in a small zone from the epidermis towards the vascular strands in the center of the cotyledons. In this zone the storage cells, which initially appeared densely packed with starch grains and protein bodies, concomitantly transformed into cells with a large central vacuole and only a thin cytoplasmic layer attached to the cell wall. These results agree well with the hypothesis that during the first 2 d after imbibition the axis is autonomous in amino acid provision. After the endogenous reserves of the axis are depleted and the conductive tissue has differentiated, globulins are mobilized in the cotyledons, suggesting that then the amino acid supply is taken over by the cotyledons. For comparison with other degradation patterns we used garden bean (Phaseolus vulgaris L) and rape (Brassica napus L.) as reference plants. Received: 3 August 1999 / Accepted: 11 December 1999  相似文献   

14.
BACKGROUND: When the anterior-posterior axis of the mouse embryo becomes explicit at gastrulation, it is almost perpendicular to the long uterine axis. This led to the belief that the uterus could play a key role in positioning this future body axis. RESULTS: Here, we demonstrate that when the anterior-posterior axis first emerges it does not respect the axes of the uterus but, rather, the morphology of the embryo. Unexpectedly, the emerging anterior-posterior axis is initially aligned not with the long, but the short axis of the embryo. Then whether the embryo develops in vitro or in utero, the anterior-posterior axis becomes aligned with the long axis of embryo just prior to gastrulation. Of three mechanisms that could account for this apparent shift in anterior-posterior axis orientation-cell migration, spatial change of gene expression, or change in embryo shape-lineage tracing studies favor a shape change accompanied by restriction of the expression domain of anterior markers. This property of the embryo must be modulated by interactions with the uterus as ultimately the anterior-posterior and long axes of the embryo align with the left-right uterine axis. CONCLUSIONS: The emerging anterior-posterior axis relates to embryo morphology rather than that of the uterus. The apparent shift in its orientation to align with the long embryonic axis and with the uterus is associated with a change in embryo shape and a refinement of anterior gene expression pattern. This suggests an interdependence between anterior-posterior gene expression, the shape of the embryo, and the uterus.  相似文献   

15.
Previous analysis of actin in a dicotyledonous plant, Phaseolus vulgaris (or common bean), showed very low actin levels in cotyledons but they were concentrated in the embryo axis. Upon imbibition, actin expression increased 5-fold and a maximum of four actin isoforms were observed, two of them transient and two major ones were steadily expressed. In this work, analysis of the actin expression in a monocotyledonous plant, Zea mays (or maize), and over a longer period of germination/growth, showed that striking similarities exist. Actin is present in all the seed components, but it is mainly concentrated in the embryo axis. The expression of maize actin was induced during post-imbibition at both the protein and mRNA levels. Sharp increases in actin appeared from 24-48 h and again from 72-96 h. A more modest and steady actin mRNA increase in expression was observed; however, it did not appear as dramatic as in the case of common bean due to the presence of readily detectable amounts of message in the dry maize seed. The isoform distribution in the dry seed showed a pattern of at least three isovariants of pIs approximately 5.0, 5.1, and 5.2, which were differentially expressed at the various post-imbibition times analysed. Two of the actin isoforms at 48 h post-imbibition cross-reacted with a phosphotyrosine-specific antibody and they are the product of three expressed genes as shown by in vitro translation assays. These data indicate that maize actin protein and mRNA expression is induced upon the trigger of germination, and the isoform expression kinetics and patterns resemble those from bean, suggesting that, in both species, actin expression at these early germination/growth stages is a highly regulated event.  相似文献   

16.
Immature zygotic embryos of ginseng produced somatic embryos on MS medium without growth regulators. However, in the culture of mature zygotic embryos, excision of the embryo was required for somatic embryo induction. Somatic embryos formed only on excised cotyledons without an embryo axis or on excised embryos without the plumule and radicle of the axis. This observation suggests that the axis tip of the embryo might suppress somatic embryo production although the cotyledon tissues have predetermined embryogenic competency. To clarify the role of the embryo axis on somatic embryo formation, excised plumules or radicles were placed in direct contact with the basal cut-ends of cotyledons. The adhesion of plumules or radicles highly suppressed somatic embryo formation from cotyledon explants. When an agar block containing exudate from excised plumules or radicles was placed in contact with the cut end of the cotyledon, a similar inhibition was observed. These results suggest that embryogenic competence is suppressed by endogenous inhibitors present in the axis tip of the zygotic embryo.  相似文献   

17.
The main storage compound in lupin seeds is protein, whose content can reach up to 45–50 % of dry matter. However, seeds of some lupin species can also contain quite a large amount of storage lipid. The range of lipid content in lupin seeds is from about 6 to about 20 % of dry matter. Storage lipid in developing seeds is synthesized mainly from sugars delivered by mother plants. During seed germination, one of the main end-products of storage lipid breakdown is also sugars. Thus, the sugar level in tissues is considered an important regulatory agent, during both lipid accumulation and lipid breakdown. Generally, in developing legume seeds, there is a strong negative relation between accumulation of storage protein and storage lipid. Results obtained in developing lupin cotyledons cultured in vitro pointed to the possibility of a positive relation between protein and lipid accumulation. Such a positive effect could be caused by nitrate. During lupin seed germination and seedling development, the utilization of storage lipid is enhanced under sugar deficiency conditions in tissues and is controlled at the gene expression level. However, under sugar starvation conditions, autophagy is significantly enhanced, and it can cause disturbances in storage lipid breakdown. The hypothesis of pexophagy, i.e., autophagic degradation of peroxisomes under sugar starvation conditions during lupin seed germination, has been taken into consideration. The flow of lipid-derived carbon skeletons to amino acids was discovered in germinating lupin seeds, and this process is clearly more intense in sucrose-fed embryo axes. At least four alternative or mutually complementary pathways of carbon flow from storage lipid to amino acids in germinating lupin seeds are postulated. The different strategies of storage compound breakdown during lupin seed germination are also discussed.  相似文献   

18.
Storage oil breakdown plays an important role in the life cycle of many plants by providing the carbon skeletons that support seedling growth immediately following germination. This metabolic process is initiated by lipases (EC: 3.1.1.3), which catalyze the hydrolysis of triacylglycerols (TAGs) to release free fatty acids and glycerol. A number of lipases have been purified to near homogeneity from seed tissues and analysed for their in vitro activities. Furthermore, several genes encoding lipases have been cloned and characterised from plants. However, only recently has data been presented to establish the molecular identity of a lipase that has been shown to be required for TAG breakdown in seeds. In this review we briefly outline the processes of TAG synthesis and breakdown. We then discuss some of the biochemical literature on seed lipases and describe the cloning and characterisation of a lipase called SUGAR-DEPENDENT1, which is required for TAG breakdown in Arabidopsis thaliana seeds.  相似文献   

19.
In the nematode Caenorhabditis elegans, sperm entry into the oocyte triggers the completion of meiosis and the establishment of the embryonic anteroposterior (AP) axis. How the early embryo makes the transition from a meiotic to a mitotic zygote and coordinates cell cycle changes with axis formation remains unclear. We have discovered roles for the C. elegans puromycin-sensitive aminopeptidase PAM-1 in both cell cycle progression and AP axis formation, further implicating proteolytic regulation in these processes. pam-1 mutant embryos exhibit a delay in exit from meiosis: thus, this peptidase is required for progression to mitotic interphase. In addition, the centrosomes associated with the sperm pronucleus fail to closely associate with the posterior cortex in pam-1 mutants, and the AP axis is not specified. The meiotic exit and polarity defects are separable, as inactivation of the B-type cyclin CYB-3 in pam-1 mutants rescues the meiotic exit delay but not the polarity defects. Thus PAM-1 may regulate CYB-3 during meiotic exit but presumably targets other protein(s) to regulate polarity. We also show that the pam-1 gene is expressed both maternally and paternally, providing additional evidence that sperm-donated gene products have important roles during early embryogenesis in C. elegans. The degradation of proteins through ubiquitin-mediated proteolysis has been previously shown to regulate the cell cycle and AP axis formation in the C. elegans zygote. Our analysis of PAM-1 requirements shows that a puromycin-sensitive aminopeptidase is also required for proteolytic regulation of the oocyte to embryo transition.  相似文献   

20.
Avian embryos have a remarkable capacity to regulate: when a pre-primitive streak stage embryo is cut into fragments, each fragment can spontaneously initiate formation of a complete embryonic axis. We investigate the signalling pathways that initiate primitive streak formation and the mechanisms that ensure that only a single axis normally forms. As reported previously, an ectopic primitive streak can be induced by misexpression of Vg1 in the marginal zone. We now show that Vg1 induces an inhibitor that travels across the embryo (3 mm distance) in less than 6 hours. We provide evidence that this inhibitor acts early in the cascade of events downstream of Vg1. We also show that FGF signalling is required for primitive streak formation, in cooperation with Nodal and Chordin. We suggest that three sequential inhibitory steps ensure that a single axis develops in the normal embryo: an early inhibitor that spreads throughout the embryo (which can be induced by Vg1), a second inhibition by Cerberus from the underlying hypoblast, and finally a late inhibition from Lefty emitted by the primitive streak itself.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号