首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Microscopic observation of the skin of Plestiodon lizards, which have body stripes and blue tail coloration, identified epidermal melanophores and three types of dermal chromatophores: xanthophores, iridophores, and melanophores. There was a vertical combination of these pigment cells, with xanthophores in the uppermost layer, iridophores in the intermediate layer, and melanophores in the basal layer, which varied according to the skin coloration. Skin with yellowish-white or brown coloration had an identical vertical order of xanthophores, iridophores, and melanophores, but yellowish-white skin had a thicker layer of iridophores and a thinner layer of melanophores than did brown skin. The thickness of the iridophore layer was proportional to the number of reflecting platelets within each iridophore. Skin showing green coloration also had three layers of dermal chromatophores, but the vertical order of xanthophores and iridophores was frequently reversed. Skin showing blue color had iridophores above the melanophores. In addition, the thickness of reflecting platelets in the blue tail was less than in yellowish-white or brown areas of the body. Skin with black coloration had only melanophores.  相似文献   

2.
Summary The skin of the lizard, Anolis carolinensis, changes rapidly from bright green to a dark brown color in response to melanophore stimulating hormone (MSH). Chromatophores responsible for color changes of the skin are xanthophores which lie just beneath the basal lamina containing pterinosomes and carotenoid vesicles. Iridophores lying immediately below the xanthophores contain regularly arranged rows of reflecting platelets. Melanophores containing melanosomes are present immediately below the iridophores. The ultrastructural features of these chromatophores and their pigmentary organelles are described. The color of Anolis skin is determined by the position of the melanosomes within the melanophores which is regulated by MSH and other hormones such as norepinephrine. Skins are green when melanosomes are located in a perinuclear position within melanophores. In response to MSH, they migrate into the terminal processes of the melanophores which overlie the xanthophores above, thus effectively preventing light penetration to the iridophores below, resulting in skins becoming brown. The structural and functional characteristics of Anolis chromatophores are compared to the dermal chromatophore unit of the frog.This study was supported in part by GB-8347 from the National Science Foundation.Contribution No. 244, Department of Biology, Wayne State University.The authors are indebted to Dr. Joseph T. Bagnara for his encouragement during the study and to Dr. Wayne Ferris for his advice and the use of his electron microscope laboratory.  相似文献   

3.
In the tadpole of the tree frog Hyla arborea, the color of the dorsal skin was dark brown. Dermal melanophores, xanthophores, and iridophores were scattered randomly under the subepidermal collagen layer (SCL). After metamorphosis, the dorsal color of the animal changed to green and the animal acquired the ability of dramatic color change, demonstrating that the dermal chromatophore unit (DCU) was formed at metamorphosis. Fibroblasts invaded the SCL and divided it into two parts: the stratum spongiosum (SS) and the stratum compactum (SC). The activity of collagenase increased at metamorphosis. The fibroblasts appeared to dissolve the collagen matrix as they invaded the SCL. Then, three types of chromatophores migrated through the SCL and the DCU was formed in the SS. The mechanism how the three types of chromatophores were organized into a DCU is uncertain, but different migration rates of the three chromatophore types may be a factor that determines the position of the chromatophores in the DCU. Almost an equal number of each chromatophore type is necessary to form the DCUs. However, the number of dermal melanophores in the tadpoles was less than the number of xanthophores and iridophores. It was suggested that epidermal melanophores migrated to the dermis at metamorphosis and developed into dermal melanophores. This change may account for smaller number of dermal melanophores available to form the DCUs.  相似文献   

4.
The striped pigment patterns in the flanks of zebrafish result from chromatophores deep within the dermis or hypodermis, while superficial melanophores associated with dermal scales add a dark tint to the dorsal coloration. The responses of these chromatophores were compared during the long-term adaptation of zebrafish to a white or a black background. In superficial skin, melanophores, xanthophores, and two types of iridophores are distributed in a gradient along the dorso-ventral axis independent of the hypodermal pigment patterns. Within one week the superficial melanophores and iridophores changed their density and/or areas of distribution, which adopted the dorsal skin color and the hue of the flank to the background, but did not affect the striped pattern. The increases or decreases in superficial melanophores are thought to be caused by apoptosis or by differentiation, respectively. When the adaptation period was prolonged for more than several months, the striped color pattern was also affected by changes in the width of the black stripes. Some black stripes disappeared and interstripe areas were emphasized with a yellow color within one year on a white background. Such long-term alteration in the pigment pattern was caused by a decrease in the distribution of melanophores and a concomitant increase in xanthophores in the hypodermis. These results indicate that morphological responses of superficial chromatophores contribute to the effective and rapid background adaptation of dorsal skin and while prolonged adaptation also affects hypodermal chromatophores in the flank to alter the striped pigment patterns.  相似文献   

5.
Iridophores isolated from bullfrog tadpoles were successfully cloned. In primary culture, the iridophores showed contraction of cell bodies by the addition of alkali-treated ACTH. The disappearance of reflecting platelets occurred in proliferating iridophores and many small black melanin granules were synthesized in the cells. The chromatophores now showed melanin dispersion by the addition of the above hormone. The findings suggest that iridophores transform into melanophores in vitro.  相似文献   

6.
The physiological response and ultrastructure of the pigment cells of Trematomus bernacchii, an Antarctic teleost that lives under the sea ice north of the Ross Ice Shelf, were studied. In the integument, two types of epidermal chromatophores, melanophores and xanthophores, were found; in the dermis, typically three types of chromatophores--melanophores, xanthophores, and iridophores--were observed. The occurrence of epidermal xanthophore is reported for the first time in fish. Dermal melanophores and xanthophores have well-developed arrays of cytoplasmic microtubules. They responded rapidly to epinephrine and teleost melanin-concentrating hormone (MCH) with pigment aggregation and to theophylline with pigment dispersion. Total darkness elicited pigment aggregation in the majority of dermal xanthophores of isolated scales, whereas melanophores remained dispersed under both light and dark conditions. Pigment organelles of epidermal and dermal xanthophores that translocate during the pigmentary responses are carotenoid droplets of relatively large size. Dermal iridophores containing large reflecting platelets appeared to be immobile.  相似文献   

7.
The dermal chromatophore unit   总被引:3,自引:3,他引:0       下载免费PDF全文
Rapid color changes of amphibians are mediated by three types of dermal chromatophores, xanthophores, iridophores, and melanophores, which comprise a morphologically and physiologically distinct structure, the dermal chromatophore unit. Xanthophores, the outermost element, are located immediately below the basal lamella. Iridophores, containing light-reflecting organelles, are found just beneath the xanthophores. Under each iridophore is found a melanophore from which processes extend upward around the iridophore. Finger-like structures project from these processes and occupy fixed spaces between the xanthophores and iridophores. When a frog darkens, melanosomes move upward from the body of the melanophore to fill the fingers which then obscure the overlying iridophore. Rapid blanching is accomplished by the evacuation of melanosomes from these fingers. Pale coloration ranging from tan to green is provided by the overlying xanthophores and iridophores. Details of chromatophore structure are presented, and the nature of the intimate contact between the chromatophore types is discussed.  相似文献   

8.
Clonal cultures were performed with the use of neural crest cells and their derivatives, chromatophores, from Xenopus laevis in order to elucidate the state of commitment in early embryogenesis. Neural crest cells that outgrew from neural tube explants were isolated and plated at clonal density. Cloned neural crest cells differentiated and gave rise to colonies that consisted of 1) only melanophores, 2) only xanthophores, or 3) melanophores and xanthophores. Xanthophores and iridophores, which differentiated in vitro, were also isolated and cloned. Cloned xanthophores proliferated in a stable fashion and did not lose their properties. On the other hand, cloned iridophores converted into melanophores as they proliferated. These results suggest that there is heterogeneity in the state of commitment of neural crest cells immediately after migration with regard to chromatophore differentiation and that iridophore determination is relatively labile (at least in vitro), whereas melanophore and xanthophore phenotypes are stable.  相似文献   

9.
We have studied the pigmentary system of the teleost Sparus aurata skin by electron microscopy and chromatographic analysis. Under electron microscopy, we found the dermis to contain the three major types of recognized chromatophores: melanophores, xanthophores and iridophores. Melanophores were more abundant in the dorsal region, whereas the iridophores were more abundant in the ventral region. The most important discovery was that of epidermal xanthophores. Epidermal xanthophores were the only chromatophores in the epidermis, something only found in S aurata and in a teleost species living in the Antartic sea. In contrast, the biochemical analysis did not establish any special characteristics: we found pteridine and flavin pigments located mostly in the pigmented dorsal region. Riboflavin and pterin were two of the most abundant coloured pigment types, but other colourless pigments such as xanthopterin and isoxanthopterin were also detected.  相似文献   

10.
Summary Melanophores, xanthophores, and iridophores from the skins of the two Antarctic fish speciesPagothenia borchgrevinki andTrematomus bernacchii were tested immunocytochemically for the presence of a variety of muscle proteins. Actin, myosin, and calmodulin, not surprisingly, were confirmed for all three chromatophore types of the two fishes, but the presence of caldesmon and calponin, both characteristic proteins of smooth muscle fibers, represents a new discovery. It is not known at this stage whether these proteins occur also in the chromatophores of other fishes and are not restricted to Antarctic species. Since, however, motility control of particles in fish chromatophores and the regulation of smooth muscle tension both involve the sympathetic nervous system, the presence of similar target proteins should not come as a surprise. The fact that none of the chromatophores tested positive for troponin shows that there is no close relationship between pigment cells and striated muscle. The lack of alpha-actinin in iridophores, but its presence in melanophores and xanthophores, is thought to be a reflection of the considerably greater pigment translocations within the latter two types of chromatophore cells.  相似文献   

11.
The appearance of the pseudo-albino phenotype was investigated in developing Senegalese sole (Solea senegalensis, Kaup 1858) larvae at morphological and molecular levels. In order to induce the development of pseudo-albinos, Senegalese sole larvae were fed Artemia enriched with high levels of arachidonic acid (ARA). The development of their skin pigmentation was compared to that of a control group fed Artemia enriched with a reference commercial product. The relative amount of skin melanophores, xanthophores and iridophores revealed that larval pigmentation developed similarly in both groups. However, results from different relative proportions, allocation patterns, shapes and sizes of skin chromatophores revealed changes in the pigmentation pattern between ARA and control groups from 33 days post hatching onwards. The new populations of chromatophores that should appear at post-metamorphosis were not formed in the ARA group. Further, spatial patterns of distribution between the already present larval xanthophores and melanophores were suggestive of short-range interaction that seemed to be implicated in the degradation of these chromatophores, leading to the appearance of the pseudo-albino phenotype. The expression profile of several key pigmentation-related genes revealed that melanophore development was promoted in pseudo-albinos without a sufficient degree of terminal differentiation, thus preventing melanogenesis. Present results suggest the potential roles of asip1 and slc24a5 genes on the down-regulation of trp1 expression, leading to defects in melanin production. Moreover, gene expression data supports the involvement of pax3, mitf and asip1 genes in the developmental disruption of the new post-metamorphic populations of melanophores, xanthophores and iridophores.  相似文献   

12.
In the integument of the red-spotted newt there occasionally appear patches of skin which are at the same time melanistic and iridescent. Such hyperpigmented patches have been found on the back, on the tail and on the dorsal surface of both fore and hind limbs. Cytological examination of several such areas revealed the presence of large numbers of chromatophores distributed throughout the dermis. The majority of the chromatophores consisted of atypically large and dendritic melanophores, which contained typical pigment granules. The iridescence resulted from a high incidence of iridophores. Xanthophores also were found in considerable abundance. This extensive and apparently random intermingling of melanophores, iridophores and xanthophores in limited areas constitutes a striking exception to the usual distributional patterns of pigment cells in this animal.  相似文献   

13.
Summary The structural changes in the chromatophores of Hyla arborea related to changes in skin color were studied by electron microscopy and reflectance microspectrophotometry. During a change from a light to a darker green color, the melanosomes of the melanophores disperse and finally surround the iridophores and partly the xanthophores. The iridophores change from cup-shape to a cylindrical or conical shape with a simultaneous change in the orientation of the platelets from being parallel to the upper surface of the iridophores to being more irregular. The xanthophores change from lens-shape to plate-shape. The color change from green to grey seems always to go through a transitional black-green or dark olive green to dark grey. During this change the xanthophores migrate down between the iridophores, and in grey skins they are sometimes found beneath them. The pterinosomes gather in the periphery of the cell, while the carotenoid vesicles aggregate around the nucleus. The iridophores in grey skin are almost ball-shaped with concentric layers of platelets. A lighter grey color arises from a darker grey by an aggregation of melanosomes. The chromatophore values previously defined for Hyla cinerea are applicable in Hyla arborea, and the ultrastructural studies support the assumptions previously made to explain these values.The author wishes to thank Drs. P. Budtz, J. Dyck and L.O. Larsen for valuable discussions and J. Dyck for kindly providing the spectrophotometer granted him by the Danish National Science Foundation. The skilled technical assistance of Mrs. E. Schiøtt Hansen is gratefully acknowledged. Permission was granted by the Springer-Verlag to republish the illustrations of W.J. Schmidt (1920)  相似文献   

14.
To provide histological foundation for studying the genetic mechanisms of color‐pattern polymorphisms, we examined light reflectance profiles and cellular architectures of pigment cells that produced striped, nonstriped, and melanistic color patterns in the snake Elaphe quadrivirgata. Both, striped and nonstriped morphs, possessed the same set of epidermal melanophores and three types of dermal pigment cells (yellow xanthophores, iridescent iridophores, and black melanophores), but spatial variations in the densities of epidermal and dermal melanophores produced individual variations in stripe vividness. The densities of epidermal and dermal melanophores were two or three times higher in the dark‐brown‐stripe region than in the yellow background in the striped morph. However, the densities of epidermal and dermal melanophores between the striped and background regions were similar in the nonstriped morph. The melanistic morph had only epidermal and dermal melanophores and neither xanthophores nor iridophores were detected. Ghost stripes in the shed skin of some melanistic morphs suggested that stripe pattern formation and melanism were controlled independently. We proposed complete‐ and incomplete‐dominance heredity models for the stripe‐melanistic variation and striped, pale‐striped, and nonstriped polymorphisms, respectively, according to the differences in pigment‐cell composition and its spatial architecture. J. Morphol. 274:1353–1364, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

15.
To determine whether or not the erythrophore originates from xanthophores in the dorsal skin of the brown frog, Rana ornativentris, we morphologically examined the differentiation and migration of the two chromatophore types and their pigmentary organelle formation. At an early tadpole stage, three kinds of chromatophores, xanthophores, iridophores, and melanophores, appeared in the subdermis, whereas the erythrophore did so just before the foreleg protrusion stage. By the middle of metamorphosis, most chromatophores other than erythrophores had migrated to the subepidermal space. Erythrophores, which appeared late in the subdermis, proliferated actively there during metamorphosis and finished moving into the subepidermal space by the completion of metamorphosis. Carotenoid vesicles and pterinosomes within the erythrophores and xanthophores showed several significant differences in structure. In xanthophores, carotenoid vesicles were abundant throughout life, whereas those in erythrophores decreased in number with the growth of the frogs. The fibrous materials contained in the pterinosomes were initially scattered but soon formed a concentric lamellar structure. In erythrophores, the lamellar structure began to form at the periphery of the organelles but at the center in xanthophores. In addition, the pterinosomes of erythrophores were uniform in size throughout development, while those of xanthophores showed a tendency to become smaller after metamorphosis. The pterinosomes of xanthophores were significantly larger than those of erythrophores. These findings suggest that an erythrophore is not a transformed xanthophore, although they resemble each other closely in many respects.  相似文献   

16.
In addition to melanophores and xanthophores, there existed two types of iridophore in the dermis of the scalycheek damselfish, Pomacentrus lepidogenys. There are dendritic iridophores which reflect white light-rays by Tyndall scattering, and the round or somewhat ellipsoidal iridophores which reflect rays with a relatively narrow spectral peak from blue to green through the non-ideal thin-film interference. Most of the dendritic iridophores were covered with xanthophores and were situated over melanophores, thus constituting a kind of chromatophore unit which produces a yellow or yellowish-green color. The characteristic yellowish-green hue of the integument results from a compound effect of small contributions by more elementary colors. During color changes of the skin, the position of the spectral peak does not shift. Unlike the iridophores of the blue damselfish, both types of iridophore of the scalycheek damselfish were found to be inactive. It appears, therefore, that the aggregation and dispersion of pigment within the melanophores is the primary mechanism responsible for the changes in color of this species.  相似文献   

17.
Aspects of the fine structure of the chromatophores and of other components of the eye of the blue-eye, Pseudomugil signifer , are presented. Comparisons are made with similar structures of the eye of the mosquitofish, Garnbusia affinis . The blue-eye has a well organized argentea but no tapetum. Two types of iridophores and melanophores are identified in the weal tract. The uveal tract also includes another presumed chromatophore, the lipopterinophore and an as yet unidentified cell type provisionally named weal polypodal cell. The blue iris of Pseudomugil is thought to be due to the mode of organization of the irideal type β iridophores.  相似文献   

18.
Albinism with a large variation in body color was found in a hatchery population of Japanese flounder. In addition to albinism, ambicoloration and pseudo-albinism were simultaneously observed in some individuals. Albinos had a remarkably lower number of melanophores on the scales of ocular side than wild-type individuals did, although no significant difference was observed in the numbers of xanthophores and iridophores. The intensity of body color significantly correlated with the number of melanophores among the albinos. No significant differences were observed in the intensity of body color and the number of melanophores between the ocular side and the ambicoloration area. Pseudo-albinism was accompanied by the reductions of melanophores and xanthophores, indicating the different expression patterns of chromatophores between albinism and pseudo-albinism. The combined effects of albinism and pseudo-albinism caused the disappearances of melanophores and xanthophores in the pseudo-albinism area of albinos. In addition to chromatophores, the different characteristics of several phenotypic traits were observed between albinos and wild-type individuals. Growth-related traits of the albinos were inferior to those of the wild-type individuals. Furthermore, the albinos had a larger pseudo-albinism area and a higher vertebral deformed rate than the wild-type individuals did. Individual multilocus heterozygosity and inbreeding coefficient measured by microsatellite loci did not show any indication that the albinos had higher inbreeding coefficient than the wild-type individuals did. This study demonstrated the expression patterns of chromatophores in the body color abnormalities of a flatfish species and the potential pleiotropic effects of an albinism gene on some phenotypic traits.  相似文献   

19.
Unusual light-reflecting pigment cells, “white pigment cells”, specifically appear in the periodic albino mutant (a p /a p ) of Xenopus laevis and localize in the same place where melanophores normally differentiate in the wild-type. The mechanism responsible for the development of unusual pigment cells is unclear. In this study, white pigment cells in the periodic albino were compared with melanophores in the wild-type, using a cell culture system and a tail-regenerating system. Observations of both intact and cultured cells demonstrate that white pigment cells are unique in (1) showing characteristics of melanophore precursors at various stages of development, (2) accumulating reflecting platelets characteristic of iridophores, and (3) exhibiting pigment dispersion in response to α-melanocyte stimulating hormone (α-MSH) in the same way that melanophores do. When a tadpole tail is amputated, a functionally competent new tail is regenerated. White pigment cells appear in the mutant regenerating tail, whereas melanophores differentiate in the wild-type regenerating tail. White pigment cells in the mutant regenerating tail are essentially similar to melanophores in the wild-type regenerating tail with respect to their localization, number, and response to α-MSH. In addition to white pigment cells, iridophores which are never present in the intact tadpole tail appear specifically in the somites near the amputation level in the mutant regenerating tail. Iridophores are distinct from white pigment cells in size, shape, blue light-induced fluorescence, and response to α-MSH. These findings strongly suggest that white pigment cells in the mutant arise from melanophore precursors and accumulate reflecting platelets characteristic of iridophores.  相似文献   

20.
White lethal (wl) is a recessive mutation affecting the differentiation of the three types of chromatophores in Xenopus laevis and eventually leading to the death of the mutants around stage 50. Melanophores appear at st. 33 but differentiate abnormally, remaining pale grey, and do not proliferate after st. 41. The rare xanthophores present contain only a few differentiated pterinosomes, and the iridophores consist of noniridescent white dots. When the albino gene (ap) is combined with wl, melanophores do not differentiate. Reciprocal heterotopic and orthotopic trunk neural crest grafts have shown that the defect is intrinsic to the neural crest cells but is not due, in the case of melanophores, to a tyrosinase deficiency as revealed by the dopa reaction. The mode of action of the gene, the abnormal pattern, and lethality are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号