首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Staphylococcal and streptococcal exotoxins, also known as superantigens, mediate a range of diseases including toxic shock syndrome, and they exacerbate skin, pulmonary and systemic infections caused by these organisms. When present in food sources they can cause enteric effects commonly known as food poisoning. A rapid, sensitive assay for the toxins would enable testing of clinical samples and improve surveillance of food sources. Here we developed a bead-based, two-color flow cytometry assay using single protein domains of the beta chain of T cell receptors engineered for high-affinity for staphylococcal (SEA, SEB and TSST-1) and streptococcal (SpeA and SpeC) toxins. Site-directed biotinylated forms of these high-affinity agents were used together with commercial, polyclonal, anti-toxin reagents to enable specific and sensitive detection with SD50 values of 400 pg/ml (SEA), 3 pg/ml (SEB), 25 pg/ml (TSST-1), 6 ng/ml (SpeA), and 100 pg/ml (SpeC). These sensitivities were in the range of 4- to 80-fold higher than achieved with standard ELISAs using the same reagents. A multiplex format of the assay showed reduced sensitivity due to higher noise associated with the use of multiple polyclonal agents, but the sensitivities were still well within the range necessary for detection in food sources or for rapid detection of toxins in culture supernatants. For example, the assay specifically detected toxins in supernatants derived from cultures of Staphylococcus aureus. Thus, these reagents can be used for simultaneous detection of the toxins in food sources or culture supernatants of potential pathogenic strains of Staphylococcus aureus and Streptococcus pyogenes.  相似文献   

3.
A globally disseminated strain of M1T1 group A Streptococcus (GAS) has been associated with severe infections in humans including necrotizing fasciitis and toxic shock syndrome. Recent clinicoepidemiologic data showed a striking inverse relationship between disease severity and the degree to which M1T1 GAS express the streptococcal cysteine protease, SpeB. Electrophoretic 2-D gel analysis of the secreted M1T1 proteome, coupled with MALDI-TOF mass spectroscopy, revealed that expression of active SpeB caused the degradation of the vast majority of secreted GAS proteins, including several known virulence factors. Injection of a SpeB+/SpeA- M1T1 GAS strain into a murine subcutanous chamber model of infection selected for a stable phase-shift to a SpeB-/SpeA+ phenotype that expressed a full repertoire of secreted proteins and possessed enhanced lymphocyte-stimulating capacity. The proteome of the SpeB-in vivo phase-shift form closely matched the proteome of an isogenic speB gene deletion mutant of the original M1T1 isolate. The absence or the inactivation of SpeB allowed proteomic identification of proteins in this M1T1 clone that are not present in the previously sequenced M1 genome including SpeA and another bacteriophage-encoded novel streptodornase allele. Further proteomic analysis of the M1T1 SpeB+ and SpeB- phase-shift forms in the presence of a cysteine protease inhibitor demonstrated differences in the expression of several proteins, including the in vivo upregulation of SpeA, which occurred independently of SpeB inactivation.  相似文献   

4.
Lipoteichoic acids (LTAs) are Gram-positive bacterial cell wall components that elicit mononuclear cell cytokine secretion. Cytokine-stimulating activity is thought to be dependent on retaining a high level of ester-linked D-alanine residues along the polyglycerol phosphate backbone. However, Streptococcus pyogenes LTA essentially devoid of D-alanine caused human and mouse cells to secrete as much IL-6 as LTA with a much higher D-alanine content. Furthermore, hemoglobin (Hb) markedly potentiates the stimulatory effect of various LTAs on mouse macrophages or human blood cells, regardless of their d-alanine content. LTA and Hb appear to form a molecular complex, based on the ability of each to affect the other's migration on native acrylamide gels, their comigration on these gels, and the ability of LTA to alter the absorption spectra of Hb. Because S. pyogenes is known to release LTA and secrete at least two potent hemolytic toxins, LTA-Hb interactions could occur during streptococcal infections and might result in a profound alteration of the local inflammatory response.  相似文献   

5.
Ngoumou G  Schaefer D  Mattes J  Kopp MV 《Cytokine》2004,25(4):172-178
BACKGROUND: IL-18 is a pleiotropic cytokine involved in the polarisation of T-cell response. This study was performed to determine whether or not IL-18 is detectable in phytohemagglutinin (PHA) or betalactoglobulin (BLG) stimulated supernatants of cord blood mononuclear cells (CBMC) and to study the in vitro effect of IL-18 on the interferon (IFN)-gaamma and IL-13 release of CBMC of healthy neonates. METHODS: CBMC of neonates were isolated by Ficoll density centrifugation. The cytokines IFN-gamma, IL-13 and IL-18 in the cell culture supernatants were measured using the ELISA technique following stimulation with a unspecific (PHA 20 microg/ml) and an allergen-specific stimulus (BLG 25 microg/ml). In order to study the in vitro effect of IL-18, CBMC were stimulated either with medium alone or with IL-18, IL-18 + PHA and IL-18 + BLG. RESULTS: IL-18 levels in supernatants of CBMC were low and did not vary significantly between unstimulated and PHA or BLG stimulated cell cultures (median 21.4; 23.5 and 15.5 pg/ml, respectively). IFN-gamma and IL-13 levels were significantly higher in response to PHA and BLG (PHA: IFN-gamma, 6154; IL-13, 4357; BLG: IFN-gamma, 801; IL-13, 249 pg/ml) compared to unstimulated cell cultures. The addition of IL-18 to PHA or BLG stimulated CBMC significantly enhanced the IFN-gamma release (PHA: 6154; PHA + IL-18: 13474, p = 0.0001; BLG: 801; BLG + IL-18: 1077, p = 0.008). In comparison to incubation without IL-18, the release of IL-13 was invariable or even reduced, when CBMC were stimulated with PHA + IL-18 (4026, p = 0.16) or BLG + IL-18 (124, p = 0.0001) compared to stimulation of CBMC with PHA (4357 pg/ml) or BLG (249 pg/ml) alone. CONCLUSIONS: IL-18 is detectable in supernatants of CBMC. We observed a significant effect of IL-18 + PHA as well as IL-18 + BLG on IFN-gamma release in vitro. Based on our findings we conclude that IL-18 could act as a strong TH1-inducing factor on stimulated CBMC also in vivo.  相似文献   

6.
Peripheral blood monocytes obtained from paracoccidioidomycosis patients and healthy individuals were preactivated with recombinant gamma interferon (IFN-gamma) in different concentrations (250, 500 and 1000 U/ml) and evaluated for fungicidal activity against Paracoccidiodes brasiliensis strain 18 (Pb 18, high-virulence strain) and strain 265 (Pb 265, low-virulence strain) by plating of cocultures and counting of colony-forming units, after 10 d. Monocytes from healthy individuals failed to present fungicidal activity against P. brasiliensis even after IFN-gamma activation at the three concentrations. However, patient monocytes activated with IFN-gamma (1000 U/ml) showed a significant fungicidal activity when compared to that obtained with non-activated or activated cells with other IFN-gamma concentrations (250 and 500 U/ml). Moreover, patient monocytes presented higher fungicidal activity than the control, even before the activation process. These results may be explained by the activation state of patients' cells as a function of the in vivo contact with the fungus, which was confirmed by their higher capacity to release H(2)O(2) in vitro. Unlike the results obtained with Pb 18, patient and control cells presented a significant fungicidal activity against Pb 265, after priming with IFN- gamma. These results are explained by the higher levels of TNF-alpha in supernatants of cultures challenged with Pb 265. Moreover, higher levels of the cytokine were obtained in patient cell supernatants. Taken together, our results suggest that for effective killing of P. brasiliensis by monocytes, an initial activation signal induced by IFN-gamma is necessary to stimulate the cells to produce TNF-alpha. This cytokine may be involved, through an autocrine pathway, in the final phase activation process. The effectiveness of this process seems to depend on the virulence of the fungal strain and the activation state of the challenged cells.  相似文献   

7.
The M1T1 strain remains the most frequently isolated strain from group A streptococcal (GAS) infection cases worldwide. We previously reported that M1T1 differs from the fully sequenced M1 SF370 strain. To better understand the reason for the persistence and increased virulence of M1T1, we analysed its secreted proteome and identified two virulence proteins that are not present in the sequenced M1 SF370 strain: streptococcal pyrogenic exotoxin A (SpeA) and a streptodornase D (SdaD) homologue. In the present study, we determined the nucleotide sequence of the M1T1 streptodornase and found that its deduced amino acid sequence is highly similar to other streptococcal streptodornases, and is most closely related to the SdaD of GAS strain M49. M1T1 Sda shares two highly conserved domains with several DNases and putative DNases in streptococci; however, it possesses a unique C-terminal amino acid sequence. Thus, we named the protein Sda1, and we detected the presence of the sda1 gene in 16 M1T1 clinical isolates. The cloned and expressed Sda1 degrades both streptococcal and mammalian DNA at physiological pH. Amino acid similarity analyses of known GAS deoxyribonucleases suggest that Sda1 may be a chimeric protein created through recombination events. Moreover, a natural mutation that resulted in longer Sda1 and SdaD as compared to other GAS DNases was found to confer increased activity on the protein. Analysis of the sequences flanking sda1 determined that it is carried by a prophage or a prophage-like element inserted in the tRNA-Ser gene of M1T1 GAS. Ongoing studies in our laboratory aim to determine the contribution of Sda1 to the virulence of this globally disseminated M1T1 strain.  相似文献   

8.
THE purpose of this study was to investigate the effects of Tityus serrulatus venom (TSV) on murine peritoneal macrophages evaluated in terms of activation. The effects of crude TSV were analysed by detection of cytokines, oxygen intermediate metabolites (H2O2) and nitric oxide (NO) in supernatants of peritoneal macrophages. Several functional bioassays were employed including an in vitro model for envenomating: cytotoxicity of TSV was assessed using the lyses percentage. Tumor necrosis factor (TNF) activity was assayed by measuring its cytotoxic activity on L-929 cells, and interleukin-6 (IL-6) and interferon-gamma (IFN-gamma) were assayed by enzyme-linked immunosorbent assay, whereas NO levels were detected by Griess colorimetric reactions in culture supernatant of macrophages incubated with TSV and subsequently exposed to either lipopolysaccharide or IFN-gamma. Incubation of macrophages with TSV increased production of IL-6 and IFN-gamma in a dose-dependent manner. TNF production was not detected in supernatants treated with TSV at any concentration. The increase in IL-6 secretion was not associated with concentration-dependent cytoxicity of TSV on these cells. These data suggest that the cytotoxicity does not appear to be the main cause of an increased cytokine production by these cells. Although NO is an important effector molecule in macrophage microbicidal activity, the inducing potential of the test compounds for its release was found to be very moderate, ranging from 125 to 800 mM. Interestingly, NO levels of peritoneal macrophages were increased after IFN-gamma. Moreover, NO production had an apparent effect on macrophage activity. The results obtained here also shown that the TSV induces an important elevation in H2O2 release. These results combined with NO production suggest that TSV possesses significant immunomodulatory activities capable of stimulating immune functions in vitro.  相似文献   

9.
Patients with rheumatoid arthritis (RA) treated with anti-tumor necrosis factor (TNF) strategies have an increased susceptibility to infections, especially those caused by intracellular pathogens. In this study we assessed the cytokine production capacity in patients with RA and we further investigated whether anti-TNF therapy modulates the production of pro-inflammatory cytokines involved in the resistance against infections. Whole blood cultures from 10 RA patients and 10 healthy controls were stimulated with heat-killed Candida albicans, Salmonella typhimurium, Staphyloccocus aureus, Aspergillus fumigatus or Mycobacterium tuberculosis and production of interleukin (IL)-1beta, IL-6, IL-10, interferon (IFN)-gamma and TNF-alpha was measured. Before anti-TNF therapy, whole blood cultures from RA patients released significantly less IFN-gamma than healthy controls after stimulation with all tested microorganisms. Short-term anti-TNF therapy did not have an inhibitory effect on the release of the cytokines tested. We conclude that cells of patients with RA have a strongly reduced production capacity of IFN-gamma after bacterial challenge. Although short-term therapy with anti-TNF agents did not further decrease the release of other proinflammatory cytokines, the combination of defective IFN-gamma production in basal conditions and TNF neutralization during anti-TNF therapy is likely to be responsible for the higher susceptibility to infections in patients with RA.  相似文献   

10.
Immune response to superoxide dismutase in group A streptococcal infection   总被引:2,自引:0,他引:2  
Extracellular localisation of manganese-dependent superoxide dismutase (SodA) by group A streptococcus (GAS) may have a role in protection of this pathogenic bacterium from exogenously produced reactive oxygen species. In this study we show that SodA is found both in surface protein extracts and in culture supernatants of GAS. To investigate whether SodA is a possible vaccine candidate outbred Quackenbush mice were subcutaneously vaccinated with recombinant SodA. Strong antibody responses which were moderately opsonic were elicited. These antibodies were unable to protect mice from intraperitoneal challenge with M1 GAS. We also show that SodA and p145 (a conserved peptide from the M-protein) antibodies are present at significantly higher levels amongst patients with rheumatic heart disease than in control subjects from the same endemic region. The higher SodA antibody levels in patients may be indicative of a role for this protein in pathogenesis of rheumatic heart disease but are more likely to be a marker of recent or recurrent streptococcal infection.  相似文献   

11.
Superantigens (SAgs) play an important role in the pathogenesis of severe invasive infections caused by Group A Streptococcus (GAS). We had shown earlier that the expression of streptococcal cysteine protease SpeB results in partial loss of the immune-stimulating activity of the native secreted GAS SAgs, namely the streptococcal pyrogenic exotoxins produced by the globally disseminated M1T1 GAS strain, associated with invasive infections worldwide. In this study, we examined the susceptibility of each of the M1T1 recombinant SAgs to degradation by rSpeB. Whereas SmeZ was degraded completely within 30 min of incubation with rSpeB, SpeG, and SpeA were more resistant and SpeJ was completely unaffected by the proteolytic effects of this protease. Proteomic analyses demonstrated that the order of susceptibility of the M1T1 SAgs to SpeB proteolysis is unaltered when they are present in a mixture that reflects their native physiological status. As expected, the degradation of SmeZ abolished its immune stimulatory activity. In silico sequence disorder and structural analyses revealed that SmeZ, unlike the three other structurally related SAgs, possesses a putative SpeB cleavage site within an area of the protein likely to be exposed to the surface. The study provides evidence for the effect of subtle structural differences between highly similar SAgs on their biological activity.  相似文献   

12.
Streptococcus pyogenes that produces the bacterial superantigen streptococcal pyrogenic exotoxin A (SpeA) is associated with outbreaks of streptococcal toxic shock syndrome (STSS) in the United States and Europe. SpeA stimulates Vβ2.1, 12.2, 14.1, and 15.1-positive T cells, and the lymphokine production from the activated T cells is believed to result in the symptoms associated with STSS. The T-cell receptor (TCR)–SpeA interaction is crucial for superantigenic activity, and studies were undertaken to determine regions of both SpeA and the TCR involved in the formation of MHC/SpeA/TCR complexes. Previously, recombinant toxins encoded by speA alleles 1, 2, and 3 as well as toxins resulting from 19 distinct point mutations in speA1 were generated. Here, these 22 toxin forms were incubated with human peripheral blood mono- nuclear cells (PBMCs), and the percentages of T-cell blasts bearing Vβ chains 2.1, 12.2, and 14.1 were quantified by flow cytometry. The analysis indicates that the residues of SpeA needed for a productive TCR interaction differ for each Vβ chain examined. An amino acid substitution at only one site significantly affected the toxin’s ability to stimulate Vβ2.1-expressing T cells, three individual amino acid substitutions resulted in significant loss of ability to stimulate Vβ12.2-expressing T cells, and substitution at 13 individual sites significantly affected the ability to stimulate Vβ14.1-expressing T cells. To elucidate the regions of the Vβ chains that interacted with SpeA, synthetic peptides representative of the human Vβ12.2 complementary-determining regions (CDRs) 1, 2, and 4 were used to block the SpeA-mediated proliferation of human PBMCs. The CDR1, CDR2 and CDR4 peptides were each able to block proliferation, with the activity of CDR1 > CDR2 > CDR4. Combinations of CDR1 peptide with CDR2 or CDR4 peptides allosterically enhanced the ability of each to block proliferation, suggesting SpeA has distinct binding sites for the CDR loops.  相似文献   

13.
Our epidemiologic studies on invasive Group A Streptococci (GAS) infections identified specific HLA class II haplotypes/alleles conferring high-risk or protection from streptococcal toxic shock syndrome with a strong protection conferred by the DRB1*15/DQB1*06 haplotype. We used HLA-transgenic mice to provide an in vitro and in vivo validation for the direct role of HLA class II allelic variation in streptococcal toxic shock syndrome. When splenocytes from mice expressing the protective HLA-DQB1*06 (DQ6) allele were stimulated with a mixture of streptococcal superantigens (SAgs), secreted by the prevalent M1T1 strain, both proliferative and cytokine responses were significantly lower than those of splenocytes from mice expressing the neutral DRB1*0402/DQB1*0302 (DR4/DQ8) alleles (p < 0.001). In crisscross experiments, the presentation of SAgs to pure T cells from either the DQ6 or the DR4/DQ8 mice resulted in significantly different levels of response depending on the HLA type expressed on the APCs. Presentation by HLA-DQ6 APCs elicited significantly lower responses than the presentation by HLA-DR4/DQ8 APCs. Our in vitro data were supported by in vivo findings, as the DQ6 mice showed significantly longer survival post-i.v. infection with live M1T1 GAS (p < 0.001) and lower inflammatory cytokine responses as compared with the DR4/DQ8 mice (p < 0.01). The data presented here provide evidence for a direct role of HLA class II molecules in modulating responses to GAS SAgs and underscore the dominant role of HLA class II allelic variation in potentiating the severity of GAS systemic infections.  相似文献   

14.
IL-4 specifically induced IgE production by peripheral blood lymphocytes or by tonsil or spleen cells from healthy donors. IL-4-induced IgE synthesis was dependent on CD4+ T cells and monocytes and was blocked by IFN-gamma, IFN-alpha, and prostaglandin E-2 (PGE-2). These substances also inhibited IL-4-induced CD23 expression and subsequent release of soluble CD23 (s-CD23). In addition, IgE production was blocked by F(ab')2 fragments of an mAb against CD23. In contrast, IL-5 enhanced IL-4-induced IgE production, provided IL-4 was added at nonsaturating concentrations. This increase in IgE production correlated quantitatively with an enhanced release of s-CD23. Collectively, these results indicate that there is a correlation between s-CD23 release and IgE production. However, s-CD23 fractionated from supernatants of the lymphoblastoid cell line RPMI-8866 was ineffective in inducing IgE production in the absence of IL-4, but acted synergistically with suboptimal concentrations of IL-4. In addition, it is demonstrated that alloreactive T-cell clones produced varying concentrations of IL-4, IL-2, or IFN-gamma upon stimulation. Only supernatants of 2/4 of these T-cell clones induced a low degree of IgE synthesis, but in the presence of anti-IFN-gamma antibodies, all four supernatants induced a strong induction of IgE production. This IgE synthesis was blocked specifically by anti-IL-4 antibodies, indicating that IL-4 is the sole inducer of IgE synthesis. Our findings demonstrate that IL-4-induced IgE production involves complex interactions of T cells, B cells, and monocytes and is positively modulated by IL-5 and s-CD23 but down-regulated by IFN-gamma, IFN-alpha, and PGE-2, respectively.  相似文献   

15.
Leukotriene A4 hydrolase activity of human airway epithelial cells   总被引:2,自引:0,他引:2  
Human tracheal epithelial cells were incubated with LTA4 and metabolic products were identified in extracted supernatants by high pressure liquid chromatography, ultraviolet spectroscopy, and gas chromatography-mass spectrometry. In the presence of epithelial cells, LTA4 was converted to LTB4, but not to LTC4 or LTD4. Maximum LTB4 was released at an LTA4 concentration of 3 microM and had occurred by 30 min. LTB4 release was increased in the presence of albumin, but was not affected by extracellular calcium or A23187. This LTA4 hydrolase activity had a slower time course and could not be clearly inactivated by repeated exposure to substrate as is the case for previously described LTA4 hydrolase enzymes. This hydrolase appears to have novel biochemical characteristics.  相似文献   

16.
Lagrelius M  Jones P  Franck K  Gaines H 《Cytokine》2006,33(3):156-165
Cytokine profile assessment is important to characterize immune responses to pathogens. To identify optimal time points for determination of cytokine profiles, we diluted whole blood 1:10, to enable daily cytokine measurements during one week. Cultures for 10 blood donors were set up in the presence of phytohemagglutinin (PHA), cytomegalovirus (CMV) or Candida. Supernatant levels of interleukin-2 (IL-2), IL-4, IL-5, IL-6, IL-10, IL-12, IL-13, IL-17, interferon-gamma (IFN-gamma), granulocyte/macrophage colony-stimulating factor, and tumor necrosis factor-alpha (TNF-alpha), were determined by multiplex technique, and intracellular cytokine staining (ICS) was employed to detect IFN-gamma, IL-2, IL-4 and IL-13 in CD3+ cells. The multiplex analysis detected representative cytokine profiles for the majority of the cytokines on day 7 by identifying peak levels or good correlation with peak levels, with the exception of IL-2 and TNF-alpha in PHA and CMV cultures and IL-10 in PHA cultures. For these cytokines an extracellular measurement on day 2-3 would be appropriate. The intracellular cytokines showed distinct kinetics for IFN-gamma and IL-2, while IL-4 and IL-13 were not detected at all with ICS. In conclusion, the combination of whole blood cultures with multiplex analysis is a simple and powerful tool that can be used to identify detailed cytokine profiles of specific cell-mediated immune responses.  相似文献   

17.
An understanding of T cell responses that are crucial for control of Mycobacterium tuberculosis (MTB) has major implications for the development of immune-based interventions. We studied the frequency of purified protein derivative (PPD)-specific CD3) cells expressing interleukin-2 (IL)-2, gamma interferon (IFN)-gamma, tumor necrosis factor (TNF)-alpha and IL-10 in HIV-negative pulmonary tuberculosis patients (TB, n=30) as well as in healthy individuals (controls, n=21) from Central Africa. Increased frequencies of PPD-stimulated CD3+ cells expressing IL-2, IFN-gamma, and TNF-alpha in TB were seen when compared with frequencies of controls. The presence of type 1 cytokine biased responses in TB patients was supported by a shift in the distribution pattern of cytokine expression from exclusively IL-2 or TNF-alpha expression seen in controls towards an increased frequency of IFN-gamma/IL-2 or IFN-gamma/TNF-alpha co-expression in TB. Higher levels of PPD-induced IFN-gamma in the supernatants from TB patients than from controls were found, which correlated with its intracellular expression. PPD was a weak inducer of IL-10 in T cells and insufficient in promoting cytokine production in TCRgammadelta+CD3+ cells. Non-specific stimulation with PMA and ionomycin revealed increased frequencies of CD4+ cells expressing IFN-gamma in controls, while expression of IL-2, IL-4, IL-10, IL-13, and TNF-alpha was not different. Non-specific cytokine responses of TCRgammadelta+CD3+ cells were similar in all groups. Pulmonary TB in Central Africa is associated with enhanced expression and secretion of specifically induced cytokines that are frequently implicated in host defense against MTB.  相似文献   

18.
Traditional vaccines consisting of whole attenuated micro-organisms, or microbial components administered with adjuvant, have been demonstrated as one of the most cost-effective and successful public health interventions. Their use in large scale immunisation programs has lead to the eradication of smallpox, reduced morbidity and mortality from many once common diseases, and reduced strain on health services. However, problems associated with these vaccines including risk of infection, adverse effects, and the requirement for refrigerated transport and storage have led to the investigation of alternative vaccine technologies. Peptide vaccines, consisting of either whole proteins or individual peptide epitopes, have attracted much interest, as they may be synthesised to high purity and induce highly specific immune responses. However, problems including difficulties stimulating long lasting immunity, and population MHC diversity necessitating multiepitopic vaccines and/or HLA tissue typing of patients complicate their development. Furthermore, toxic adjuvants are necessary to render them immunogenic, and as such non-toxic human-compatible adjuvants need to be developed. Lipidation has been demonstrated as a human compatible adjuvant for peptide vaccines. The lipid-core-peptide (LCP) system, incorporating lipid adjuvant, carrier, and peptide epitopes, exhibits promise as a lipid-based peptide vaccine adjuvant. The studies reviewed herein investigate the use of the LCP system for developing vaccines to protect against group A streptococcal (GAS) infection. The studies demonstrate that LCP-based GAS vaccines are capable of inducing high-titres of antigen specific IgG antibodies. Furthermore, mice immunised with an LCP-based GAS vaccine were protected against challenge with 8830 strain GAS.  相似文献   

19.
Immune-stimulating microbiological components like lipopolysaccharide (LPS), lipoteichoic acid (LTA) and zymosan bound onto surfaces lead to severe problems when brought in contact with the organism via surgical instruments or implants. We have shown, in recent studies, that it is possible to detect different immune-stimulating components directly on the surface, via an indirect detection method, using human whole-blood and the monocyte reaction to measure the inflammatory mediator release (IL-1beta) by ELISA. With regard to the inactivation of pyrogenic substances, we present a method based on the application of a low-pressure microwave plasma discharge working at low temperatures. We found a fast (10 s to a few minutes) removal rate of the immune-stimulating competence for LPS, LTA and zymosan. To mimic the bacterial cell-wall, LPS in combination with muramyl dipeptide was employed and the decreasing rate of the inflammatory signal did not differ from pure LPS.  相似文献   

20.
Whole spleen cell cultures from SCID mice release high levels of IFN-gamma when exposed to heat-killed Listeria monocytogenes (HKL). This microbe-induced and T cell-independent response depends on both macrophages (MPhi) and NK cells: HKL-stimulated MPhi release TNF-alpha and IL-12, which together activate NK cells for IFN-gamma release. We show here that this cytokine-mediated activation cascade can be modulated by a mAb against the MPhi surface glycoprotein F4/80. HKL-induced IL-12, TNF-alpha, and IFN-gamma in SCID whole spleen cell cultures was inhibited by coincubation with anti-F4/80 mAb whereas IL-1 and IL-10 were enhanced. Both effects were apparent at mRNA and protein release levels. Whereas inhibitory activities were F4/80 Ag specific, stimulatory effects were Fc dependent and nonspecific. Furthermore, cytokine inhibition by anti-F4/80 was only apparent when MPhi and NK cells were present simultaneously and in close vicinity, indicating that direct cell-to-cell contact is a prerequisite. These data suggest a novel pathway for microbe-induced MPhi/NK cell interaction involving direct cell-to-cell signaling and give the first evidence for a functional role of the MPhi surface glycoprotein F4/80.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号