首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Spectroscopy studies of absorption and circular dichroism of native PPO II and azide PPO II complex demonstrate two new absorptions at 375 nm and 500 nm after azide's binding with PPO II, which are assigned as the terminal azide to copper charge transfer transitions o nb-to-copper and v nb-to-copper charge transfer transitions respectively. FT-IR spectra also demonstrate that the azide binds in terminal geometry with one of type-3 coppers. The interaction between azide and PPO II is discussed. One terminal azide's binding with one type-3 copper improves the activity of PPO II and the other three azides' further binding in terminal geometry with the type-3 coppers decreases the activity. We theorize that steric hindrance of azides makes oxygen difficult to bind in the active site.  相似文献   

2.
The purification of polyphenol oxidase from tobacco.   总被引:14,自引:0,他引:14  
A new polyphenol oxidase (PPO) named PPO II was purified from tobacco (Nicotiana tobacum) by using acetone powder, ammonium sulfate precipitation, and column chromatography on DEAE-Sephadex A-50, Sephadex G-75, and CM-Sephadex C-50. It has an active site of a pair of type 3 coppers bridged to phenolate oxygen, which represents a new catalytic mechanism for polyphenol oxidase. PAGE, SDS-PAGE, and matrix-assisted laser desorption/ionization-time of flight mass spectrometry of the purified enzyme demonstrated that the enzyme is a single band with a molecular mass 35,600 Da. Biochemical characteristics include the optimum pH at 6.0, optimum temperature at 40 degrees C, and K(m) of 1.2 mM for catechol as substrate (pH 6.5, 30 degrees C). Substrate specificity studies indicate that the enzyme is of the catechol oxidase family. PPO II inhibits cultures of Escherichia coli and it accumulates on the wounded sites of tobacco leaves indicating that it may act as a defense role in plant defense systems.  相似文献   

3.
Summary Tissue browning that frequently results in the early death of bamboo shoots in vitro correlated directly with polyphenol oxidase (PPO, EC 1.10.3.1) activity and inversely with titratable acidity. It was unrelated to the level of endogenous phenols. During the course of culture, timing of PPO activity paralleled that of explant browning. Browning was highest among shoots cultured in a medium of pH 8, which was consistent with the pH optinum of the bamboo enzyme. The pH optimum was first determined with the crude enzyme, then verified with two purified isozymes. Stability of the bamboo PPO was also highest at pH 10. PPO activities of the severely browning Dendrocalamus latiflorus, the moderately browning Phyllostachys nigra, and the relatively non-browning Bambusa oldhamii were inhibited strongly by ascorbic acid, cysteine, sodium diethyldithiocarbamate, and sodium sulfite. But characterization of bamboo PPO according to enzyme inhibitors was not possible because enzyme extracts of the three species gave varied responses to the traditional substances. Nutrient medium addenda of some PPO inhibitors, namely ascorbic acid, cysteine, kojic acid, and thiourea, mainly enhanced browning. However, ferulic acid at 3 mM and lower concentrations reduced the number of brown shoots per culture, although not the percentage of cultures that browned. Polyvinylpyrrolidone failed completely to suppress browning. The two purified isozymes showed different temperature optima for PPO activity: 60°C and 65°C. The purified isozymes displayed a substrate preference for dopamine, or a cathecol oxidase characteristics.  相似文献   

4.
Polyphenol oxidase (PPO) of nettle (Urtica dioica L.) was extracted and purified through (NH4)2SO4 precipitation, dialysis, and CM-Sephadex ion-exchange chromatography and was used for its characterization. The PPO showed activity to catechol, 4-methylcatechol, L-3,4-dihydroxyphenylalanine (L-DOPA), L-tyrosine, p-cresol, pyrogallol, catechin and trans-cinnamic acid. For each of these eight substrates, optimum conditions such as pH and temperature were determined and L-tyrosine was found to be one of the most suitable substrates. Optimum pH and temperature were found at pH 4.5 and 30°C respectively and Km and Vmax values were 7.90?×?10?4?M, and 11290?EU/mL for with L-tyrosine as substrate. The inhibitory effect of several inhibitors, L-cysteine chloride, sodium azide, sodium cyanide, benzoic acid, salicylic acid, L-ascorbic acid, glutathione, thiourea, sodium diethyl dithiocarbamate, β-mercaptoethanol and sodium metabisulfite were tested. The most effective was found to be sodium diethyl dithiocarbamate which acted as a competitive inhibitor with a Ki value of 1.79?×?10?9?M. In addition one isoenzyme of PPO was detected by native polacrylamide slab gel electrophoresis.  相似文献   

5.
It was found that Acidithiobacillus thiooxidans has sulfite:ubiquinone oxidoreductase and ubiquinol oxidase activities in the cells. Ubiquinol oxidase was purified from plasma membranes of strain NB1-3 in a nearly homogeneous state. A purified enzyme showed absorption peaks at 419 and 595 nm in the oxidized form and at 442 and 605 nm in the reduced form. Pyridine ferrohaemochrome prepared from the enzyme showed an α-peak characteristic of haem a at 587 nm, indicating that the enzyme contains haem a as a component. The CO difference spectrum of ubiquinol oxidase showed two peaks at 428 nm and 595 nm, and a trough at 446 nm, suggesting the existence of an aa 3-type cytochrome in the enzyme. Ubiquinol oxidase was composed of three subunits with apparent molecular masses of 57 kDa, 34 kDa, and 23 kDa. The optimum pH and temperature for ubiquinol oxidation were pH 6.0 and 30 °C. The activity was completely inhibited by sodium cyanide at 1.0 mM. In contrast, the activity was inhibited weakly by antimycin A1 and myxothiazol, which are inhibitors of mitochondrial bc 1 complex. Quinone analog 2-heptyl-4-hydoroxyquinoline N-oxide (HOQNO) strongly inhibited ubiquinol oxidase activity. Nickel and tungstate (0.1 mM), which are used as a bacteriostatic agent for A. thiooxidans-dependent concrete corrosion, inhibited ubiquinol oxidase activity 100 and 70% respectively.  相似文献   

6.
A 1.6 kb gene encoding a cholesterol oxidase (choR) from a local isolate, Rhodococcus sp. PTCC 1633 was cloned into pET23a and the highly expressed recombinant enzyme was purified from the cell lysate of IPTG-induced Escherichia coli BL21(DE3)pLysS with one-step absorption on cholesterol. The purified protein had a molecular mass of 55 kDa, isoelectric point at about pH 9.0 and absorption peaks at 280, 380 and 460 nm, indicating that the enzyme is a flavoprotein. The optimum pH and temperature for the recombinant enzyme were 7.0 and 50°C, respectively. Steady-state kinetic revealed that the cholesterol oxidase had a K m of 32 μM. This study is the first report concerning expression and one-step purification of a gene encoding cholesterol oxidase from Rhodococcus spp. This study revealed that this enzyme is a type II cholesterol oxidase.  相似文献   

7.
Polyphenol oxidase (PPO) was partially purified from dill by (NH4)2SO4 precipitation followed by dialysis and gel filtration chromatography. Polyphenol oxidase activity was measured spectrophotometrically at 420 nm using catechol, dopamine and chlorogenic acid as substrates. Optimum pH, temperature, and ionic strength were determined with three substrates. The best substrate of dill PPO was found to be chlorogenic acid. Some kinetic properties of the enzyme such as Vmax, KM and Vmax/KM were determined for all three substrates. The effects of various inhibitors on the reaction catalysed by the enzyme were tested and I50 values calculated. The most effective inhibitor was l-cysteine. Activation energies, Ea, were determined from the Arrhenius equation. In addition, activation enthalpy, ΔHa, and Q10 values of the enzyme were also calculated.  相似文献   

8.
Shao J  Ge H  Yang Y 《Biotechnology letters》2007,29(6):901-905
A partially purified potato polyphenol oxidase (PPO) was immobilized in a cross-linked chitosan–SiO2 gel and used to treat phenol solutions. Under optimized conditions (formaldehyde 20 mg/ml, PPO 4 mg/ml and pH 7.0), the activity of immobilized PPO was 1370 U/g and its K m value for catechol was 12 mm at 25°C. The highest activity of immobilized enzyme was at pH 7.4. Immobilization stabilized the enzyme with 73 and 58% retention of activity after 10 and 20 days, respectively, at 30°C whereas most of the free enzyme was inactive after 7 days. The efficiency of removing phenol (10 mg phenol/l) by the immobilized PPO was 86%, and about 60% removal efficiency was retained after five recycles. The immobilized PPO may thus be a useful for removing phenolic compounds from industrial waste-waters.  相似文献   

9.
槐尺蠖多酚氧化酶的纯化及酶学特征   总被引:6,自引:2,他引:6  
经40%饱和度硫酸铵分级沉淀,Sephadex G-100凝胶过滤等步骤,将槐尺蠖Semiothisa cinerearia Bremer et Grey 多酚氧化酶纯化,纯化倍数为6.96倍。该酶对焦性没食子酸,邻苯二酚和L多巴的Km值分别为0.23 mmol/L, 0.48 mmol/L和0.49 mmol/L。多酚氧化酶在pH 7.0,37℃时活性最高,并在40℃以上条件下,随着保温时间的延长酶活力下降。用槲皮苷和硫脲作抑制剂对该酶活性的抑制结果表明,这两种抑制剂分别属于竞争性和非竞争性抑制剂。  相似文献   

10.
Two polyphenoloxidases (PPO I and PPO III, EC 1.10.3.1) were extracted and partially purified from sago palm pith by hydroxylapatite chromatography, DEAE-cellulose chromatography and gel filtration. Both purified isozymes gave a single activity band on polyacrylamide gel electrophoresis. The molecular weights of both enzymes were estimated to be 40,000. They had the same pH optima of 6.5 but different temperature optima, 35°C for PPO I and 45°C for PPO III. PPO I was stable at neutral to alkaline pH and PPO III at acidic pH. PPO III was somewhat more stable than PPO I when incubated at various temperatures for 15 min. PPO I and PPO III oxidized well DL-epicatechin and d-catechin, respectively. Both enzymes were strongly inhibited by KCN, Na-diethyldithiocarbamate and NaHSO3.  相似文献   

11.
Indole-3-acetaldehyde oxidase (IAAld-oxidase) occurs in pea in two forms, of which the first, more active enzyme, has its pH optimum at 4.5, while the second, barely half as active, has a pH optimum at 7.0. Only the pH 4.5 oxidase can be resolved from the acetone powder. Besides IAA1d the more stable IA1d was used as substrate in testing the enzymatic activity. The pea enzyme seems not to be a dismutase since indolylmethanol or indolylethanol were not formed as products. Pyridine nucleotide coenzymes did not activate the partially purified enzyme. The pH 4.5 oxidase was inhibited by more than 50 % by IAA > L-asp > tryptophol > indoleacetylaspartic acid > 2,4-D (at 1 mM concentration). The pH 7.0 oxidase was inhibited relatively more weakly, a stronger than 50 % inhibition was caused only by NAA > L-asp. The oxidases were clearly distinguished by the response to L-asparagine (1 mM): the activity of the pH 4.5 oxidase was increased (+ 12 %), while the activity of the pH 7.0 oxidase was decreased (-71 %). In preliminaryin vitro experiments the phytohormones (1 mM) kinetin and GA3 increased the conversion of IAAld to IAA, while ABA decreased it.  相似文献   

12.
While a long shelf life for fruit products is highly desired, enzymatic browning is the main cause of quality loss in fruits and is therefore a main problem for the food industry. In this study polyphenol oxidase (PPO), the main enzyme responsible for browning was isolated from mamey fruit (Pouteria sapota) and characterized biochemically. Two isoenzymes (PPO 1 and PPO 2) were obtained upon ammonium sulfate precipitation and hydrophobic and ion exchange chromatography; PPO 1 was purified up to 6.6-fold with 0.28% yield, while PPO 2 could not be characterized as enzyme activity was completely lost after 24 h of storage. PPO 1 molecular weight was estimated to be 16.1 and 18 kDa by gel filtration and SDS-PAGE, respectively, indicating that the native state of the PPO 1 is a monomer. The optimum pH for PPO 1 activity was 7. The PPO 1 was determined to be maximum thermally stable up to 35 °C. Kinetic constants for PPO 1 were Km = 44 mM and Km = 1.3 mM using catechol and pyrogallol as substrate, respectively. The best substrates for PPO 1 were pyrogallol, 4-methylcatechol and catechol, while ascorbic acid and sodium metabisulfite were the most effective inhibitors.  相似文献   

13.
Glycolate oxidase was purified to apparent homogeneity from the brown alga Spatoglossum pacificum Yendo. The 1326-fold purified glycolate oxidase enzyme exhibited a specific activity of 22. 4 micromoles glyoxylate formed ·min?1·mg protein?1. The molecular weight of the native enzyme was estimated to be 230,000 by gel filtration. The subunit molecular weight of the enzyme was determined to be 49,000 by sodium dodecyl sulfate–polyacrylamide gel electrophoresis, suggesting that the native enzyme is a tetramer. There were two absorption peaks at 345 and 445 nm, indicating that glycolate oxidase is a flavoprotein. This enzyme had a high isoelectric point (pI 9.6) and a high pH optimum (pH 8.3). The Km values for glycolate and l -lactate were 0.49 and 5.5 mM, respectively. This enzyme also had a broad specificity for other straight-chain α-hydroxy acids but not for β-hydroxyacids. Cyanide, azide, N-ethylmaleimide, and p-chloromercuribenzoic acid did not affect the enzyme, whereas 2-pyridylhydroxymethanesulfonic acid strongly inhibited it. These properties of glycolate oxidase from the brown alga S. pacificum are similar to the properties of the glycolate oxidasesfrom higher plants. Polyclonal antibodies raised against the polypeptide fragment of Spatoglossum glycolate oxidase could recognize glycolate oxidase from Spinacia oleracea L., although the cross-reactivity was weak. The N-terminal sequence of two internal polypeptide fragments of the enzyme from S. pacificum showed a high degree of similarity to that of glycolate oxidase from higher plants. These results suggest that glycolate oxidase from higher plants and brown algae share the same ancestral protein.  相似文献   

14.
Potato peel from food industrial waste is a good source of polyphenol oxidase (PPO). This work illustrates the application of an aqueous two-phase system (ATPS) for the extraction and purification of PPO from potato peel. ATPS was composed of polyethylene glycol (PEG) and potassium phosphate buffer. Effect of different process parameters, namely, PEG, potassium phosphate buffer, NaCl concentration, and pH of the system, on partition coefficient, purification factor, and yield of PPO enzyme were evaluated. Response surface methodology (RSM) was utilized as a statistical tool for the optimization of ATPS. Optimized experimental conditions were found to be PEG1500 17.62% (w/w), potassium phosphate buffer 15.11% (w/w), and NaCl 2.08 mM at pH 7. At optimized condition, maximum partition coefficient, purification factor, and yield were found to be 3.7, 4.5, and 77.8%, respectively. After partial purification of PPO from ATPS, further purification was done by gel chromatography where its purity was increased up to 12.6-fold. The purified PPO enzyme was characterized by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), followed by Km value 3.3 mM, and Vmax value 3333 U/mL, and enzyme stable ranges for temperature and pH of PPO were determined. These results revealed that ATPS would be an attractive option for obtaining purified PPO from waste potato peel.  相似文献   

15.
Thermotoga hypogea is an extremely thermophilic anaerobic bacterium capable of growing at 90°C. It was found to be able to grow in the presence of micromolar molecular oxygen (O2). Activity of NADH oxidase was detected in the cell-free extract of T. hypogea, from which an NADH oxidase was purified to homogeneity. The purified enzyme was a homodimeric flavoprotein with a subunit of 50 kDa, revealed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. It catalyzed the reduction of O2 to hydrogen peroxide (H2O2), specifically using NADH as electron donor. Its catalytic properties showed that the NADH oxidase had an apparent Vmax value of 37 mol NADH oxidized min–1 mg–1 protein. Apparent Km values for NADH and O2 were determined to be 7.5 M and 85 M, respectively. The enzyme exhibited a pH optimum of 7.0 and temperature optimum above 85°C. The NADH-dependent peroxidase activity was also present in the cell-free extract, which could reduce H2O2 produced by the NADH oxidase to H2O. It seems possible that O2 can be reduced to H2O by the oxidase and peroxidase, but further investigation is required to conclude firmly if the purified NADH oxidase is part of an enzyme system that protects anaerobic T. hypogea from accidental exposure to O2.  相似文献   

16.
The polyphenol oxidase (LsPPO) from a wild edible mushroom Lactarius salmonicolor was purified using a Sepharose 4B-L-tyrosine-p-amino benzoic acid affinity column. At the optimum pH and temperature, the KM and VMax values of LsPPO towards catechol, 4-methylcatechol and pyrogallol were determined as 0.025 M & 0.748 EU/mL, 1.809 × 10? 3 M & 0.723 EU/mL and 9.465 × 10? 3 M & 0.722 EU/mL, respectively.

Optimum pH and temperature values of LsPPO for the three substrates above ranged between the pH 4.5–11.0 and 5–50°C. Enzyme activity decreased due to heat denaturation with increasing temperature. Effects of a variety of classical PPO inhibitors were investigated opon the activity of LsPPO using catechol as the substrate. IC50 values for glutathione, p-aminobenzenesulfonamide, L-cysteine, L-tyrosine, oxalic acid, β-mercaptoethanol and syringic acid were determined as 9.1 × 10? 4, 2.3 × 10? 4 M, 1.5 × 10? 4 M, 3.8 × 10? 7 M, 1.2 × 10? 4 M, 4.9 × 10? 4 M, and 4 × 10? 4 M respectively. Thus L-tyrosine was by far the most effective inhibitor. Interestingly, sulfosalicylic acid behaved as an activator of LsPPO in this study.  相似文献   

17.
Reduction process of cucumber ascorbate oxidase with L-ascorbate was investigated in detail through absorption and electron paramagnetic resonance (EPR) spectra under anaerobic condition. One of the three type I coppers (the type I copper which is oxidized rapidly (Sakurai, T. et al. (1985) Biochem. Biophys. Res. Commun. 131, 647-652)) and a pair of type III coppers only which contribute to the absorption at 330 nm were reduced faster than other two type I and the other pair of type III coppers, respectively. The principal active site of ascorbate oxidase was confirmed to be comprised of one type I, one type II and a pair of type III coppers. Type II copper seemed to be reduced after all type I and type III coppers have been reduced.  相似文献   

18.
An ionically unbound and thermostable polyphenol oxidase (PPO) was extracted from the leaf of Musa paradisiaca. The enzyme was purified 2.54-fold with a total yield of 9.5% by ammonium sulfate precipitation followed by Sephadex G-100 gel filtration chromatography. The purified enzyme exhibited a clear single band on native polyacrylamide gel electrophoresis (PAGE) and sodium dodecyl sulfate (SDS) PAGE. It was found to be monomeric protein with molecular mass of about 40 kD. The zymographic study using crude extract as enzyme source showed a very clear band around 40 kD and a faint band at around 15 kD, which might be isozymes. The enzyme was optimally active at pH 7.0 and 50°C temperature. The enzyme was active in wide range of pH (4.0–9.0) and temperature (30–90°C). From the thermal inactivation studies in the range 60–75°C, the half-life (t1/2) values of the enzyme ranged from 17 to 77 min. The inactivation energy (Ea) value of PPO was estimated to be 91.3 kJ mol?1. It showed higher specificity with catechol (Km = 8 mM) as compared to 4-methylcatechol (Km = 10 mM). Among metal ions and reagents tested, Cu2+, Fe2+, Hg2+, Mn2+, Ni2+, protocatechuic acid, and ferrulic acid enhanced the enzyme activity, while K+, Na+, Co2+, kojic acid, ascorbic acid, ethylenediamine tetraacetic acid (EDTA), sodium azide, β-mercaptoethanol, and L-cysteine inhibited the activity of the enzyme.  相似文献   

19.
The objective of this work is to obtain an abundant source of cholesterol oxidases for industrial and medicinal needs. Thirteen bacterial strains that express high level of inducible extracellular cholesterol oxidase (COX) were isolated from carnivore feces. One of these strains, named COX8-9, belonging to the genus Enterobacter, was found to produce the highest level of cholesterol oxidase. COX from strain COX8-9 was purified from the culture supernatant by ultrafiltration followed with two consecutive Q-Sepharose chromatographies at different pH values, and then by Superdex-75 gel filtration. The purified enzyme was a monomer with a molecular weight of 58 kDa, and exhibited maximum absorption at 280 nm. The K m value for oxidation of cholesterol by this enzyme was 1.2 × 10−4 M, with optimum activity at pH 7.0. Enzymatic activity of COX was enhanced 3-fold in the presence of metal ion Cu2+, and the enzyme was stable during long-term aqueous storage under various temperatures, indicating its potential as a clinical diagnostic reagent. Preparation and characterization of cholesterol oxidases from the other selected strains are under way. Deping Ye and Jiahong Lei are contributed equally to this work.  相似文献   

20.
Polyphenol oxidase (PPO) was partially purified from dill by (NH4)(2)SO4 precipitation followed by dialysis and gel filtration chromatography. Polyphenol oxidase activity was measured spectrophotometrically at 420 nm using catechol, dopamine and chlorogenic acid as substrates. Optimum pH, temperature, and ionic strength were determined with three substrates. The best substrate of dill PPO was found to be chlorogenic acid. Some kinetic properties of the enzyme such as V(max,) K(M) and V(max)/K(M) were determined for all three substrates. The effects of various inhibitors on the reaction catalysed by the enzyme were tested and I(50) values calculated. The most effective inhibitor was L-cysteine. Activation energies, E(a), were determined from the Arrhenius equation. In addition, activation enthalpy, DeltaH(a), and Q(10) values of the enzyme were also calculated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号