首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Cochleates are lipid-based delivery system that have found application in drug and gene delivery. They are precipitates, formed as a result of interaction between cations (e.g. Ca2+) and negatively charged phospholipids such as phosphatidylserine (PS). In the present study, we investigated the utility of fluorescent probe Laurdan (6-dodecanoyl-2-dimethylamino naphthalene) to monitor cochleate phase formation. Following addition of Ca2+ to Laurdan labeled lipid vesicles comprised of brain phosphatidylserine (BPS), a significant blue shift in the emission peak maximum of Laurdan was observed and the spectral features were distinct from those observed for the gel and liquid-crystalline (LC) phases. This is consistent with the formation of anhydrous cochleate cylinders that was further confirmed by electron microscopy studies. Due to dipolar relaxation, excitation and emission generalized polarization (GPEx and GPEm) indicate transition from a LC to a rigid and dehydrated (RD) cochleate phase. These spectral changes were utilized to monitor the influence of lipid composition, ionic strength and lamellarity on the formation of cochleate phase. The results indicated that the presence of phosphatidylcholine (PC) and bulk Na+ concentration influenced the formation of cochleate structures from small unilamellar vesicles (SUV) and multilamellar vesicles (MLV) composed of PS. The presence of PC and higher bulk Na+ concentration stabilized the PS vesicles against collapse and total loss of contents, intermediate molecular events in the formation of cochleate structures. From these studies, we conclude that Laurdan fluorescence is a sensitive and a rapid method to detect cochleate phase formation.  相似文献   

2.
Hemophilia A, a life-threatening bleeding disorder, is caused by deficiency of factor VIII (FVIII). Replacement therapy using rFVIII is the first line therapy for hemophilia A. However, 15-30% of patients develop neutralizing antibody, mainly against the C2, A3 and A2 domains. It has been reported that PS-FVIII complex reduced total and neutralizing anti-rFVIII antibody titers in hemophilia A murine models. Here, we developed FVIII-containing cochleate cylinders, utilizing PS-Ca(2+) interactions and characterized these particles for optimal in vivo properties using biophysical and biochemical techniques. Approximately 75% of the protein was associated with cochleate cylinders. Sandwich ELISA, acrylamide quenching and enzymatic digestion studies established that rFVIII was shielded from the bulk aqueous phase by the lipidic structures, possibly leading to improved in vivo stability. Freeze-thawing and rate-limiting diffusion studies revealed that small cochleate cylinders with a particle size of 500 nm or less could be generated. The release kinetics and in vivo experiments suggested that there is slow and sustained release of FVIII from the complex upon systemic exposure. In vivo studies using tail clip method indicated that FVIII-cochleate complex is effective and protects hemophilic mice from bleeding. Based on these studies, we speculate that the molecular interaction between FVIII and PS may provide a basis for the design of novel FVIII lipidic structures for delivery applications.  相似文献   

3.
Hemophilia A, a life-threatening bleeding disorder, is caused by deficiency of factor VIII (FVIII). Replacement therapy using rFVIII is the first line therapy for hemophilia A. However, 15-30% of patients develop neutralizing antibody, mainly against the C2, A3 and A2 domains. It has been reported that PS-FVIII complex reduced total and neutralizing anti-rFVIII antibody titers in hemophilia A murine models. Here, we developed FVIII-containing cochleate cylinders, utilizing PS-Ca2+ interactions and characterized these particles for optimal in vivo properties using biophysical and biochemical techniques. Approximately 75% of the protein was associated with cochleate cylinders. Sandwich ELISA, acrylamide quenching and enzymatic digestion studies established that rFVIII was shielded from the bulk aqueous phase by the lipidic structures, possibly leading to improved in vivo stability. Freeze-thawing and rate-limiting diffusion studies revealed that small cochleate cylinders with a particle size of 500 nm or less could be generated. The release kinetics and in vivo experiments suggested that there is slow and sustained release of FVIII from the complex upon systemic exposure. In vivo studies using tail clip method indicated that FVIII-cochleate complex is effective and protects hemophilic mice from bleeding. Based on these studies, we speculate that the molecular interaction between FVIII and PS may provide a basis for the design of novel FVIII lipidic structures for delivery applications.  相似文献   

4.
Using an established organic solvent injection procedure for the preparation of aqueous cholesterol microcrystal suspensions, it has now been shown that a new, hollow, cylindrical, tightly-coiled, multi-bilayer form of cholesterol can be generated, termed the cochleate cylinder. Cholesterol cochleate cylinders are formed in larger numbers at intermediate temperatures (40–75 °C) but are not formed at 100 °C. The structure of the cholesterol microcrystals and cochleate cylinders is shown in negatively stained electron micrographs. Oligomerization and attachment of pyolysin to cholesterol microcrystals and cochleate cylinders is shown, as is the attachment of the pyolysin “cholesterol-binding” domain 4 (D4) fragment. The bound D4 domain forms a linear array on the two planar surfaces and edges of the cholesterol microcrystals and a quasi helical array on the surface of the cochleate cylinders. Little evidence has been obtained to support the possibility that interaction or hetero-oligomerization can occur between intact pyolysin and the pyolysin D4 fragment on the surface of cholesterol microcrystals. Using immobilized cholesterol crystals attached to a carbon support film, single-sided linear labelling of the cholesterol surface with pyolysin D4 has been achieved, which correlates well with the images from the microcrystal suspensions and our earlier data using non-cytolytic streptolysin O mutants.  相似文献   

5.
Fourier transform-infrared (IR) spectroscopic and electron microscopic studies are reported for 1,2-dimyristoylphosphatidylserine (DMPS) and for DMPS/1,2-dimyristoylphosphatidylcholine mixtures in the presence and absence of Ca2+ ion. The frequency of the methyl symmetric deformation mode near 1,378 cm-1, previously assumed insensitive to changes in lipid morphology, has been found to respond to cochleate phase formation by undergoing an approximately 8 cm-1 increase. The new IR spectroscopic marker at 1,386 cm-1 has been used to identify and verify structures suggested from the phase diagram of J. R. Silvius and J. Gagné (1984. Biochemistry. 23:3241-3247) for this system. In addition, the ability of Mg2+ ion to induce cochleate formation has been demonstrated. Higher Mg2+ than Ca2+ levels are required for this process. Finally, IR spectroscopy has been used to monitor dehydration of the lipid surface through changes in the asymmetric PO2- stretching mode. Dehydration precedes cochleate phase formation (i.e., occurs at a lower Ca2+/phosphatidylserine level).  相似文献   

6.
Proteoliposomes (PL) from Neisseria meningitidis B have been widely used as a core antigen for antimeningococcal vaccination. PL contain major outer membrane proteins, LPS and phospholipids, and they induce a strong Th1 immune response, but they have low stability in solution. Attending to the need for new vaccine adjuvants, we developed a highly stable cochleate structure (CS) from PL using a technology that allows easy incorporation of new antigens. We explored the ability of PLCS to activate the immune system and its possible application as an adjuvant for parenteral and mucosal routes. Our results showed that PLCS were able to upregulate the expression of MHC class II and costimulatory molecules on human dendritic cells, as well as being able to stimulate the production of soluble mediators of a Th1 response, such as IL-12 and nitric oxide. High levels of anti-PL IgG were detected in serum after i.m. or mucosal (oral and nasal) administration, but also anti-PL secretory IgA was produced in saliva following nasal delivery. The immune response polarization to a Th1 pattern was confirmed by the induction of IgG2a antibodies, positive delayed type hypersensitivity reactions, and IFN-gamma production by splenocytes from immunized mice. The adjuvant potential was explored using PLCS containing ovalbumin (Ova). PLCS-Ova was able to elicit a substantial increase in anti-Ova IgG compared with Ova alone. In addition, a significant reduction in lesion size was observed in mice immunized with Leishmania major antigens in PLCS after challenge with virulent protozoa, suggesting at least partial modulation of the Th2 environment induced by this parasite. In conclusion, our results support the use of PLCS as a potent Th1 adjuvant for parenteral and mucosal vaccines.  相似文献   

7.
Bioaffinity binding assays such as the immunoassay are widely used in life science research. In an immunoassay, specific antibodies are used to bind target molecules in the sample, and quantification of the binding reaction reveals the amount of the target molecules. Here we present a method to measure bioaffinity assays using the two-photon excitation of fluorescence. In this method, microparticles are used as solid phase in binding the target molecules. The degree of binding is then quantified from individual microparticles by use of two photon excitation of fluorescence. We demonstrated the effectiveness of the method using the human alpha-fetoprotein (AFP) immunoassay, which is used to detect fetal disorders. The sensitivity and dynamic range we obtained with this assay indicate that this method can provide a cost-effective and simple way to measure various biomolecules in solution for research and clinical applications.  相似文献   

8.
Microparticles of naproxen with Eudragit L100 and Aerosil were prepared by the emulsion solvent diffusion method in order to avoid local gastrointestinal irritation, one of the major side effects of nonsteroidal anti-inflammatory drugs after oral ingestion. The process of preparation involved the use of ethanol as good solvent, dichloromethane as a bridging liquid, water as poor solvent, Aerosil as anti-adhesion agent, and sodium dodecyl sulfate to aid in the dispersion of the drug and excipients into the poor solvent. The obtained microparticles were evaluated for micromeritic properties, yield, encapsulation efficiency, drug physical state, and drug release properties. The influence of formulation factors and preparation condition (polymer/naproxen ratio, Aerosil/polymer ratio, and the initial difference of temperature between the solvent and nonsolvent) on the properties of the microparticles were also examined. The resultant microparticles were finely spherical and uniform with high incorporation efficiency (>79%) and yield (>71%). The incorporation efficiency was enhanced with increasing the ratio of excipients to drug and the initial difference of temperature between the solvent and nonsolvent. The mean diameter of the microparticles was influenced by all of the manufacturing parameters. Studies carried out to characterize the micromeritic properties of formulations, such as flowability and packability, showed that microparticles were suitable for further pharmaceutical manipulation (e.g., capsule filling). Drug release studies of the microparticles confirmed the gastroresistance, and mathematical studies showed that the drug released followed a Hixon and Crowell kinetic. These microparticles represent a simple method for the preparation of drug-loaded enteric microparticles with desired micromeritic properties and gastroresistance release.  相似文献   

9.
Recently, we presented a simple method for generating biological functional protein-based nanoparticles that are ready for use as label agents in bioaffinity assays (J??skel?inen et al., 2007 Small 3:1362-1367). In this process, the particle shell (ferritin protein) and binding molecules are conjugated via genetic fusion, and particles with binding capacity are produced in a single bacterial cultivation. Production is combined with simple, non-chromatographic purification during which Europium ions are introduced into particles to serve as marker agents. Denaturation-refolding has previously performed by means of pH changes. Here, we test urea as an alternative agent for denaturation, and examine techniques to improve refolding of the functional particles. Three different types of binding molecules were employed in our experiments: biotin carboxyl carrier protein (a small protein with 87 amino acids), single chain antibody fragment (a complex binding protein) and calmodulin-binding peptide (27 amino acids). Urea was successfully utilized to generate functional particles with inherent binding activity and label function. Additionally, particle yield was effectively optimized by analyzing various refolding and bacterial production conditions. Our results clearly demonstrate that this simple biological method of producing functional ferritin-based particles is flexible, and different types of binding moieties can be applied by adjusting the production conditions.  相似文献   

10.
Changing fungal morphology with the use of morphological engineering techniques leads to improving the production of metabolites by filamentous fungi in the submerged culture. Adding mineral microparticles is one such simple method to change fungal pellet size. Here, it was studied for a lovastatin producer, Aspergillus terreus ATCC 20542. The experiments were conducted in shake flasks and 10 μm talc microparticles were added to the preculture. Intrapellet oxygen concentration profiles were determined by an oxygen microprobe. Talc microparticles caused a decrease of A. terreus pellets diameter from about 2000 to 900 μm, dependent on their concentration in the preculture. Smaller pellets produced more lovastatin, whose titre exceeded then 120 mg L?1, utilising more lactose. The decrease in pellet size resulted in changes of oxygen concentration profiles in the pellets. The estimated critical pellet diameter, at which the non‐oxygenated zone was observed in the centre of the pellets, was 1700 μm. Smaller pellets were fully penetrated by oxygen. To conclude, facilitated diffusion of oxygen into the pellets of smaller diameter and their less dense structure made lactose utilisation by A. terreus more efficient, which ultimately increased lovastatin production in the runs with talc microparticles added, compared to the control runs.  相似文献   

11.
The preparation of micrometer-sized, cross-linked poly(p-phenyleneethynylene) (PPE) beads to which simple monosaccharides are attached is reported. Mannose, glucose, and galactose derivatives have been synthesized. The fluorescence properties, size distribution, and morphology of these microparticles have been elucidated through fluorimetry, fluorescence confocal microscopy, and scanning electron microscopy. Protein binding assays were carried out using Concanavalin A tagged with the fluorophore Texas Red, and the resultant bioconjugates were imaged using confocal microscopy. The microparticles are shown to exhibit efficient binding to lectins and may have potential application as fluorescent probes, biocapture agents, or column packing material for affinity chromatography.  相似文献   

12.
A convenient and simple approach for the preparation of molecularly imprinted polymers (MIPs) based on polyamide (nylon‐6) was developed. The polymer matrix formation occurred during the transition of nylon from dissolved to solid state in the presence of template molecules in the initial solution. 2,2,2‐Trifluoroethanol (TFE) was chosen as a main solvent for the polyamide. It provides a high solubility of nylon and does not significantly change the structure of biopolymers. The alteration of the polymer matrix structure after the addition of different types of porogens in the nylon/TFE solution was investigated. The structured polymers in the form of films and microparticles were prepared in the chosen optimal conditions. Different model biomolecular templates (of low‐ and high‐molecular weight) were used for the preparation of MIPs, which were shown to specifically recognize these molecules upon binding experiments. The binding of the template molecules to MIPs was monitored using spectrophotometric, radioisotopic, or fluorometric detection. The selectivity coefficients of the MIPs were estimated to be 1.4–4.6 depending on the type of templates and conditions of the polymer matrix formation. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
A new, rapid, method for preparation of dispersed pancreatic acini.   总被引:10,自引:4,他引:10       下载免费PDF全文
A new method for the preparation of pancreatic acini is described. The method is simple and much more rapid than previously described techniques, the time required for preparation of pancreatic acini being 20 min from removal of the pancreas. Acini prepared with this method perform in a superior manner when stimulated by either caerulein or secretin. Thus this new technique would be ideal for use in binding and secretion studies.  相似文献   

14.
There are many studies about the synthesis of chitosan microparticles; however, most of them have very low production rate, have wide size distribution, are difficult to reproduce, and use harsh crosslinking agents. Uniform microparticles are necessary to obtain repeatable drug release behavior. The main focus of this investigation was to study the effect of the process and formulation parameters during the preparation of chitosan microparticles in order to produce particles with narrow size distribution. The technique evaluated during this study was emulsion crosslinking technique. Chitosan is a biocompatible and biodegradable material but lacks good mechanical properties; for that reason, chitosan was ionically crosslinked with sodium tripolyphosphate (TPP) at three different ratios (32, 64, and 100%). The model drug used was acetylsalicylic acid (ASA). During the preparation of the microparticles, chitosan was first mixed with ASA and then dispersed in oil containing an emulsifier. The evaporation of the solvents hardened the hydrophilic droplets forming microparticles with spherical shape. The process and formulation parameters were varied, and the microparticles were characterized by their morphology, particle size, drug loading efficiency, and drug release behavior. The higher drug loading efficiency was achieved by using 32% mass ratio of TPP to chitosan. The average microparticle size was 18.7 μm. The optimum formulation conditions to prepare uniform spherical microparticles were determined and represented by a region in a triangular phase diagram. The drug release analyses were evaluated in phosphate buffer solution at pH 7.4 and were mainly completed at 24 h.  相似文献   

15.
Molecularly imprinted nanoparticles were encapsulated into polymer nanofibers with a simple electrospinning method. The composite nanofibers form non-woven mats that can be used as affinity membrane to greatly simplify solid phase extraction of drug residues in analytical samples. Upward 100% of propranolol-imprinted nanoparticles can be easily encapsulated into poly(ethylene terephthalate) nanofibers, ensuring the composite materials to have a high specific binding capacity. As confirmed by radioligand binding analysis, the specific binding sites in the composite materials remain easily accessible and are chiral-selective. Using the new composite nanofiber mats as solid phase extraction materials, trace amount of propranolol (1 ng mL(-1)) in tap water can be easily detected after a simple sample preparation. As validated in this study, there is no problem of template leakage from the composite nanofibers. Without the solid phase extraction, the existence of propranolol residues in water cannot be confirmed with even tandem HPLC-MS/MS analysis.  相似文献   

16.
The objective of this study is the incorporation of adenoviral vectors into a microparticulate system adequate for mucosal delivery. Microencapsulation of the vectors was accomplished by ionotropic coacervation of chitosan, using bile salts as counter-anion. The process was optimized in order to promote high encapsulation efficiency, with a minimal loss of viral infectivity. The maintenance of sterility during all the encapsulation procedure was also taken into account. The principle relies on the simple addition of a solution containing adenoviral vectors to a solution of neutralized chitosan, under stirring. Some surfactants were added to the chitosan solution, to improve the efficiency of this process, such as Tween 80, and Pluronic F68 at 1% (w/v). Encapsulation efficiency higher than 84% was achieved with formulations containing sodium deoxycholate as counter-anion and Pluronic F68 as dispersant agent. The infectivity of the adenoviral vectors incorporated into microparticles was assessed by release assays in PBS and by direct inoculation in 293 and Caco-2 cells. The release in aqueous media was negligible but, when in contact with monolayers of the cells, an effective release of bioactive adenovirus was obtained. Our work shows that encapsulation in microparticles, not only appear to protect the adenovirus from the external medium, namely from low pH, but can also delay their release that is fully dependent on cell contact, an advantage for mucosal vaccination purposes. The formulations developed are able to maintain AdV infectivity and permit a delayed release of the bioactives that is promoted by digestion in situ of the microparticles by the cell monolayers. The onset of delivery is, that way, host-controlled. In view of these results, these formulations showed good properties for mucosal adenovirus delivery.  相似文献   

17.
A simple and efficient tool to isolate epithelial cells from bacteria-contaminated samples has been developed using two different microparticles functionalized with chemical molecules. The epithelial cells could be captured simply by biocompatible anchors for membranes (BAM), consisting of poly(ethylene glycol) functionalized with oleyl-chain-conjugated NHS (N-hydroxysuccinimide) on glass microparticles, whereas bacteria were adsorbed on 3-aminopropyltrimethoxysilane (ATPS)-functionalized magnetic microparticles. In the case of samples highly contaminated with bacteria, epithelial cells were not isolated successfully by both of the single BAM- and antibody-functionalized microparticles. Therefore, serial isolation steps of these two different chemical functionalized microparticles were introduced. The concentration of bacteria was decreased dramatically by using APTS-functionalized magnetic particles prior to the isolation of epithelial cells by BAM microparticles. With these serial processes, successful isolation of epithelial cells was achieved from bacteria-contaminated epithelial samples. The applicability of this method was verified with bacteria-contaminated intestinal samples biopsied from a BALB/C mouse for primary cell cultivation.  相似文献   

18.
Surface plasmon resonance (SPR) nanosensors based on metallic nanohole arrays have been widely reported to detect binding interactions in biological specimens. A simple and effective method for constructing nanoscale arrays is essential for the development of SPR nanosensors. In this work, we report a one-step method to fabricate nanohole arrays by thermal nanoimprinting in the matrix of IPS (Intermediate Polymer Stamp). No additional etching process or supporting substrate is required. The preparation process is simple, time-saving and compatible for roll-to-roll process, potentially allowing mass production. Moreover, the nanohole arrays were integrated into detection platform as SPR sensors to investigate different types of biological binding interactions. The results demonstrate that our one-step method can be used to efficiently fabricate large-area and uniform nanohole arrays for biochemical sensing.  相似文献   

19.
Thrombin receptor agonist peptide (TRAP-6) may be successfully used instead of thrombin to stimulate regeneration of damaged tissues. Thrombin application is limited by its high price, instability, and proin-flammatory effect at high concentrations. Immobilization of TRAP-6 into a matrix based on lactic and glycolic acid copolymer (PLGA) prevents its destruction by peptidases located in the wound and can also provide controlled release of the peptide. PLGA microparticles with the immobilized peptide were prepared by the double emulgation method. The presence of the immobilized peptide increased the porosity of the microparticle surface detected by scanning electron microscopy. Kinetics of the TRAP-6 release was characterized by a dramatic increase in its concentration in buffer solution (pH 7.5) during the first 2 h after the experiment beginning, and the complete release of the peptide after 20 h. An investigation of TRAP-6 destruction by scanning electron microscopy revealed the increase in the microparticle size and surface porosity already after one day of incubation, and the destroyed microparticles were aggregated by the seventh day of the incubation. Thus, peptide immobilization into PLGA microparticles may be employed for elaboration of a prolonged action preparation with the controlled release of the active agent (peptide).  相似文献   

20.
Paper supports were used to develop a simple, inexpensive, fast and sensitive electrochemical immunosensor for the analysis of antibiotic residues in milk samples, where single-walled carbon nanotubes (SWNTs) and a simple dip-dry coating method were employed to prepare the highly sensitive biosensor. Well-dispersed SWNTs were impregnated with an antibody against neomycin to obtain a composite coating solution, followed by dipping the filtration paper in the solution to fabricate the sensitive biosensor which had high electrical conductivity. Based on the impedance change in the entire paper supported biosensor with increased concentrations of neomycin, the limit detection of the optimized method was 0.04 ng mL(-1) and a linear detection range from 0.2 to 125 ng mL(-1), well below the European Union regulations for neomycin in this matrix. This paper supported biosensor was applied to determine neomycin in milk samples after a simple sample treatment, with spiked recoveries which ranged from 93.25 to 110.47%. A variety of antibiotic residues in milk samples could be determined following similar sensor preparation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号