首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Aim

Abiotic conditions are key components that determine the distribution of species. However, co‐occurring species can respond differently to the same factors, and determining which climate components are most predictive of geographic distributions is important for understanding community response to climate change. Here, we estimate and compare climate niches of ten subdominant, herbaceous forb species common in sagebrush steppe systems, asking how niches differ among co‐occurring species and whether more closely related species exhibit higher niche overlap.

Location

Western United States.

Methods

We used herbarium records and ecological niche modelling to estimate area of occupancy, niche breadth and overlap, and describe characteristics of suitable climate. We compared mean values and variability in summer precipitation and minimum temperatures at occurrence locations among species, plant families, and growth forms, and related estimated phylogenetic distances to niche overlap.

Results

Species varied in the size and spatial distribution of suitable climate and in niche breadth. Species also differed in the variables contributing to their suitable climate and in mean values, spatial variation and interannual variation in highly predictive climate variables. Only two of ten species shared comparable climate niches. We found family‐level differences associated with variation in summer precipitation and minimum temperatures, as well as in mean minimum temperatures. Growth forms differed in their association with variability in summer precipitation and minimum temperatures. We found no relationship between phylogenetic distance and niche overlap among our species.

Main conclusions

We identified contrasting climate niches for ten Great Basin understorey forbs, including differences in both mean values and climate variability. These estimates can guide species selection for restoration by identifying species with a high tolerance for climate variability and large climatic niches. They can also help conservationists to understand which species may be least tolerant of climate variability, and potentially most vulnerable to climate change.
  相似文献   

2.

Aim

Ecological restoration is critical for recovering biodiversity and ecosystem services, yet designing interventions to achieve particular outcomes remains fraught with challenges. In the extensive regions where non‐native species are firmly established, it is unlikely that historical conditions can be fully reinstated. To what degree, and how rapidly, can human‐dominated areas be shifted via restoration into regimes that benefit target species, communities or processes?

Location

We explore this question in a >20‐year‐old reforestation effort underway at Hakalau Forest National Wildlife Refuge in montane Hawaii. This large‐scale planting of Acacia koa trees is designed to secure populations of globally threatened bird species by transitioning the site rapidly from pasture to native forest.

Methods

We surveyed all forest birds in multiple corridors of young planted trees, remnant corridors of mature trees along gulches and at sites within mature forest. Using a Bayesian hierarchical approach, we identified which factors (distance from forest, habitat type and surrounding tree cover) had the most important influence on native and exotic bird abundance in the reforestation area.

Results

We found that 90% of native and exotic bird species responded quickly, occupying corridors of native trees approximately a decade after planting. However, native and exotic forest birds responded to markedly different characteristics of the reforested area. Native bird abundance was strongly predicted by proximity to mature forest and remnant corridors; conversely, exotic bird abundance was best predicted by overall tree cover throughout the area reforested.

Main conclusions

Our results demonstrate that large‐scale tree planting in corridors adjacent to mature forest can catalyse rapid recovery (both increased abundance and expanded distribution) of forest birds and that it is possible to design reforestation to benefit native species in novel ecosystems.
  相似文献   

3.

Aim

Climate change affects forest functioning not only through direct physiological effects such as modifying photosynthesis and growing season lengths, but also through indirect effects on community composition related to species extinctions and colonizations. Such indirect effects remain poorly explored in comparison with the direct ones. Biodiversity–ecosystem functioning (BEF) studies commonly examine the effects of species loss by eliminating species randomly. However, species extinctions caused by climate change will depend on the species’ vulnerability to the new environmental conditions, thus occurring in a specific, non‐random order. Here, we evaluated whether successive tree species extinctions, according to their vulnerability to climate change, impact forest functions differently than random species losses.

Location

Eleven temperate forests across a gradient of climatic conditions in central Europe.

Methods

We simulated tree community dynamics with a forest succession model to study the impact of species loss on the communities’ aboveground biomass, productivity and temporal stability. Tree species were removed from the local pool (1) randomly, and according to (2) their inability to be recruited under a warmer climate or (3) their increased mortality under drier conditions.

Results

Results showed that non‐random species loss (i.e., based on their vulnerability to warmer or drier conditions) changed forest functioning at a different rate, and sometimes direction, than random species loss. Furthermore, directed extinctions, unlike random, triggered tipping points along the species loss process where forest functions were strongly impacted. These tipping points occurred after fewer extinctions in forests located in the coldest areas, where ecosystem functioning relies on fewer species.

Main conclusions

We showed that the extinction of species in a deterministic and mechanistically motivated order, in this case the species vulnerability to climate change, strengthens the selection effect of diversity on ecosystem functioning. BEF studies exploring the impact of species loss on ecosystem functioning using random extinctions thus possibly underestimate the potential effect of biodiversity loss when driven by a directional force, such as climate change.
  相似文献   

4.

Aim

Past land use legacy effects—extinction debts and immigration credits—might be particularly pronounced in regions characterized by complex and dynamic landscape change. The aim of this study was to evaluate how current woody plant species distribution, composition and richness related to historical and present land uses.

Location

A smallholder farming landscape in south‐western Ethiopia.

Methods

We surveyed woody plants in 72 randomly selected 1‐ha sites in farmland and grouped them into forest specialist, generalist and pioneer species. First, we investigated woody plant composition and distribution using non‐metric multidimensional scaling. Second, we modelled species richness in response to historical and current distance from the forest edge. Third, we examined diameter class distributions of trees in recently converted vs. permanent farmland.

Results

Historical distance was a primary driver of woody plant composition and distribution. Generalist and pioneer species richness increased with historical distance. Forest specialists, however, did not respond to historical distance. Only few old individuals of forest specialist species remained in both recently converted and permanent farmlands.

Main conclusions

Our findings suggest that any possible extinction debt for forest specialist species in farmland at the landscape scale was rapidly paid off, possibly because farmers cleared large remnant trees. In contrast, we found substantial evidence of immigration credits in farmland for generalist and pioneer species. This suggests that long‐established farmland may have unrecognized conservation values, although apparently not for forest specialist species. We suggest that conservation policies in south‐western Ethiopia should recognize not only forests, but also the complementary value of the agricultural mosaic—similar to the case of European cultural landscapes. A possible future priority could be to better reintegrate forest species in the farmland mosaic.
  相似文献   

5.

Aim

Mega hydroelectric dams have become one of the main drivers of biodiversity loss in the lowland tropics. In these reservoirs, vertebrate studies have focused on local (α) diversity measures, whereas between‐site (β) diversity remains poorly assessed despite its pivotal importance in understanding how species diversity is structured and maintained. Here, we unravel the patterns and ecological correlates of mammal β‐diversity, including both small (SM) and midsized to large mammal species (LM) across 23 islands and two continuous forest sites within a mega hydroelectric reservoir.

Location

Balbina Hydroelectric Dam, Central Brazilian Amazonia.

Methods

Small mammals were sampled using live and pitfall traps (48,350 trap‐nights), and larger mammals using camera traps (8,160 trap‐nights). β‐diversity was examined for each group using multiplicative diversity decomposition of Hill numbers, which considers the importance of rare, common and dominant species, and tested to what extent those were related to a set of environmental characteristics measured at different spatial scales.

Results

β‐diversity for both mammal groups was higher when considering species presence–absence. When considering species abundance, β‐diversity was significantly higher for SM than for LM assemblages. Habitat variables, such as differences in tree species richness and percentage of old‐growth trees, were strong correlates of β‐diversity for both SMs and LMs. Conversely, β‐diversity was weakly related to patch and landscape characteristics, except for LMs, for which β‐diversity was correlated with differences in island sizes.

Main conclusions

The lower β‐diversity of LMs between smaller islands suggests subtractive homogenization of this group. Although island size plays a major role in structuring mammal α‐diversity in several land‐bridge islands, local vegetation characteristics were additional key factors determining β‐diversity for both mammal groups. Maintaining the integrity of vegetation characteristics and preventing the formation of a large set of small islands within reservoirs should be considered in long‐term management plans in both existing and planned hydropower development in lowland tropical forests.
  相似文献   

6.

Aim

Global declines in large old trees from selective logging have degraded old‐forest ecosystems, which could lead to delayed declines or losses of old‐forest‐associated wildlife populations (i.e., extinction debt). We applied the declining population paradigm and explored potential evidence for extinction debt in an old‐forest dependent species across landscapes with different histories of large tree logging.

Location

Montane forests of the Sierra Nevada, California, USA.

Methods

We tested hypotheses about the influence of forest structure on territory extinction dynamics of the spotted owl (Strix occidentalis) using detection/non‐detection data from 1993 to 2011 across two land tenures: national forests, which experienced extensive large tree logging over the past century, and national parks, which did not.

Results

Large tree/high canopy cover forest was the best predictor of extinction rates and explained 26%–77% of model deviance. Owl territories with more large tree/high canopy cover forest had lower extinction rates, and this forest type was ~4 times more prevalent within owl territories in national parks ( = 19% of territory) than national forests ( = 4% of territory). As such, predicted extinction probability for an average owl territory was ~2.5 times greater in national forests than national parks, where occupancy was declining () and stable (), respectively. Large tree/high canopy cover forest remained consistently low, but did not decline, during the study period on national forests while owl declines were ongoing—an observation consistent with an extinction debt.

Main conclusions

In identifying a linkage between large trees and spotted owl dynamics at a regional scale, we provide evidence suggesting past logging of large old trees may have contributed to contemporary declines in an old‐forest species. Strengthening protections for remaining large old trees and promoting their recruitment in the future will be critical for biodiversity conservation in the world's forests.
  相似文献   

7.

Aim

The conversion of old‐growth tropical forests into human‐modified landscapes threatens biodiversity worldwide, but its impact on the phylogenetic dimension of remaining communities is still poorly known. Negative and neutral responses of tree phylogenetic diversity to land use change have been reported at local and landscape scales. Here, we hypothesized that such variable responses to disturbance depend on the regional context, being stronger in more degraded rain forest regions with a longer history of land use.

Location

Six regions in Mexico and Brazil.

Methods

We used a large vegetation database (6,923 trees from 686 species) recorded in 98 50‐ha landscapes distributed across two Brazilian and four Mexican regions, which exhibit different degrees of disturbance. In each region, we assessed whether phylogenetic alpha and beta diversities were related to landscape‐scale forest loss, the percentage of shade‐intolerant species (a proxy of local disturbance) and/or the relatedness of decreasing (losers) and increasing (winners) taxa.

Results

Contrary to our expectations, the percentage of forest cover and shade‐intolerant species were weakly related to phylogenetic alpha and beta diversities in all but one region. Loser species were generally as dispersed across the phylogeny as winner species, allowing more degraded, deforested and species‐poorer forests to sustain relatively high levels of evolutionary (phylogenetic) diversity.

Main conclusion

Our findings support previous evidence indicating that traits related to high susceptibility to forest disturbances are convergent or have low phylogenetic signal. More importantly, they reveal that the evolutionary value of disturbed forests is (at least in a phylogenetic sense) much greater than previously thought.
  相似文献   

8.

Aim

We compare the present‐day global ocean climate with future climatologies based on Intergovernmental Panel on Climate Change (IPCC) models and examine whether changes in global ocean climate will affect the environmental similarity of New Zealand's (NZ) coastal environments to those of the rest of the world. Our underlying rationale is that environmental changes to source and recipient regions may result in changes to the risk of non‐indigenous species survival and establishment.

Location

Coastlines of global continents and islands.

Methods

We determined the environmental similarity (Euclidean distance) between global coastlines and north‐east NZ for 2005 and 2050 using data on coastal seawater surface temperature and salinity. Anticipated climate models from the SRES A1B scenario family were used to derive coastal climatologies for 2050.

Results

During the next decades, most global regions will experience an increase in coastal seawater surface temperatures and a decline or increase in salinity. This will result in changes in the similarity of other coastal environments to north‐east NZ's coastal areas. Global regions that presently have high environmental similarity to north‐east NZ will variously retain this level of similarity, become more similar or decrease in environmental similarity. Some regions that presently have a low level of similarity will become more similar to NZ. Our models predict a widespread decrease in the seasonal variation in environmental similarity to NZ.

Main conclusions

Anticipated changes in the global ocean climate have the potential to change the risk of survival and establishment of non‐indigenous marine species arriving to NZ from some global regions. Predicted changes to global human transport networks over the coming decades highlight the importance of incorporating climate change into conservation planning and modelling.
  相似文献   

9.

Aim

The risk climate change poses to biodiversity is often estimated by forecasting the areas that will be climatically suitable for species in the future and measuring the distance of the “range shifts” species would have to make to reach these areas. Species’ traits could indicate their capacity to undergo range shifts. However, it is not clear how range‐shift capacity influences risk. We used traits from a recent evidence review to measure the relative potential of species to track changing climatic conditions.

Location

Europe.

Time period

Baseline period (1961–1990) and forecast period (2035–2064).

Major taxa studied

62 mammal species.

Methods

We modelled species distributions using two general circulation models and two representative concentration pathways (RCPs) to calculate three metrics of “exposure” to climate change: range area gained, range area lost and distance moved by the range margin. We identified traits that could inform species’ range‐shift capacity (i.e., potential to establish new populations and proliferate, and thus undertake range shifts), from a recent evidence‐based framework. The traits represent ecological generalization and reproductive strategy. We ranked species according to each metric of exposure and range‐shift capacity, calculating sensitivity to ranking methods, and synthesized both exposure and range‐shift capacity into “risk syndromes.”

Results

Many species studied whose survival depends on colonizing new areas were relatively unlikely to undergo range shifts. Under the worst‐case scenario, 62% of species studied were relatively highly exposed. 47% were highly exposed and had relatively low range‐shift capacity. Only 14% of species faced both low exposure and high range‐shift capacity. Both range‐shift and exposure metrics had a greater effect on risk assessments than climate models.

Main conclusions

The degree to which species’ potential ranges will be altered by climate change often does not correspond to species’ range‐shift capacities. Both exposure and range‐shift capacity should be considered when evaluating biodiversity risk from climate change.
  相似文献   

10.

Aim

Landscape attributes can determine plant–animal interactions via effects on the identity and abundance of the involved species. As most studies have been conducted in a context of habitat loss and fragmentation, we know very little about interaction assembly in new habitats from a landscape approach. This study aimed to test the effect of forest age and connectivity on acorn predation by a guild of predator insects differing in dispersal ability and resilience mechanisms: two weevils (Curculio elephas and C. glandium) and one moth (Cydia fagiglandana) in expanding Quercus ilex forests.

Location

Barcelona, Spain.

Methods

We assessed the proportion of infested acorns and identified the predator at the species level in five patches of connected old forests, connected new forests and isolated new forests. Effects of habitat age and connectivity at three scales (tree, patch and landscape) were analysed using generalized linear mixed‐effects models.

Results

Predation by weevils was positively associated with old connected forests, while moths, with better dispersal ability, were able to predate upon all patches equally. Moreover, C. elephas, the weevil with lower dispersal ability, exhibited colonization credits in the new isolated patches. In spite of these changes in the guild of seed predators, the proportion of infested acorns was non‐significantly different among forests.

Main conclusions

The guild of seed predators may vary depending on forest age and connectivity. However, because those with higher dispersal ability may replace less mobile species, this resulted in zero‐sum effects of landscape attributes on acorn predation (i.e., similar predation rates in well‐connected old forests vs. isolated new forests).
  相似文献   

11.

Aim

To assess whether observed thermal bounds in species’ latitudinal ranges (i.e., realized thermal niches) can be used to predict patterns of occurrence and abundance changes observed during a marine heatwave, relative to other important life history and functional traits.

Location

Rottnest Island, Western Australia.

Methods

A time series of standardized quantitative surveys of reef fishes spanning 8 years of pronounced ocean temperature change is used to test whether accurate predictions on shifts in species occupancy and abundance are possible using species traits.

Results

Species‐level responses in occurrence and abundance were closely related to the mid‐point of their realized thermal niche, more so than body size, range size or trophic level. Most of the species that disappeared from survey counts during the heatwave were characterized by geographic ranges that did not extend to latitudes with temperatures equivalent to the ocean temperature peak during the heatwave. We thus find support for the hypothesis that current distribution limits are set directly or indirectly by temperature and are highly responsive to ocean temperature variability.

Main conclusions

Our study shows that reef fish community structure can change very quickly when exposed to extreme thermal anomalies, in directions predicted from the realized thermal niche of the species present. Such predictions can thus identify species that will be most responsive to changing ocean climate. Continued warming, coupled with periodic extreme heat events, may lead to the loss of ecosystem services and ecological functions, as mobile species relocate to more hospitable climes, while less mobile species may head towards extinction.
  相似文献   

12.

Aim

When modelling the distribution of animals under current and future conditions, both their response to environmental constraints and their resources’ response to these environmental constraints need to be taken into account. Here, we develop a framework to predict the distribution of large herbivores under global change, while accounting for changes in their main resources. We applied it to Rupicapra rupicapra, the chamois of the European Alps.

Location

The Bauges Regional Park (French Alps).

Methods

We built sixteen plant functional groups (PFGs) that account for the chamois’ diet (estimated from sequenced environmental DNA found in the faeces), climatic requirements, dispersal limitations, successional stage and interaction for light. These PFGs were then simulated using a dynamic vegetation model, under current and future climatic conditions up to 2100. Finally, we modelled the spatial distribution of the chamois under both current and future conditions using a point‐process model applied to either climate‐only variables or climate and simulated vegetation structure variables.

Results

Both the climate‐only and the climate and vegetation models successfully predicted the current distribution of the chamois species. However, when applied into the future, the predictions differed widely. While the climate‐only models predicted an 80% decrease in total species occupancy, including vegetation structure and plant resources for chamois in the model provided more optimistic predictions because they account for the transient dynamics of the vegetation (?20% in species occupancy).

Main conclusions

Applying our framework to the chamois shows that the inclusion of ecological mechanisms (i.e., plant resources) produces more realistic predictions under current conditions and should prove useful for anticipating future impacts. We have shown that discounting the pure effects of vegetation on chamois might lead to overpessimistic predictions under climate change. Our approach paves the way for improved synergies between different fields to produce biodiversity scenarios.
  相似文献   

13.

Aim

Human activity is known to greatly influence species occurrences. In forest ecosystems, biodiversity is often believed to be influenced by two habitat characteristics: (1) forest continuity, related to a minimum length of time in a wooded state since a threshold date; and (2) stand maturity, related to the availability of late‐developmental‐forest attributes. In a context of ongoing global biodiversity loss, qualifying the effect of past and present human activity on forest ecosystems while taking into account variations in abiotic factors is of primary importance for conservation.

Location

Temperate mountain forests in the Northern Alps.

Method

Based upon a sampling design crossing forest continuity (ancient vs. Recent) and stand maturity (mature vs. overmature), and while controlling for the effect of two major environmental factors, soil and climate, we explored the individual response of saproxylic beetle, springtail, herbaceous plant and epiphytic macrolichen species to past and present human activity.

Results

Forest continuity influenced the occurrence of relatively few species, indicating that past land use had almost no legacy effect on the species occurring in the study forests today. In contrast, stand maturity had an overall positive effect on species occurrences. However, our results showed that species occurrences were more obviously influenced by abiotic conditions. Indeed, beyond the effect of continuity and maturity factors, the probability of presence of numerous species was best explained by climate and soil.

Main conclusions

Overall, we show that species occurrence was more influenced by stand maturity than by forest continuity, but also that site‐specific characteristics were of great importance in explaining the probability of presence for numerous species. In the ecological context of alpine forests, these findings emphasize the need to better control for climatic and edaphic conditions in order to (1) improve accuracy in predicting species occurrence and (2) better design areas of conservation interest.
  相似文献   

14.

Aim

Studies of species' range shifts have become increasingly relevant for understanding ecology and biogeography in the face of accelerated global change. The combination of limited mobility and imperilled status places some species at a potentially greater risk of range loss, extirpation or extinction due to climate change. To assess the ability of organisms with limited movement and dispersal capabilities to track shifts associated with climate change, we evaluated reproductive and dispersal traits of freshwater mussels (Unionida), sessile invertebrates that require species‐specific fish for larval dispersal.

Location

North American Atlantic Slope rivers.

Methods

To understand how unionid mussels may cope with and adapt to current and future warming trends, we identified mechanisms that facilitated their colonization of the northern Atlantic Slope river basins in North America after the Last Glacial Maximum. We compiled species occurrence and life history trait information for each of 55 species, and then selected life history traits for which ample data were available (larval brooding duration, host fish specificity, host infection strategy, and body size) and analysed whether the trait state for each was related to mussel distribution in Atlantic Slope rivers.

Results

Brooding duration (p < .01) and host fish specificity (p = .02) were significantly related to mussel species distribution. Long‐term brooders were more likely than short‐term brooders to colonize formerly glaciated rivers, as were host generalists compared to specialists. Body size and host infection strategy were not predictive of movement into formerly glaciated rivers (p > .10).

Main conclusions

Our results are potentially applicable to many species for which life history traits have not been well‐documented, because reproductive and dispersal traits in unionid mussels typically follow phylogenetic relationships. These findings may help resource managers prioritize species according to climate change vulnerability and predict which species might become further imperilled with climate warming. Finally, we suggest that similar trait‐based decision support frameworks may be applicable for other movement limited taxa.
  相似文献   

15.

Aim

Life history traits and range size are key correlates of genetic diversity in trees. We used a standardized sampling protocol to explore how life history traits and range size relate to the magnitude, variance and structuring (both between‐ and within‐population) of genetic diversity in Neotropical tree species.

Location

The Neotropics

Methods

We present a meta‐analysis of new population genetic data generated for 23 Neotropical tree species (=2,966 trees, 86 populations) across a shared and broad geographic area. We compared established population genetic metrics across these species (e.g., genetic diversity, population structure, fine‐scale genetic structure), plus we estimated the rarely used variance in genetic diversity among populations. We used a multivariate, maximum likelihood, multimodel inference approach to explore the relative influence of life history traits and range size on patterns of neutral genetic diversity.

Results

We found that pioneer and narrow range species had lower levels but greater variance in genetic diversity—signs of founder effects and stronger genetic drift. Animal‐dispersed species had lower population differentiation, indicating extensive gene flow. Abiotically dispersed and pioneer species had stronger fine‐scale genetic structure, suggesting restricted seed dispersal and family cohort establishment.

Main conclusions

Our multivariable and multispecies approach allows ecologically relevant conclusions, since knowing whether one parameter has an effect, or one species shows a response in isolation, is dependent on the combination of traits expressed by a species. Our study demonstrates the influence of ecological processes on the distribution of genetic variation in tropical trees, and will help guide genetic resource management, and contribute to predicting the impacts of land use change.
  相似文献   

16.

Aim

We present the first continental‐scale study of factors controlling the species richness of groundwater‐fed fens, comparing land snails, vascular plants and bryophytes. We separately analyse two ecologically distinct groups differing in conservation value and colonization/extinction dynamics, that is habitat specialists, and matrix‐derived species. Considering the island‐like nature of fen habitats, we hypothesize larger differences in the species richness–environment relationships between habitat specialists and matrix‐derived species than among the taxonomic entities.

Location

Seven European regions

Methods

Richness was counted at 373 well‐preserved fens with undisturbed hydrology using the same protocols. Relationships between the species richness and water pH, waterlogging, climate and geography were explored by GLMs.

Results

Land snail richness responded mainly to water pH, regardless of habitat specialization. Richness of vascular plant and bryophyte specialists was strongly driven by geographical location of the sites, while that of matrix‐derived species was driven by waterlogging and water pH. The richness of matrix‐derived species of all taxa significantly increased with the decreasing waterlogging. Residual richness of specialists of all taxa decreased towards southern Europe.

Main conclusions

In island‐like terrestrial habitats, differences between specialists and matrix‐derived species may outweigh differences among taxa, unless there is one strong physiological determinant of species richness such as pH in land snails. The richness of specialists seems to be strongly related to difficult‐to‐measure regional factors such as historical frequency and connectivity of fen habitats. The richness of matrix‐derived species depends mainly on local conditions, such as pH and waterlogging, determining the degree of habitat contrast against the surrounding matrix. Sufficient waterlogging maintains a high representation of habitat specialists in fen communities, and disturbance of water regime may cause the increase in the number of matrix‐derived species and potentially trigger successional shifts towards non‐fen communities.
  相似文献   

17.

Aim

We assessed patterns of avian species loss and the role of morpho‐ecological traits in explaining species vulnerability to forest fragmentation in an anthropogenic island system. We also contrasted observed and detectability‐corrected estimates of island occupancy, which are often used to infer species vulnerability.

Location

Tucuruí Hydroelectric Reservoir, eastern Brazilian Amazonia.

Methods

We surveyed forest birds within 36 islands (3.4–2,551.5 ha) after 22 years of post‐isolation history. We applied species–area relationships to assess differential patterns of species loss among three data sets: all species, forest specialists and habitat generalists. After controlling for phylogenetic non‐independence, we used observed and detectability‐corrected estimates of island occupancy separately to build competing models as a function of species traits. The magnitude of the difference between these estimates of island occupancy was contrasted against species detectability.

Results

The rate of species loss as a function of island area reduction was higher for forest specialists than for habitat generalists. Accounting for the area effect, forest fragmentation did not affect the overall number of species regardless of the data set. Only the interactive model including natural abundance, habitat breadth and geographic range size was strongly supported for both estimates of island occupancy. For 30 species with detection probabilities below 30%, detectability‐corrected estimates were at least tenfold higher than those observed. Conversely, differences between estimates were negligible or non‐existent for all 31 species with detection probabilities exceeding 45.5%.

Main conclusions

Predicted decay of avian species richness induced by forest loss is affected by the degree of habitat specialisation of the species under consideration, and may be unrelated to forest fragmentation per se. Natural abundance was the main predictor of species island occupancy, although habitat breadth and geographic range size also played a role. We caution against using occupancy models for low‐detectability species, because overestimates of island occupancy reduce the power of species‐level predictions of vulnerability.
  相似文献   

18.

Aim

Invasive species occurrence is often related to the anthropogenic context of a given area. Quantifying the effects of roads is of particular interest as roads are a major vector for invasion. Our objective was to further quantify the effects of roads on forest plant invasion through a macroscale, high‐resolution investigation to assist effective invasion control and mitigation.

Location

Eastern United States.

Methods

Using invasive plant data from 23,039 forest inventory plots in 13 ecological provinces, we employed logistic regression to relate the odds of invasion to distance from a road, with adjustments for broadscale differences attributable to ecological provinces, and local scale differences in productivity, forest fragmentation and land use.

Results

The overall proportion (P) of invaded plots was 0.58 (0.65 for plots within 50 m of a road), and the highest odds (P/1 ? P) of invasion were found in relatively more productive, fragmented forest in landscapes with more than 10% agriculture or developed land cover. Wald chi‐square statistics indicated the best predictor of the odds of invasion was ecological province, followed by land use, productivity, forest fragmentation and distance from a road. Depending on the province, the adjusted odds of invasion decreased by up to 23% (typically 4%–10%) per 100 m distance from a road. The adjusted probability of invasion approached zero in only three provinces, for the least productive, least fragmented forest that was at least 2,000 m from a road in landscapes with less than 10% agricultural or developed land cover.

Main conclusions

In the eastern United States, the existence of a nearby road is less important than the landscape context associated with the road. A purely road‐mediated effect has little practical meaning because anthropogenic activities and roads are pervasive and confounded.
  相似文献   

19.

Aim

To test whether native and non‐native species have similar diversity–area relationships (species–area relationships [SARs] and phylogenetic diversity–area relationships [PDARs]) and whether they respond similarly to environmental variables.

Location

United States.

Methods

Using lists of native and non‐native species as well as environmental variables for >250 US national parks, we compared SARs and PDARs of native and non‐native species to test whether they respond similarly to environmental conditions. We then used multiple regressions involving climate, land cover and anthropogenic variables to further explore underlying predictors of diversity for plants and birds in US national parks.

Results

Native and non‐native species had different slopes for SARs and PDARs, with significantly higher slopes for native species. Corroborating this pattern, multiple regressions showed that native and non‐native diversity of plants and birds responded differently to a greater number of environmental variables than expected by chance. For native species richness, park area and longitude were the most important variables while the number of park visitors, temperature and the percentage of natural area were among the most important ones for non‐native species richness. Interestingly, the most important predictor of native and non‐native plant phylogenetic diversity, temperature, had positive effects on non‐native plants but negative effects on natives.

Main conclusions

SARs, PDARs and multiple regressions all suggest that native and non‐native plants and birds responded differently to environmental factors that influence their diversity. The agreement between diversity–area relationships and multiple regressions with environmental variables suggests that SARs and PDARs can be both used as quick proxies of overall responses of species to environmental conditions. However, more importantly, our results suggest that global change will have different effects on native and non‐native species, making it inappropriate to apply the large body of knowledge on native species to understand patterns of community assembly of non‐native species.
  相似文献   

20.

Aim

Information about the importance of propagule pressure and habitat invasibility in invasion success of dispersal‐limited species is scarce. We aimed to assess invasiveness of Quercus rubra within stands of 14 tree species, and the effects of distance from propagule source on invasion success, to highlight limiting factors for further application in nature conservation.

Location

Siemianice Experimental Forest—a common garden forest experiment with 14 tree species, western Poland.

Methods

We investigated aboveground biomass, leaf area index and density of Q. rubra natural regeneration within 53 experimental plots, as well as distance from the seed source. We also analysed light availability changes between 2005 and 2015 on plots of each tree species. We used multiple linear regression and variable importance to quantify the effect of each factor.

Results

All factors tested influenced ecological success of Q. rubra. Invasion success decreased with increasing distance from the seed source and decreasing light availability and was higher within stands of pioneer tree species. Leaf area index depended mostly on tree stand species, density depended on distance from the propagule source and biomass depended on both. Light availability explained 7.2%–30.2% of the variance; tree species—from 36.1% to 57.4%; and distance from the propagule source—from 12.4% to 56.7%.

Main conclusions

Tree stand species, light availability and distance from the propagule source influence ecological success of invasive Q. rubra, displaying their importance for spread of this species. These factors are controllable in forest/conservation management and may be used to prevent Q. rubra invasion. Planting late‐successional tree species that cast dense shade, maintaining canopy closure and removing fruiting trees from surrounding more invasible stands may prevent Q. rubra invasion.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号