首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.

Aim

Urbanization broadly affects the phylogenetic and functional diversity of natural communities through a variety of processes including habitat loss and the introduction of non‐native species. Due to the challenge of acquiring direct measurements, these effects have been studied primarily using “space‐for‐time” substitution where spatial urbanization gradients are used to infer the consequences of urbanization occurring across time. The ability of alternative sampling designs to replicate the findings derived using space‐for‐time substitution has not been tested.

Location

Global.

Methods

We contrasted the phylogenetic and functional diversity of breeding bird assemblages in 58 cities worldwide with the corresponding regional breeding bird assemblages estimated using geographic range maps.

Results

Compared to regional assemblages, urban assemblages contained lower phylogenetic diversity, lower phylogenetic beta diversity, a reduction in the least evolutionary distinct species and the loss of the most evolutionarily distinct species. We found no evidence that these effects were related to the presence of non‐native species. Urban assemblages contained fewer aquatic species and fewer aquatic foraging species. The distribution of body size and range size narrowed for urban assemblages with the loss of species at both tails of the distribution, especially large bodied and broadly distributed species. Urban assemblages contained a greater proportion of species classified as passerines, doves or pigeons; species identified as granivores; species that forage within vegetation or in the air; and species with more generalized associations with foraging strata.

Main conclusions

Urbanization is associated with the overall reduction and constriction of phylogenetic and functional diversity, results that largely replicate those generated using space‐for‐time substitution, increasing our confidence in the quality of the combined inferences. When direct measurements are unavailable, our findings emphasize the value of developing independent sampling methods that broaden and reinforce our understanding of the ecological implications of urbanization.
  相似文献   

2.

Aim

The conversion of old‐growth tropical forests into human‐modified landscapes threatens biodiversity worldwide, but its impact on the phylogenetic dimension of remaining communities is still poorly known. Negative and neutral responses of tree phylogenetic diversity to land use change have been reported at local and landscape scales. Here, we hypothesized that such variable responses to disturbance depend on the regional context, being stronger in more degraded rain forest regions with a longer history of land use.

Location

Six regions in Mexico and Brazil.

Methods

We used a large vegetation database (6,923 trees from 686 species) recorded in 98 50‐ha landscapes distributed across two Brazilian and four Mexican regions, which exhibit different degrees of disturbance. In each region, we assessed whether phylogenetic alpha and beta diversities were related to landscape‐scale forest loss, the percentage of shade‐intolerant species (a proxy of local disturbance) and/or the relatedness of decreasing (losers) and increasing (winners) taxa.

Results

Contrary to our expectations, the percentage of forest cover and shade‐intolerant species were weakly related to phylogenetic alpha and beta diversities in all but one region. Loser species were generally as dispersed across the phylogeny as winner species, allowing more degraded, deforested and species‐poorer forests to sustain relatively high levels of evolutionary (phylogenetic) diversity.

Main conclusion

Our findings support previous evidence indicating that traits related to high susceptibility to forest disturbances are convergent or have low phylogenetic signal. More importantly, they reveal that the evolutionary value of disturbed forests is (at least in a phylogenetic sense) much greater than previously thought.
  相似文献   

3.

Aim

We investigated changes in dung beetle β‐diversity components along a subtropical elevational gradient, to test whether turnover or nestedness‐related processes drive the dissimilarity of assemblages at spatial and temporal scales.

Location

An elevational gradient (200–1,600 m a.s.l.) of the Atlantic Forest in southern Brazil.

Methods

We investigated the extent to which β‐diversity varied along the elevational gradient (six elevations) at both spatial (among sites at different elevations) and temporal (different months at the same site) scales. We compared both the turnover and nestedness‐related dissimilarity of species and genera using multiple‐site or multiple‐month measures and tested whether these measurements were different from random expectations.

Results

A mid‐elevation peak in species richness along the elevational gradient was observed, and the lowest richness occurred at the highest elevations. We found two different groups of species, lowland and highland species, with a mixing of groups at intermediate elevations. The turnover component of β‐diversity was significantly higher for both spatial (i.e. elevational) and temporal changes in species composition. However, when the data for genera by site were considered, the elevational turnover value decreased in relative importance. Nestedness‐related processes are more important for temporal dissimilarity patterns at higher elevation sites.

Main conclusions

Spatial and temporal turnover of dung beetle species is the most important component of β‐diversity along the elevational gradient. High‐elevation assemblages are not subsets of assemblages that inhabit lower elevations, but this relationship ceases when β‐diversity is measured at the generic level. Environmental changes across elevations may be the cause of the differential establishment of distinctive species, but these species typically belong to the same higher taxonomic rank. Conservation strategies should consider elevational gradients in case‐specific scenarios as they may contain distinct species assemblages in lowlands vs. highlands.
  相似文献   

4.

Aim

Global conservation planning is often oriented around vertebrates and plants, yet most organisms are invertebrates. To explore the potential conservation implications of this bias, we assessed how well patterns of diversity for an influential group of invertebrates, the ants, correspond with those of three vertebrate groups (birds, mammals and amphibians).

Location

Global.

Methods

We compiled data on the number of genera of ants and the three vertebrate groups for 370 political regions across the world. We then compared their correlations both for overall diversity and between subsets of genera likely to be of conservation concern. We also developed generalized additive models (GAM) to identify regions where vertebrates and ants diverged in their diversity patterns.

Results

While ant and vertebrate diversity do positively correlate, the correlations are substantially weaker for the ant lineages of the greatest conservation concern. Vertebrates also notably fail to predict ant diversity in specific geographic areas, including Australia and Southeast Asia, parts of Africa and Madagascar, and south‐western China. These failures may be genuine differences in diversity patterns, or they may indicate important gaps in our knowledge of ant and vertebrate diversity.

Main conclusions

We conclude that it is currently unwise to assume that global conservation priorities based on vertebrates will conserve ants as well. We suspect that this also applies to other invertebrates.
  相似文献   

5.

Aim

Large ‐ scale diversity patterns are generated by different but not mutually exclusive mechanisms. However, understanding of multiple facets of diversity and their determinants in the freshwater realm remains limited. Here, we characterized the geographical gradients, hotspots and spatial congruence of three facets of freshwater molluscan diversity and evaluated the relative importance of three different underlying mechanisms related to the energy, area/environmental heterogeneity and dispersal/historical hypotheses.

Location

China.

Methods

Species richness (SR), functional richness (FR) and taxonomic distinctness (TD, a proxy of phylogenetic diversity) were calculated for 212 drainage basins with a total of 313 molluscan species. Spatial congruence between the diversity facets was evaluated with Pearson correlation coefficient and overlap among hotspots. Multiple linear regression models and variation partitioning were used to assess the relative importance of different mechanisms.

Results

Hotspots of SR and FR were mainly concentrated in the Yangtze River and Huai River basins, while high TD values were patchily distributed across China. We found extremely low spatial congruence between TD and both SR and FR, while there was relatively high concordance between SR and FR. All diversity facets were best explained by the dispersal/historical hypothesis with strong unique effects, followed by the factors related to the energy hypothesis. The area/ environmental heterogeneity hypothesis was only weakly supported.

Main conclusions

We found a potentially strong influence of dispersal limitation and evolutionary history on the geographical diversity gradients of Chinese molluscs. This finding contrasts with the general finding that energy‐related factors are the strongest correlates of diversity patterns at large spatial scales. Moreover, our results do not support the idea that using any one diversity component as a surrogate of the others in developing conservation strategies. Instead, an integrative approach embracing multiple facets of diversity should be adopted in the conservation of freshwater biodiversity.
  相似文献   

6.

Aim

To identify useful sources of species data and appropriate habitat variables for species distribution modelling on rare species, with seahorses as an example, deriving ecological knowledge and spatially explicit maps to advance global seahorse conservation.

Location

The shallow seas.

Methods

We applied a typical species distribution model (SDM), maximum entropy, to examine the utility of (1) two versions of habitat variables (habitat occurrences vs. proximity to habitats) and (2) three sources of species data: quality research‐grade (RG) data, quality‐unknown citizen science (CS) and museum‐collection (MC) data. We used the best combinations of species data and habitat variables to predict distributions and estimate species–habitat relations and threatened status for seahorse species.

Results

We demonstrated that using “proximity to habitats” and integrating all species datasets (RG, CS and MC) derived models with the highest accuracies among all dataset variations. Based on this finding, we derived reliable models for 33 species. Our models suggested that only 0.4% of potential seahorse range was suitable to more than three species together; seahorse biogeographic epicentres were mainly in the Philippines; and proximity to sponges was an important habitat variable. We found that 12 “Data Deficient” species might be threatened based on our predictions according to IUCN criteria.

Main conclusions

We highlight that using proper habitat variables (e.g., proximity to habitats) is critical to determine distributions and key habitats for low‐mobility animals; collating and integrating quality‐unknown occurrences (e.g., CS and MC) with quality research data are meaningful for building SDMs for rare species. We encourage the application of SDMs to estimate area of occupancy for rare organisms to facilitate their conservation status assessment.
  相似文献   

7.

Aim

We compare the present‐day global ocean climate with future climatologies based on Intergovernmental Panel on Climate Change (IPCC) models and examine whether changes in global ocean climate will affect the environmental similarity of New Zealand's (NZ) coastal environments to those of the rest of the world. Our underlying rationale is that environmental changes to source and recipient regions may result in changes to the risk of non‐indigenous species survival and establishment.

Location

Coastlines of global continents and islands.

Methods

We determined the environmental similarity (Euclidean distance) between global coastlines and north‐east NZ for 2005 and 2050 using data on coastal seawater surface temperature and salinity. Anticipated climate models from the SRES A1B scenario family were used to derive coastal climatologies for 2050.

Results

During the next decades, most global regions will experience an increase in coastal seawater surface temperatures and a decline or increase in salinity. This will result in changes in the similarity of other coastal environments to north‐east NZ's coastal areas. Global regions that presently have high environmental similarity to north‐east NZ will variously retain this level of similarity, become more similar or decrease in environmental similarity. Some regions that presently have a low level of similarity will become more similar to NZ. Our models predict a widespread decrease in the seasonal variation in environmental similarity to NZ.

Main conclusions

Anticipated changes in the global ocean climate have the potential to change the risk of survival and establishment of non‐indigenous marine species arriving to NZ from some global regions. Predicted changes to global human transport networks over the coming decades highlight the importance of incorporating climate change into conservation planning and modelling.
  相似文献   

8.

Aim

Springs in the Australian arid zone are distinct from other waterways because they house a large number of endemic species. We aimed to assess spatial patterns in endemic diversity at a basin‐wide scale and whether environmental features can help to explain them. In doing so, we take the opportunity to summarize the current state of conservation in the system.

Location

Great Artesian Basin (GAB), arid and semiarid regions of eastern Australia

Methods

We combine data regarding the location of springs with published GIS layers regarding environmental characteristics and a literature review of all species and subspecies documented in the published literature to be endemic to GAB springs.

Results

We found evidence of 96 species and subspecies of fishes, molluscs, crustaceans and plants endemic to these springs. The majority of endemic species are invertebrates with geographical distributions limited to a single spring complex (<61 km2). Endemic taxa are concentrated in 75 of the 326 spring complexes. Spring complexes with a large number of springs, high connectivity via drainage basins and low rainfall were more likely to contain endemic taxa, but environmental models were poor predictors of diversity. Only 24% spring complexes with high conservation value are within conservation reserves, and the majority of endemic species are unassessed under the IUCN and Australian conservation legislation, particularly the invertebrates.

Main conclusions

Diversity in this system is underestimated given the current rate of species discovery and prevailing data deficiency for many taxa. Historical processes and species‐specific environmental requirements may be more important for explaining why diversity is concentrated in particular complexes. Almost a decade after this system was listed as endangered, most complexes of high conservation value remain outside of conservation reserves, and the endangered species status of many taxa, and particularly the invertebrates, remain unassessed.
  相似文献   

9.

Aim

To identify traits related to the severity and type of environmental impacts generated by alien bird species, in order to improve our ability to predict which species may have the most damaging impacts.

Location

Global.

Methods

Information on traits hypothesized to influence the severity and type of alien bird impacts was collated for 113 bird species. These data were analysed using mixed effects models accounting for phylogenetic non‐independence of species.

Results

The severity and type of impacts generated by alien bird species are not randomly distributed with respect to their traits. Alien range size and habitat breadth were strongly associated with impact severity. Predation impacts were strongly associated with dietary preference, but also with alien range size, relative brain size and residence time. Impacts mediated by interactions with other alien species were related to alien range size and diet breadth.

Main conclusions

Widely distributed generalist alien birds have the most severe environmental impacts. This may be because these species have greater opportunity to cause environmental impacts through their sheer number and ubiquity, but this could also be because they are more likely to be identified and studied. Our study found little evidence for an effect of per capita impact on impact severity.
  相似文献   

10.

Aim

To evaluate Morrone's (2001, Biogeografia de America Latina y el Caribe. Zaragoza, Spain: CYTED, ORCYT‐UNESCO, Sociedad Entomológica Aragonesa (SEA)) Neotropical regionalization by testing the prediction that biotas are more homogeneous within than among biogeographic units.

Location

Neotropics.

Methods

We conducted pairwise comparisons of beta diversity of Sapotaceae species within and between biogeographic units in the hierarchical regionalization proposed by Morrone (2001, Biogeografia de America Latina y el Caribe. Zaragoza, Spain: CYTED, ORCYT‐UNESCO, Sociedad Entomológica Aragonesa (SEA)), at a spatial resolution of 1‐degree cells. We used a null model to control differences in sampling effort across 1‐degree cells and performed beta‐diversity comparisons conditional on geographic distance to control for distance decay of biotic similarity.

Results

None of the biogeographic units proposed by Morrone (2001, Biogeografia de America Latina y el Caribe. Zaragoza, Spain: CYTED, ORCYT‐UNESCO, Sociedad Entomológica Aragonesa (SEA)) was biotically homogeneous with respect to all other units at the same hierarchical level. This was the case even for units commonly reported to be isolated and to host distinctive taxa like “Choco.” However, five of 45 biogeographic units were biotically homogenous relative to several other units. These units were “Cuba,” “Chaco,” “Varzea,” “Cauca” and “Costa Pacífica Mexicana.” Also, beta diversity within units was often lower than beta diversity between units at relatively short geographic distances.

Main conclusions

The distribution of Sapotaceae species showed generally low biotic homogeneity within Morrone's (2001, Biogeografia de America Latina y el Caribe. Zaragoza, Spain: CYTED, ORCYT‐UNESCO, Sociedad Entomológica Aragonesa (SEA)) biogeographic units and did not support his biogeographic regionalization. This result suggests a strong role for dispersal and biotic interchange among biogeographic units and across barriers like the Andes. It also casts doubt on the usefulness of Morrone's (2001, Biogeografia de America Latina y el Caribe. Zaragoza, Spain: CYTED, ORCYT‐UNESCO, Sociedad Entomológica Aragonesa (SEA)) biogeographic units as tools for the identification of priority areas for the conservation of biodiversity. However, relatively high biotic homogeneity within some biogeographic units suggests that they capture significant spatial patterns. In particular, noteworthy biotic homogeneity within “Cuba,” “Cauca” and “Costa Pacifica Mexicana” could be explained by isolation. Also, in “Costa Pacifica Mexicana,” patterns of biotic homogeneity could reflect closer affinities to humid lowland montane forest in Central America than to lowland rain forest in South America. Finally, substantial biotic homogeneity within “Varzea” could result from common adaptation to edaphic environments near the Amazon River.
  相似文献   

11.

Aim

To investigate phylogeographic patterns among and within co‐occurring sea snake species from Australia's endemic viviparous Aipysurus lineage, which includes critically endangered species, and evaluate the conservation implications of geographically structured patterns of genetic divergence and diversity.

Location

Australia's tropical shallow water marine environments spanning four regions: Great Barrier Reef (GBR), Gulf of Carpentaria (GoC), Timor Sea (TS) and coastal WA (WAC).

Methods

Samples from >550 snakes representing all nine nominal Aipysurus group species were obtained from throughout their known Australian ranges. Coalescent phylogenetic analyses and Bayesian molecular dating of mitochondrial DNA, combined with Bayesian and traditional population genetic analyses of 11 microsatellite loci, were used to evaluate genetic divergence and diversity.

Results

Mitochondrial DNA revealed highly congruent phylogeographic breaks among co‐occurring species, largely supported by nuclear microsatellites. For each species, each region was characterized by a unique suite of haplotypes (phylogroups). Divergences between the TS, GoC and/or GBR were invariably shallow and dated as occurring 50,000–130,000 years ago, coinciding with the cyclic Pleistocene emergence of the Torres Strait land bridge. By contrast, sea snakes from coastal WA were consistently highly divergent from other regions and dated as diverging 178,000–526,000 years ago, which was not associated with any known vicariant events.

Main Conclusions

Previously unappreciated highly divergent sea snake lineages in coastal WA potentially represent cryptic species, highlighting this region as a high‐priority area for conservation. The cyclic emergence of the Torres Strait land bridge is consisted with observed divergences between the TS, GoC and/or GBR; however, processes involved in the earlier divergences involving the WAC remain to be determined. The observed strong population genetic structures (as surrogates for dispersal) indicate that sea snakes have limited potential to reverse population declines via replenishment from other sources over time frames relevant to conservation.
  相似文献   

12.

Aim

We present the first continental‐scale study of factors controlling the species richness of groundwater‐fed fens, comparing land snails, vascular plants and bryophytes. We separately analyse two ecologically distinct groups differing in conservation value and colonization/extinction dynamics, that is habitat specialists, and matrix‐derived species. Considering the island‐like nature of fen habitats, we hypothesize larger differences in the species richness–environment relationships between habitat specialists and matrix‐derived species than among the taxonomic entities.

Location

Seven European regions

Methods

Richness was counted at 373 well‐preserved fens with undisturbed hydrology using the same protocols. Relationships between the species richness and water pH, waterlogging, climate and geography were explored by GLMs.

Results

Land snail richness responded mainly to water pH, regardless of habitat specialization. Richness of vascular plant and bryophyte specialists was strongly driven by geographical location of the sites, while that of matrix‐derived species was driven by waterlogging and water pH. The richness of matrix‐derived species of all taxa significantly increased with the decreasing waterlogging. Residual richness of specialists of all taxa decreased towards southern Europe.

Main conclusions

In island‐like terrestrial habitats, differences between specialists and matrix‐derived species may outweigh differences among taxa, unless there is one strong physiological determinant of species richness such as pH in land snails. The richness of specialists seems to be strongly related to difficult‐to‐measure regional factors such as historical frequency and connectivity of fen habitats. The richness of matrix‐derived species depends mainly on local conditions, such as pH and waterlogging, determining the degree of habitat contrast against the surrounding matrix. Sufficient waterlogging maintains a high representation of habitat specialists in fen communities, and disturbance of water regime may cause the increase in the number of matrix‐derived species and potentially trigger successional shifts towards non‐fen communities.
  相似文献   

13.

Aim

Species distribution models are useful tools for depicting important habitat, assessing abundance and orienting conservation efforts. For small populations in poorly studied ecosystems, available data are often scarce and patchy. To overcome this limitation, we aim to evaluate the use of different data types within a hierarchical Bayesian framework with the goal of modelling the abundance and distribution of a small and highly migratory population of blue whale (BW, Balaenoptera musculus) summering in Chilean Northern Patagonian (CNP).

Location

CNP, Eastern South Pacific (ESP).

Methods

We constructed a Bayesian hierarchical species distribution Model (HSDM), combining a binomial N‐mixture model used to model BW groups counts in line‐transect data (2009, 2012 and 2014) with a logistic regression for modelling presence‐availability data (2009–2016), allowing both models to share covariate parameters for borrowing strength in estimations.

Results

Distance to areas of high chlorophyll‐a concentration during spring before summering season (AHCC‐s) was the most important and consistent explanatory variable for assessing BW abundance and distribution in CNP. Incorporating accessorial presence‐only data reduced uncertainty in parameters estimation when comparing with a model using only line‐transect data, although other covariates of secondary importance failed to be retained in this model.

Main conclusions

Our results remark the capability of HSDM for integrating different data types providing a potential powerful tool when data are limited and heterogeneous. Results indicate that AHCC‐s, and possibly thermal fronts, could modulate BW abundance and distribution patterns in CNP. Preliminary model‐based delimitations of possible priority conservation areas for BW in CNP overlap with highly used vessel navigation routes and areas destined to aquaculture.
  相似文献   

14.

Aim

Past land use legacy effects—extinction debts and immigration credits—might be particularly pronounced in regions characterized by complex and dynamic landscape change. The aim of this study was to evaluate how current woody plant species distribution, composition and richness related to historical and present land uses.

Location

A smallholder farming landscape in south‐western Ethiopia.

Methods

We surveyed woody plants in 72 randomly selected 1‐ha sites in farmland and grouped them into forest specialist, generalist and pioneer species. First, we investigated woody plant composition and distribution using non‐metric multidimensional scaling. Second, we modelled species richness in response to historical and current distance from the forest edge. Third, we examined diameter class distributions of trees in recently converted vs. permanent farmland.

Results

Historical distance was a primary driver of woody plant composition and distribution. Generalist and pioneer species richness increased with historical distance. Forest specialists, however, did not respond to historical distance. Only few old individuals of forest specialist species remained in both recently converted and permanent farmlands.

Main conclusions

Our findings suggest that any possible extinction debt for forest specialist species in farmland at the landscape scale was rapidly paid off, possibly because farmers cleared large remnant trees. In contrast, we found substantial evidence of immigration credits in farmland for generalist and pioneer species. This suggests that long‐established farmland may have unrecognized conservation values, although apparently not for forest specialist species. We suggest that conservation policies in south‐western Ethiopia should recognize not only forests, but also the complementary value of the agricultural mosaic—similar to the case of European cultural landscapes. A possible future priority could be to better reintegrate forest species in the farmland mosaic.
  相似文献   

15.

Aim

The risk climate change poses to biodiversity is often estimated by forecasting the areas that will be climatically suitable for species in the future and measuring the distance of the “range shifts” species would have to make to reach these areas. Species’ traits could indicate their capacity to undergo range shifts. However, it is not clear how range‐shift capacity influences risk. We used traits from a recent evidence review to measure the relative potential of species to track changing climatic conditions.

Location

Europe.

Time period

Baseline period (1961–1990) and forecast period (2035–2064).

Major taxa studied

62 mammal species.

Methods

We modelled species distributions using two general circulation models and two representative concentration pathways (RCPs) to calculate three metrics of “exposure” to climate change: range area gained, range area lost and distance moved by the range margin. We identified traits that could inform species’ range‐shift capacity (i.e., potential to establish new populations and proliferate, and thus undertake range shifts), from a recent evidence‐based framework. The traits represent ecological generalization and reproductive strategy. We ranked species according to each metric of exposure and range‐shift capacity, calculating sensitivity to ranking methods, and synthesized both exposure and range‐shift capacity into “risk syndromes.”

Results

Many species studied whose survival depends on colonizing new areas were relatively unlikely to undergo range shifts. Under the worst‐case scenario, 62% of species studied were relatively highly exposed. 47% were highly exposed and had relatively low range‐shift capacity. Only 14% of species faced both low exposure and high range‐shift capacity. Both range‐shift and exposure metrics had a greater effect on risk assessments than climate models.

Main conclusions

The degree to which species’ potential ranges will be altered by climate change often does not correspond to species’ range‐shift capacities. Both exposure and range‐shift capacity should be considered when evaluating biodiversity risk from climate change.
  相似文献   

16.

Aim

Species require sufficiently large and connected areas of suitable habitat to support populations that can persist through change. With extensive alteration of unprotected natural habitat, there is increasing risk that protected areas (PAs) will be too small and isolated to support viable populations in the long term. Consequently, this study addresses the urgent need to assess the capacity of PA estates to facilitate species persistence.

Location

Australia.

Methods

We undertake the first assessment of the capacity of the Australian National Reserve System (NRS) to protect 90 mammal species in the long term, given the size and distribution of individual PAs across the landscape relative to species’ habitat and minimum viable area (MVA) requirements and dispersal capabilities.

Results

While all mammal ranges are represented within the NRS, the conservation capacity declined notably when we refined measures of representation within PAs to include species’ habitat and area requirements. The NRS could not support any viable populations for between three and seven species, depending on the MVA threshold used, and could support less than 10 viable populations for up to a third of the species. Planning and managing PAs for persistence emerged as most important for species with large MVA requirements and limited dispersal capabilities.

Main conclusions

The key species characteristics we identify can help managers recognize species at risk within the current PA estate and guide the types of strategies that would best reduce this risk. We reveal that current representation‐based assessments of PA progress are likely to overestimate the long‐term success of PA estates, obscuring vulnerabilities for many species. It is important that conservation planners and managers are realistic and explicit regarding the role played by different sizes and distributions of PAs, and careful in assuming that the representation of a species within a PA equates to its long‐term conservation.
  相似文献   

17.

Aim

Brown bear populations in Scandinavia show a strong mitochondrial DNA (mtDNA) phylogeographic structure and low diversity relative to other parts of Europe. Identifying the timing and origins of this mtDNA structure is important for conservation programs aimed at restoring populations to a natural state. Therefore, it is essential to identify whether contemporary genetic structure is linked to post‐glacial recolonisation from divergent source populations or an artefact of demographic impacts during recent population bottlenecks. We employed ancient DNA techniques to investigate the timing and potential causes of these patterns.

Location

Scandinavia and Europe.

Methods

Ancient mtDNA sequences from 20 post‐glacial Scandinavian bears were used to investigate phylogeographic structure and genetic diversity over the last 6000 years. MtDNA from 19 Holocene Norwegian bears was compared with 499 sequences from proximate extant populations in Sweden, Finland, Estonia and western Russia. A single mtDNA sequence from a Holocene Denmark sample was compared with 149 ancient and modern bears from Western Europe.

Results

All nineteen Holocene Norwegian samples are identical to or closely related to the most common mtDNA haplotype found in northern Europe today. MtDNA diversity was low and not significantly different from extant populations in northern Europe. In Denmark, we identified a single mtDNA haplotype that is previously unrecorded from Scandinavia.

Main conclusions

The current discrete phylogeographic structure and lack of mtDNA diversity in Scandinavia is attributed to serial founder effects during post‐glacial recolonisation from divergent source populations rather than an artefact of recent anthropogenic impacts. In contrast to previous interpretations, the recolonisation of southern Scandinavia may not have been limited to bears from a single glacial refugium. Results highlight the importance of conserving the long‐term evolutionary separation between northern and southern populations and identify southern Scandinavia as an important reservoir of mtDNA diversity that is under threat in other parts of Europe.
  相似文献   

18.

Aim

Central Iran is a priority area for biodiversity conservation, which is threatened by encroachment on core habitats and fragmentation by roads. The goal of this study was to identify core areas and connectivity corridors for a set of desert carnivores by predicting habitat suitability and calculating resistant kernel, factorial least‐cost path modelling and graph network indices.

Location

Iran.

Methods

We used an ensemble model (EM) of habitat suitability methods to predict the potential habitats of leopard, cheetah, caracal, wild cat, sand cat and grey wolf and used resistant kernel and factorial least‐cost path modelling to identify important core habitats and corridors between patches. We also used a graph network analysis to quantify the importance of each core patch to landscape connectivity.

Results

Potential habitats of the studied carnivores appeared to be strongly influenced by prey density, annual precipitation, topographical roughness, shrubland density and anthropogenic factors. Most of the core patches were covered by protected areas and no‐hunting areas. This may be attributed to the relatively high resistance outside protected areas leading to isolated occupied patches. Patch importance to connectivity was significantly correlated with patch extent, density of dispersing individuals and probability of occurrence in the core patch.

Main conclusions

Our findings revealed that prey abundance in core habitat is critically important, and has higher influence than habitat area per se. In addition, our analysis provided the first map of landscape connectivity for multiple species in Iran and revealed that conserving these species requires integrated landscape‐level management to reduce mortality risk and protect core areas and linkages among them. These results will assist the development of multispecies conservation strategies to protect core areas for carnivores.
  相似文献   

19.

Aim

Protected areas are key conservation tools intended to increase biodiversity and reduce extinction risks of species and populations. However, the degree to which protected areas achieve their conservation goals is generally unknown for many protected areas worldwide. We assess the effect of protected areas on the abundance of 196 common, resident bird species. If protected areas were beneficial to avian biodiversity, we expect landscapes with a higher proportion of protected areas will have higher densities of species compared to landscapes with no protection.

Location

Greater Gauteng region, South Africa.

Methods

We analysed bird survey data collected over regular grid cells across the study area. We estimated bird abundance in relation to the proportion of a grid cell that was protected with the Royle–Nichols model and fitted the model once for each of the species. We examined variation in estimated abundance as a function of avian guild (defined by the type of food a species preferentially ate and its foraging mode) with a regression tree analysis.

Results

Abundance was significantly positively related to the proportion of protected areas in grid cells for 26% of the species, significantly negatively related in 15%, and not significantly related in 59% species. We found three distinct guild groups which differed in their average abundance, after accounting for associated variance. Group 1 consisted of guilds frugivores, ground‐feeders, hawkers, predators, and vegivores and average abundance was strongly positively related to the proportion of protected areas. Group 2 included granivores, and average abundance was strongly negatively related to proportion of protected areas. Group 3 included gleaners only, and average abundance was not related to proportion of protected areas.

Main conclusion

We conclude that the network of protected areas within the greater Gauteng region sustained relatively higher abundances of common birds and thus perform an important conservation role.
  相似文献   

20.

Aim

Spring wetlands in arid regions of Australia provide habitat for many highly endemic organisms, including fish, molluscs, crustaceans and plants, but these unique ecosystems have been under pressure since the arrival of Europeans about 250 years ago. Arguments over whether particular plant species are long‐term spring inhabitants or recent immigrants are confounding efforts to conserve spring flora. One such example is the swamp foxtail, Cenchrus purpurascens, a grass that is variably listed in the literature as being native to Australian wetlands or as being an introduced weedy species from Asia.

Location

Australia, China and Korea.

Methods

We use DNA sequences of the nuclear ITS and the chloroplast DNA regions trnL‐F and matK, complemented with newly designed simple sequence repeat (SSR) markers, to assess the native status of C. purpurascens in Australia and determine whether there is genetic differentiation among spring populations.

Results

We find that, although there has been gene flow between Asia and Australia in the geological past, the populations are now strongly differentiated: C. purpurascens has probably been present in Australia through the Pleistocene. In Australia, there is also strong genetic differentiation among populations from different springs, and between springs and non‐springs populations, indicating long‐term occupancy of some springs sites.

Main conclusions

Cenchrus purpurascens was present in Australia well before European colonization of the continent. The level of genetic differentiation among populations enhances the existing conservation values of Elizabeth Springs, Edgbaston, Doongmabulla and Carnarvon Gorge springs complexes within the Great Artesian Basin.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号