首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Aim

We sought to identify direct and indirect effects of factors contributing to establishment and spread of 272 stream fish species.

Location

Two hundred and ninety‐seven watersheds in the eastern United States.

Methods

We modelled two variables: (1) whether a species had become established outside its native range (establishment) and (2) the number of watersheds in which species established outside their native range (spread). We estimated these variables by comparing historical distributions to a rich data set of contemporary sampling. We calculated metrics of human use (indexing propagule pressure), and gathered species trait data from an open‐access database. We then used piecewise path analysis to estimate direct and indirect effects of human use, native range size and species traits on the two metrics of species introductions.

Results

We identified a hierarchical causal structure in which native range size and fishing pressure were important direct determinants of introductions. Species traits had some direct effects, but played a more indirect role. Native range size was significantly affected by thermal tolerance and diet breadth. Likewise, fishing pressure was significantly affected by life history strategy: larger‐bodied, longer‐living and more fecund species were positively associated with fishing pressure.

Main conclusions

Functional traits can confer an advantage to some species during the establishment phase, but human use is important for subsequent dispersal throughout the non‐native range. However, human use is non‐random, and is largely a function of species traits. Considering both direct and indirect effects of traits across stages of the invasion process can help to elucidate the full role of traits in species invasions.
  相似文献   

2.

Aim

To test whether native and non‐native species have similar diversity–area relationships (species–area relationships [SARs] and phylogenetic diversity–area relationships [PDARs]) and whether they respond similarly to environmental variables.

Location

United States.

Methods

Using lists of native and non‐native species as well as environmental variables for >250 US national parks, we compared SARs and PDARs of native and non‐native species to test whether they respond similarly to environmental conditions. We then used multiple regressions involving climate, land cover and anthropogenic variables to further explore underlying predictors of diversity for plants and birds in US national parks.

Results

Native and non‐native species had different slopes for SARs and PDARs, with significantly higher slopes for native species. Corroborating this pattern, multiple regressions showed that native and non‐native diversity of plants and birds responded differently to a greater number of environmental variables than expected by chance. For native species richness, park area and longitude were the most important variables while the number of park visitors, temperature and the percentage of natural area were among the most important ones for non‐native species richness. Interestingly, the most important predictor of native and non‐native plant phylogenetic diversity, temperature, had positive effects on non‐native plants but negative effects on natives.

Main conclusions

SARs, PDARs and multiple regressions all suggest that native and non‐native plants and birds responded differently to environmental factors that influence their diversity. The agreement between diversity–area relationships and multiple regressions with environmental variables suggests that SARs and PDARs can be both used as quick proxies of overall responses of species to environmental conditions. However, more importantly, our results suggest that global change will have different effects on native and non‐native species, making it inappropriate to apply the large body of knowledge on native species to understand patterns of community assembly of non‐native species.
  相似文献   

3.

Aim

We present the first continental‐scale study of factors controlling the species richness of groundwater‐fed fens, comparing land snails, vascular plants and bryophytes. We separately analyse two ecologically distinct groups differing in conservation value and colonization/extinction dynamics, that is habitat specialists, and matrix‐derived species. Considering the island‐like nature of fen habitats, we hypothesize larger differences in the species richness–environment relationships between habitat specialists and matrix‐derived species than among the taxonomic entities.

Location

Seven European regions

Methods

Richness was counted at 373 well‐preserved fens with undisturbed hydrology using the same protocols. Relationships between the species richness and water pH, waterlogging, climate and geography were explored by GLMs.

Results

Land snail richness responded mainly to water pH, regardless of habitat specialization. Richness of vascular plant and bryophyte specialists was strongly driven by geographical location of the sites, while that of matrix‐derived species was driven by waterlogging and water pH. The richness of matrix‐derived species of all taxa significantly increased with the decreasing waterlogging. Residual richness of specialists of all taxa decreased towards southern Europe.

Main conclusions

In island‐like terrestrial habitats, differences between specialists and matrix‐derived species may outweigh differences among taxa, unless there is one strong physiological determinant of species richness such as pH in land snails. The richness of specialists seems to be strongly related to difficult‐to‐measure regional factors such as historical frequency and connectivity of fen habitats. The richness of matrix‐derived species depends mainly on local conditions, such as pH and waterlogging, determining the degree of habitat contrast against the surrounding matrix. Sufficient waterlogging maintains a high representation of habitat specialists in fen communities, and disturbance of water regime may cause the increase in the number of matrix‐derived species and potentially trigger successional shifts towards non‐fen communities.
  相似文献   

4.

Aim

Population dynamics are often tightly linked to the condition of the landscape. Focusing on a landscape impacted by mountaintop removal coal mining (MTR), we ask the following questions: (1) How does MTR influence vital rates including occupancy, colonization and persistence probabilities, and conditional abundance of stream salamander species and life stages? (2) Do species and life stages respond similar to MTR mining or is there significant variation among species and life stages?

Location

Freshwater and terrestrial habitats in Central Appalachia (South‐eastern Kentucky, USA).

Methods

We conducted salamander counts for three consecutive years in 23 headwater stream reaches in forested or previously mined landscapes. We used a hierarchical, N‐mixture model with dynamic occupancy to calculate species‐ and life stage‐specific occupancy, colonization and persistence rates, and abundance given occupancy. We examined the coefficients of the hierarchical priors to determine population variation among species and life stages.

Results

Over 3 years, reference sites had greater salamander abundances and were occupied at a much higher rate than streams impacted by MTR. At sites impacted by MTR mining, most salamander species and life stages exhibited reduced initial occupancy, colonization rates, persistence rates and conditional abundance relative to reference stream reaches. Furthermore, the rates in MTR sites showed low variance, reinforcing that species and life stages were responding similar to MTR.

Main conclusions

Salamander populations in landscapes modified by MTR mining exhibited significantly reduced vital rates compared to reference sites. Yet, similarity in responses across species suggests that management or restoration may benefit the entire salamander assemblage. For example, reforestation could reduce landscape resistance, repair altered hydrologic regimes and allow for higher rates of colonization and persistence in streams impacted by MTR.
  相似文献   

5.

Aim

We assessed patterns of avian species loss and the role of morpho‐ecological traits in explaining species vulnerability to forest fragmentation in an anthropogenic island system. We also contrasted observed and detectability‐corrected estimates of island occupancy, which are often used to infer species vulnerability.

Location

Tucuruí Hydroelectric Reservoir, eastern Brazilian Amazonia.

Methods

We surveyed forest birds within 36 islands (3.4–2,551.5 ha) after 22 years of post‐isolation history. We applied species–area relationships to assess differential patterns of species loss among three data sets: all species, forest specialists and habitat generalists. After controlling for phylogenetic non‐independence, we used observed and detectability‐corrected estimates of island occupancy separately to build competing models as a function of species traits. The magnitude of the difference between these estimates of island occupancy was contrasted against species detectability.

Results

The rate of species loss as a function of island area reduction was higher for forest specialists than for habitat generalists. Accounting for the area effect, forest fragmentation did not affect the overall number of species regardless of the data set. Only the interactive model including natural abundance, habitat breadth and geographic range size was strongly supported for both estimates of island occupancy. For 30 species with detection probabilities below 30%, detectability‐corrected estimates were at least tenfold higher than those observed. Conversely, differences between estimates were negligible or non‐existent for all 31 species with detection probabilities exceeding 45.5%.

Main conclusions

Predicted decay of avian species richness induced by forest loss is affected by the degree of habitat specialisation of the species under consideration, and may be unrelated to forest fragmentation per se. Natural abundance was the main predictor of species island occupancy, although habitat breadth and geographic range size also played a role. We caution against using occupancy models for low‐detectability species, because overestimates of island occupancy reduce the power of species‐level predictions of vulnerability.
  相似文献   

6.

Aim

Many alien species experience a lag phase between arriving in a region and becoming invasive, which can provide a valuable window of opportunity for management. Our ability to predict which species are experiencing lags has major implications for management decisions that are worth billions of dollars and that may determine the survival of some native species. To date, timing and causes of lag and release have been identified post hoc, based on historical narratives.

Location

Global.

Methods

We use a simple but realistic simulation of population spread over a fragmented landscape. To break the invasion lag, we introduce a sudden, discrete change in dispersal.

Results

We show that the ability to predict invasion lags is minimal even under controlled circumstances. We also show a non‐negligible risk of falsely attributing lag breaks to mechanisms based on invasion trajectories and coincidences in timing.

Main conclusions

We suggest that post hoc narratives may lead us to erroneously believe we can predict lags and that a precautionary approach is the only sound management practice for most alien species.
  相似文献   

7.

Aim

Identify the optimal combination of sampling techniques to maximize the detection of diversity of cave‐dwelling arthropods.

Location

Central‐western New Mexico; north‐western Arizona; Rapa Nui, Chile.

Methods

From 26 caves across three geographically distinct areas in the Western Hemisphere, arthropods were sampled using opportunistic collecting, timed searches, and baited pitfall trapping in all caves, and direct intuitive searches and bait sampling at select caves. To elucidate the techniques or combination of techniques for maximizing sampling completeness and efficiency, we examined our sampling results using nonmetric multidimensional scaling (NMDS), analysis of similarity (ANOSIM), Wilcoxon signed‐rank tests, species richness estimators and species accumulation curves.

Results

To maximize the detection of cave‐dwelling arthropod species, one must apply multiple sampling techniques and specifically sample unique microhabitats. For example, by sampling cave deep zones and nutrient resource sites, we identified several undescribed cave‐adapted and/or cave‐restricted taxa in the south‐western United States and eight new species of presumed cave‐restricted arthropods on Rapa Nui that would otherwise have been missed. Sampling techniques differed in their detection of both management concern species (e.g., newly discovered cave‐adapted/restricted species, range expansions of cave‐restricted species and newly confirmed alien species) and specific taxonomic groups. Spiders were detected primarily with visual search techniques (direct intuitive searches, opportunistic collecting and timed searches), while most beetles were detected using pitfall traps. Each sampling technique uniquely identified species of management concern further strengthening the importance of a multi‐technique sampling approach.

Main conclusions

Multiple sampling techniques were required to best characterize cave arthropod diversity. For techniques applied uniformly across all caves, each technique uniquely detected between ~40% and 67% of the total species observed. Also, sampling cave deep zones and nutrient resource sites was critical for both increasing the number of species detected and maximizing the likelihood of detecting management concern species.
  相似文献   

8.

Aim

Changing preferences regarding which species humans have transported to new regions can have major consequences for the potential distribution of alien taxa, but the mechanisms shaping these patterns are poorly understood. We assessed the extent to which changes in human preferences for transporting and introducing alien freshwater fishes have altered their biogeography.

Location

Australia.

Methods

We compiled an up‐to‐date database of alien freshwater fishes established in drainages in Australia before and after the number of established alien fish species doubled (pre‐1970 and post‐1970, respectively). Using metacommunity models, we analysed the influence of species traits and drainage features on the distribution of alien fishes that established pre‐ and post‐1970.

Results

Alien fishes in Australia were introduced via four main transport pathways: acclimatization, aquaculture, biocontrol and ornamental trade. The relative importance of each pathway changed substantially between the two periods, accompanied by changes in the distribution of alien fishes and the variables predicting their distribution. Pre‐1970, most species (64%) were introduced by acclimatization societies for purposes such as angling and biocontrol, and these fish have established in inland drainages more heavily impacted by human activities. In contrast, most of the post‐1970 introductions (69%) were ornamental fishes, with most species established in small, north‐eastern, tropical and subtropical coastal drainages.

Main conclusions

Substantial changes in introduction preferences and transport pathways over time have altered both the patterns and underlying processes shaping the biogeography of alien fishes in Australia. Our findings highlight the need for caution when using historical data to infer potential future distributions of alien species. The continuing spread of alien species means traditional biogeographical units may no longer be identifiable in the foreseeable future.
  相似文献   

9.

Aim

To identify traits related to the severity and type of environmental impacts generated by alien bird species, in order to improve our ability to predict which species may have the most damaging impacts.

Location

Global.

Methods

Information on traits hypothesized to influence the severity and type of alien bird impacts was collated for 113 bird species. These data were analysed using mixed effects models accounting for phylogenetic non‐independence of species.

Results

The severity and type of impacts generated by alien bird species are not randomly distributed with respect to their traits. Alien range size and habitat breadth were strongly associated with impact severity. Predation impacts were strongly associated with dietary preference, but also with alien range size, relative brain size and residence time. Impacts mediated by interactions with other alien species were related to alien range size and diet breadth.

Main conclusions

Widely distributed generalist alien birds have the most severe environmental impacts. This may be because these species have greater opportunity to cause environmental impacts through their sheer number and ubiquity, but this could also be because they are more likely to be identified and studied. Our study found little evidence for an effect of per capita impact on impact severity.
  相似文献   

10.

Aim

Range expansions facilitated by humans or in response to local biotic or abiotic stressors provide the opportunity for species to occupy novel environments. Classifying the status of newly expanded populations can be difficult, particularly when the timing and nature of the range expansion are unclear. Should native species in new habitats be considered invasive pests or actively conserved? Here, we present an analytical framework applied to an Australian marsupial, the sugar glider (Petaurus breviceps), a species that preys upon on an endangered parrot in Tasmania, and whose provenance was uncertain.

Location

Tasmania, Australia.

Methods

We conducted an extensive search of historical records for sugar glider occurrences in Tasmania. Source material included museum collection data, early European expedition logs, community observation records, and peer‐reviewed and grey literature. To determine the provenance of the Tasmanian population, we sequenced two mitochondrial genes and one nuclear gene in Tasmanian animals (n = 27) and in individuals across the species' native range. We then estimated divergence times between Tasmania and southern Australian populations using phylogenetic and Bayesian analyses.

Results

We found no historical evidence of sugar gliders occurring in Tasmania prior to 1835. All Tasmanian individuals (n = 27) were genetically identical at the three genes surveyed here with those individuals being 0.125% divergent from individuals from a population in Victoria. Bayesian analysis of divergence between Tasmanian individuals and southern Australian individuals suggested a recent introduction of sugar gliders into Tasmania from southern Australia.

Main conclusions

Molecular and historical data demonstrate that Tasmanian sugar gliders are a recent, post‐European, anthropogenic introduction from mainland Victoria. This result has implications for the management of the species in relation to their impact on an endangered parrot. The analytical framework outlined here can assist environmental managers with the complex task of assessing the status of recently expanded or introduced native species.
  相似文献   

11.

Aim

We compare the present‐day global ocean climate with future climatologies based on Intergovernmental Panel on Climate Change (IPCC) models and examine whether changes in global ocean climate will affect the environmental similarity of New Zealand's (NZ) coastal environments to those of the rest of the world. Our underlying rationale is that environmental changes to source and recipient regions may result in changes to the risk of non‐indigenous species survival and establishment.

Location

Coastlines of global continents and islands.

Methods

We determined the environmental similarity (Euclidean distance) between global coastlines and north‐east NZ for 2005 and 2050 using data on coastal seawater surface temperature and salinity. Anticipated climate models from the SRES A1B scenario family were used to derive coastal climatologies for 2050.

Results

During the next decades, most global regions will experience an increase in coastal seawater surface temperatures and a decline or increase in salinity. This will result in changes in the similarity of other coastal environments to north‐east NZ's coastal areas. Global regions that presently have high environmental similarity to north‐east NZ will variously retain this level of similarity, become more similar or decrease in environmental similarity. Some regions that presently have a low level of similarity will become more similar to NZ. Our models predict a widespread decrease in the seasonal variation in environmental similarity to NZ.

Main conclusions

Anticipated changes in the global ocean climate have the potential to change the risk of survival and establishment of non‐indigenous marine species arriving to NZ from some global regions. Predicted changes to global human transport networks over the coming decades highlight the importance of incorporating climate change into conservation planning and modelling.
  相似文献   

12.

Aim

Species require sufficiently large and connected areas of suitable habitat to support populations that can persist through change. With extensive alteration of unprotected natural habitat, there is increasing risk that protected areas (PAs) will be too small and isolated to support viable populations in the long term. Consequently, this study addresses the urgent need to assess the capacity of PA estates to facilitate species persistence.

Location

Australia.

Methods

We undertake the first assessment of the capacity of the Australian National Reserve System (NRS) to protect 90 mammal species in the long term, given the size and distribution of individual PAs across the landscape relative to species’ habitat and minimum viable area (MVA) requirements and dispersal capabilities.

Results

While all mammal ranges are represented within the NRS, the conservation capacity declined notably when we refined measures of representation within PAs to include species’ habitat and area requirements. The NRS could not support any viable populations for between three and seven species, depending on the MVA threshold used, and could support less than 10 viable populations for up to a third of the species. Planning and managing PAs for persistence emerged as most important for species with large MVA requirements and limited dispersal capabilities.

Main conclusions

The key species characteristics we identify can help managers recognize species at risk within the current PA estate and guide the types of strategies that would best reduce this risk. We reveal that current representation‐based assessments of PA progress are likely to overestimate the long‐term success of PA estates, obscuring vulnerabilities for many species. It is important that conservation planners and managers are realistic and explicit regarding the role played by different sizes and distributions of PAs, and careful in assuming that the representation of a species within a PA equates to its long‐term conservation.
  相似文献   

13.

Aim

Ideally, datasets for species distribution modelling (SDM) contain evenly sampled records covering the entire distribution of the species, confirmed absences and auxiliary ecophysiological data allowing informed decisions on relevant predictors. Unfortunately, these criteria are rarely met for marine organisms for which distributions are too often only scantly characterized and absences generally not recorded. Here, we investigate predictor relevance as a function of modelling algorithms and settings for a global dataset of marine species.

Location

Global marine.

Methods

We selected well‐studied and identifiable species from all major marine taxonomic groups. Distribution records were compiled from public sources (e.g., OBIS, GBIF, Reef Life Survey) and linked to environmental data from Bio‐ORACLE and MARSPEC. Using this dataset, predictor relevance was analysed under different variations of modelling algorithms, numbers of predictor variables, cross‐validation strategies, sampling bias mitigation methods, evaluation methods and ranking methods. SDMs for all combinations of predictors from eight correlation groups were fitted and ranked, from which the top five predictors were selected as the most relevant.

Results

We collected two million distribution records from 514 species across 18 phyla. Mean sea surface temperature and calcite are, respectively, the most relevant and irrelevant predictors. A less clear pattern was derived from the other predictors. The biggest differences in predictor relevance were induced by varying the number of predictors, the modelling algorithm and the sample selection bias correction. The distribution data and associated environmental data are made available through the R package marinespeed and at http://marinespeed.org .

Main conclusions

While temperature is a relevant predictor of global marine species distributions, considerable variation in predictor relevance is linked to the SDM set‐up. We promote the usage of a standardized benchmark dataset (MarineSPEED) for methodological SDM studies.
  相似文献   

14.

Aim

To assess how environmental, biotic and anthropogenic factors shape native–alien plant species richness relationships across a heterogeneous landscape.

Location

Banks Peninsula, New Zealand.

Methods

We integrated a comprehensive floristic survey of over 1200 systematically located 6 × 6 m plots, with corresponding climate, environmental and anthropogenic data. General linear models examined variation in native and alien plant species richness across the entire landscape, between native‐ and alien‐dominated plots, and within separate elevational bands.

Results

Across all plots, there was a significant negative correlation between native and alien species richness, but this relationship differed within subsets of the data: the correlation was positive in alien‐dominated plots but negative in native‐dominated plots. Within separate elevational bands, native and alien species richness were positively correlated at lower elevations, but negatively correlated at higher elevations. Alien species richness tended to be high across the elevation gradient but peaked in warmer, mid‐ to low‐elevation sites, while native species richness increased linearly with elevation. The negative relationship between native and alien species richness in native‐dominated communities reflected a land‐use gradient with low native and high alien richness in more heavily modified native‐dominated vegetation. In contrast, native and alien richness were positively correlated in very heavily modified alien‐dominated plots, most likely due to covariation along a gradient of management intensity.

Main conclusions

Both positive and negative native–alien richness relationships can occur across the same landscape, depending on the plant community and the underlying human and environmental gradients examined. Human habitat modification, which is often confounded with environmental variation, can result in high alien and low native species richness in areas still dominated by native species. In the most heavily human modified areas, dominated by alien species, both native and alien species may be responding to similar underlying gradients.
  相似文献   

15.

Aim

Recent, rapid population declines in many Afro‐Palaearctic migratory bird species have focussed attention on changing conditions within Africa. However, processes influencing population change can operate throughout the annual cycle and throughout migratory ranges. Here, we explore the evidence for impacts of breeding and non‐breeding conditions on population trends of British breeding birds of varying migratory status and wintering ecology.

Location

Great Britain (England & Scotland).

Methods

Within‐ and between‐species variation in population trends is quantified for 46 bird species with differing migration strategies.

Results

Between 1994 and 2007, rates of population change in Scotland and England differed significantly for 19 resident and 15 long‐distance migrant species, but were similar for 12 short‐distance migrant species. Of the six long‐distance migrant species that winter in the arid zone of Africa, five are increasing in abundance throughout Britain. In contrast, the seven species wintering in the humid zone of Africa are all declining in England, but five of these are increasing in Scotland. Consequently, populations of both arid and humid zone species are increasing significantly faster in Scotland than England, and only the English breeding populations of species wintering in the humid zone are declining.

Main conclusions

Population declines in long‐distance migrants, especially those wintering in the humid zone, but not residents or short‐distance migrants suggest an influence of non‐breeding season conditions on population trends. However, the consistently less favourable population trends in England than Scotland of long‐distance migrant and resident species strongly suggest that variation in the quality of breeding grounds is influencing recent population changes. The declines in humid zone species in England, but not Scotland, may result from poorer breeding conditions in England exacerbating the impacts of non‐breeding conditions or the costs associated with a longer migration, while better conditions in Scotland may be buffering these impacts.
  相似文献   

16.

Aim

Mega hydroelectric dams have become one of the main drivers of biodiversity loss in the lowland tropics. In these reservoirs, vertebrate studies have focused on local (α) diversity measures, whereas between‐site (β) diversity remains poorly assessed despite its pivotal importance in understanding how species diversity is structured and maintained. Here, we unravel the patterns and ecological correlates of mammal β‐diversity, including both small (SM) and midsized to large mammal species (LM) across 23 islands and two continuous forest sites within a mega hydroelectric reservoir.

Location

Balbina Hydroelectric Dam, Central Brazilian Amazonia.

Methods

Small mammals were sampled using live and pitfall traps (48,350 trap‐nights), and larger mammals using camera traps (8,160 trap‐nights). β‐diversity was examined for each group using multiplicative diversity decomposition of Hill numbers, which considers the importance of rare, common and dominant species, and tested to what extent those were related to a set of environmental characteristics measured at different spatial scales.

Results

β‐diversity for both mammal groups was higher when considering species presence–absence. When considering species abundance, β‐diversity was significantly higher for SM than for LM assemblages. Habitat variables, such as differences in tree species richness and percentage of old‐growth trees, were strong correlates of β‐diversity for both SMs and LMs. Conversely, β‐diversity was weakly related to patch and landscape characteristics, except for LMs, for which β‐diversity was correlated with differences in island sizes.

Main conclusions

The lower β‐diversity of LMs between smaller islands suggests subtractive homogenization of this group. Although island size plays a major role in structuring mammal α‐diversity in several land‐bridge islands, local vegetation characteristics were additional key factors determining β‐diversity for both mammal groups. Maintaining the integrity of vegetation characteristics and preventing the formation of a large set of small islands within reservoirs should be considered in long‐term management plans in both existing and planned hydropower development in lowland tropical forests.
  相似文献   

17.

Aim

Small geographic ranges make species especially prone to extinction from anthropogenic disturbances or natural stochastic events. We assemble and analyse a comprehensive dataset of all the world's lizard species and identify the species with the smallest ranges—those known only from their type localities. We compare them to wide‐ranging species to infer whether specific geographic regions or biological traits predispose species to have small ranges.

Location

Global.

Methods

We extensively surveyed museum collections, the primary literature and our own field records to identify all the species of lizards with a maximum linear geographic extent of <10 km. We compared their biogeography, key biological traits and threat status to those of all other lizards.

Results

One in seven lizards (927 of the 6,568 currently recognized species) are known only from their type localities. These include 213 species known only from a single specimen. Compared to more wide‐ranging taxa, they mostly inhabit relatively inaccessible regions at lower, mostly tropical, latitudes. Surprisingly, we found that burrowing lifestyle is a relatively unimportant driver of small range size. Geckos are especially prone to having tiny ranges, and skinks dominate lists of such species not seen for over 50 years, as well as of species known only from their holotype. Two‐thirds of these species have no IUCN assessments, and at least 20 are extinct.

Main conclusions

Fourteen per cent of lizard diversity is restricted to a single location, often in inaccessible regions. These species are elusive, usually poorly known and little studied. Many face severe extinction risk, but current knowledge is inadequate to properly assess this for all of them. We recommend that such species become the focus of taxonomic, ecological and survey efforts.
  相似文献   

18.

Aim

Global conservation planning is often oriented around vertebrates and plants, yet most organisms are invertebrates. To explore the potential conservation implications of this bias, we assessed how well patterns of diversity for an influential group of invertebrates, the ants, correspond with those of three vertebrate groups (birds, mammals and amphibians).

Location

Global.

Methods

We compiled data on the number of genera of ants and the three vertebrate groups for 370 political regions across the world. We then compared their correlations both for overall diversity and between subsets of genera likely to be of conservation concern. We also developed generalized additive models (GAM) to identify regions where vertebrates and ants diverged in their diversity patterns.

Results

While ant and vertebrate diversity do positively correlate, the correlations are substantially weaker for the ant lineages of the greatest conservation concern. Vertebrates also notably fail to predict ant diversity in specific geographic areas, including Australia and Southeast Asia, parts of Africa and Madagascar, and south‐western China. These failures may be genuine differences in diversity patterns, or they may indicate important gaps in our knowledge of ant and vertebrate diversity.

Main conclusions

We conclude that it is currently unwise to assume that global conservation priorities based on vertebrates will conserve ants as well. We suspect that this also applies to other invertebrates.
  相似文献   

19.

Aim

Assessing the influence of land cover in species distribution modelling is limited by the availability of fine‐resolution land‐cover data appropriate for most species responses. Remote‐sensing technology offers great potential for predicting species distributions at large scales, but the cost and required expertise are prohibitive for many applications. We test the usefulness of freely available raw remote‐sensing reflectance data in predicting species distributions of 40 commonly occurring bird species in western Oregon.

Location

Central Coast Range, Cascade and Klamath Mountains Oregon, USA.

Methods

Information on bird observations was collected from 4598 fixed‐radius point counts. Reflectance data were obtained using 30‐m resolution Landsat imagery summarized at scales of 150, 500, 1000 and 2000 m. We used boosted regression tree (BRT) models to analyse relationships between distributions of birds and reflectance values and evaluated prediction performance of the models using area under the receiver operating characteristic curve (AUC) values.

Results

Prediction success of models using all reflectance values was high (mean AUC = 0.79 ± 0.10 SD). Further, model performance using individual reflectance bands exceeded those that used only Normalized Difference Vegetation Index (NDVI). The relative influence of band 4 predictors was highest, indicating the importance of variables associated with vegetation biomass and photosynthetic activity. Across spatial scales, the average influence of predictors at the 2000 m scale was greatest.

Main Conclusions

We demonstrate that unclassified remote‐sensing imagery can be used to produce species distribution models with high prediction success. Our study is the first to identify general patterns in the usefulness of spectral reflectances for species distribution modelling of multiple species. We conclude that raw Landsat Thematic Mapper data will be particularly useful in species distribution models when high‐resolution predictions are required, including habitat change detection studies, identification of fine‐scale biodiversity hotspots and reserve design.
  相似文献   

20.

Aim

Freshwater megafauna remain underrepresented in research and conservation, despite a disproportionately high risk of extinction due to multiple human threats. Therefore, our aims are threefold; (i) identify global patterns of freshwater megafauna richness and endemism, (ii) assess the conservation status of freshwater megafauna and (iii) demonstrate spatial and temporal patterns of human pressure throughout their distribution ranges.

Location

Global.

Methods

We identified 207 extant freshwater megafauna species, based on a 30 kg weight threshold, and mapped their distributions using HydroBASINS subcatchments (level 8). Information on conservation status and population trends for each species was extracted from the IUCN Red List website. We investigated human impacts on freshwater megafauna in space and time by examining spatial congruence between their distributions and human pressures, described by the Incident Biodiversity Threat Index and Temporal Human Pressure Index.

Results

Freshwater megafauna occur in 76% of the world’s main river basins (level 3 HydroBASINS), with species richness peaking in the Amazon, Congo, Orinoco, Mekong and Ganges‐Brahmaputra basins. Freshwater megafauna are more threatened than their smaller counterparts within the specific taxonomic groups (i.e., fishes, mammals, reptiles and amphibians). Out of the 93 freshwater megafauna species with known population trends, 71% are in decline. Meanwhile, IUCN Red List assessments reported insufficient or outdated data for 43% of all freshwater megafauna species. Since the early 1990s, human pressure has increased throughout 63% of their distribution ranges, with particularly intense impacts occurring in the Mekong and Ganges‐Brahmaputra basins.

Main conclusions

Freshwater megafauna species are threatened globally, with intense and increasing human pressures occurring in many of their biodiversity hotspots. We call for research and conservation actions for freshwater megafauna, as they are highly sensitive to present and future pressures including a massive boom in hydropower dam construction in their biodiversity hotspots.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号