首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Aim

Recent, rapid population declines in many Afro‐Palaearctic migratory bird species have focussed attention on changing conditions within Africa. However, processes influencing population change can operate throughout the annual cycle and throughout migratory ranges. Here, we explore the evidence for impacts of breeding and non‐breeding conditions on population trends of British breeding birds of varying migratory status and wintering ecology.

Location

Great Britain (England & Scotland).

Methods

Within‐ and between‐species variation in population trends is quantified for 46 bird species with differing migration strategies.

Results

Between 1994 and 2007, rates of population change in Scotland and England differed significantly for 19 resident and 15 long‐distance migrant species, but were similar for 12 short‐distance migrant species. Of the six long‐distance migrant species that winter in the arid zone of Africa, five are increasing in abundance throughout Britain. In contrast, the seven species wintering in the humid zone of Africa are all declining in England, but five of these are increasing in Scotland. Consequently, populations of both arid and humid zone species are increasing significantly faster in Scotland than England, and only the English breeding populations of species wintering in the humid zone are declining.

Main conclusions

Population declines in long‐distance migrants, especially those wintering in the humid zone, but not residents or short‐distance migrants suggest an influence of non‐breeding season conditions on population trends. However, the consistently less favourable population trends in England than Scotland of long‐distance migrant and resident species strongly suggest that variation in the quality of breeding grounds is influencing recent population changes. The declines in humid zone species in England, but not Scotland, may result from poorer breeding conditions in England exacerbating the impacts of non‐breeding conditions or the costs associated with a longer migration, while better conditions in Scotland may be buffering these impacts.
  相似文献   

2.

Aim

Habitat loss and climate change constitute two of the greatest threats to biodiversity worldwide, and theory predicts that these factors may act synergistically to affect population trajectories. Recent evidence indicates that structurally complex old‐growth forest can be cooler than other forest types during spring and summer months, thereby offering potential to buffer populations from negative effects of warming. Old growth may also have higher food and nest‐site availability for certain species, which could have disproportionate fitness benefits as species approach their thermal limits.

Location

Pacific Northwestern United States.

Methods

We predicted that negative effects of climate change on 30‐year population trends of old‐growth‐associated birds should be dampened in landscapes with high proportions of old‐growth forest. We modelled population trends from Breeding Bird Survey data for 13 species as a function of temperature change and proportion old‐growth forest.

Results

We found a significant negative effect of summer warming on only two species. However, in both of these species, this relationship between warming and population decline was not only reduced but reversed, in old‐growth‐dominated landscapes. Across all 13 species, evidence for a buffering effect of old‐growth forest increased with the degree to which species were negatively influenced by summer warming.

Main conclusions

These findings suggest that old‐growth forests may buffer the negative effects of climate change for those species that are most sensitive to temperature increases. Our study highlights a mechanism whereby management strategies to curb degradation and loss of old‐growth forests—in addition to protecting habitat—could enhance biodiversity persistence in the face of climate warming.
  相似文献   

3.

Aim

To assess whether observed thermal bounds in species’ latitudinal ranges (i.e., realized thermal niches) can be used to predict patterns of occurrence and abundance changes observed during a marine heatwave, relative to other important life history and functional traits.

Location

Rottnest Island, Western Australia.

Methods

A time series of standardized quantitative surveys of reef fishes spanning 8 years of pronounced ocean temperature change is used to test whether accurate predictions on shifts in species occupancy and abundance are possible using species traits.

Results

Species‐level responses in occurrence and abundance were closely related to the mid‐point of their realized thermal niche, more so than body size, range size or trophic level. Most of the species that disappeared from survey counts during the heatwave were characterized by geographic ranges that did not extend to latitudes with temperatures equivalent to the ocean temperature peak during the heatwave. We thus find support for the hypothesis that current distribution limits are set directly or indirectly by temperature and are highly responsive to ocean temperature variability.

Main conclusions

Our study shows that reef fish community structure can change very quickly when exposed to extreme thermal anomalies, in directions predicted from the realized thermal niche of the species present. Such predictions can thus identify species that will be most responsive to changing ocean climate. Continued warming, coupled with periodic extreme heat events, may lead to the loss of ecosystem services and ecological functions, as mobile species relocate to more hospitable climes, while less mobile species may head towards extinction.
  相似文献   

4.

Aim

We compare the present‐day global ocean climate with future climatologies based on Intergovernmental Panel on Climate Change (IPCC) models and examine whether changes in global ocean climate will affect the environmental similarity of New Zealand's (NZ) coastal environments to those of the rest of the world. Our underlying rationale is that environmental changes to source and recipient regions may result in changes to the risk of non‐indigenous species survival and establishment.

Location

Coastlines of global continents and islands.

Methods

We determined the environmental similarity (Euclidean distance) between global coastlines and north‐east NZ for 2005 and 2050 using data on coastal seawater surface temperature and salinity. Anticipated climate models from the SRES A1B scenario family were used to derive coastal climatologies for 2050.

Results

During the next decades, most global regions will experience an increase in coastal seawater surface temperatures and a decline or increase in salinity. This will result in changes in the similarity of other coastal environments to north‐east NZ's coastal areas. Global regions that presently have high environmental similarity to north‐east NZ will variously retain this level of similarity, become more similar or decrease in environmental similarity. Some regions that presently have a low level of similarity will become more similar to NZ. Our models predict a widespread decrease in the seasonal variation in environmental similarity to NZ.

Main conclusions

Anticipated changes in the global ocean climate have the potential to change the risk of survival and establishment of non‐indigenous marine species arriving to NZ from some global regions. Predicted changes to global human transport networks over the coming decades highlight the importance of incorporating climate change into conservation planning and modelling.
  相似文献   

5.

Aim

Urbanization broadly affects the phylogenetic and functional diversity of natural communities through a variety of processes including habitat loss and the introduction of non‐native species. Due to the challenge of acquiring direct measurements, these effects have been studied primarily using “space‐for‐time” substitution where spatial urbanization gradients are used to infer the consequences of urbanization occurring across time. The ability of alternative sampling designs to replicate the findings derived using space‐for‐time substitution has not been tested.

Location

Global.

Methods

We contrasted the phylogenetic and functional diversity of breeding bird assemblages in 58 cities worldwide with the corresponding regional breeding bird assemblages estimated using geographic range maps.

Results

Compared to regional assemblages, urban assemblages contained lower phylogenetic diversity, lower phylogenetic beta diversity, a reduction in the least evolutionary distinct species and the loss of the most evolutionarily distinct species. We found no evidence that these effects were related to the presence of non‐native species. Urban assemblages contained fewer aquatic species and fewer aquatic foraging species. The distribution of body size and range size narrowed for urban assemblages with the loss of species at both tails of the distribution, especially large bodied and broadly distributed species. Urban assemblages contained a greater proportion of species classified as passerines, doves or pigeons; species identified as granivores; species that forage within vegetation or in the air; and species with more generalized associations with foraging strata.

Main conclusions

Urbanization is associated with the overall reduction and constriction of phylogenetic and functional diversity, results that largely replicate those generated using space‐for‐time substitution, increasing our confidence in the quality of the combined inferences. When direct measurements are unavailable, our findings emphasize the value of developing independent sampling methods that broaden and reinforce our understanding of the ecological implications of urbanization.
  相似文献   

6.

Aim

Correlative species distribution models (SDMs) combined with spatial layers of climate and species' localities represent a frequently utilized and rapid method for generating spatial estimates of species distributions. However, an SDM is only as accurate as the inputs upon which it is based. Current best‐practice climate layers commonly utilized in SDM (e.g. ANUCLIM) are frequently inaccurate and biased spatially. Here, we statistically downscale 30 years of existing spatial weather estimates against empirical weather data and spatial layers of topography and vegetation to produce highly accurate spatial layers of weather. We proceed to demonstrate the effect of inaccurately quantified spatial data on SDM outcomes.

Location

The Australian Wet Tropics.

Methods

We use Boosted Regression Trees (BRTs) to generate 30 years of spatial estimates of daily maximum and minimum temperature for the study region and aggregate the resultant weather layers into ‘accuCLIM’ climate summaries, comparable with those generated by current best‐practice climate layers. We proceed to generate for seven species of rainforest skink comparable SDMs within species; one model based on ANUCLIM climate estimates and another based on accuCLIM climate estimates.

Results

Boosted Regression Trees weather layers are more accurate with respect to empirically measured temperature, particularly for maximum temperature, when compared to current best‐practice weather layers. ANUCLIM climate layers are least accurate in heavily forested upland regions, frequently over‐predicting empirical mean maximum temperature by as much as 7°. Distributions of the focal species as predicted by accuCLIM were more fragmented and contained less core distributional area.

Conclusion

Combined these results reveal a source of bias in climate‐based SDMs and indicate a solution in the form of statistical downscaling. This technique will allow researchers to produce fine‐grained, ground‐truthed spatial estimates of weather based on existing estimates, which can be aggregated in novel ways, and applied to correlative or process‐based modelling techniques.
  相似文献   

7.

Aim

The risk climate change poses to biodiversity is often estimated by forecasting the areas that will be climatically suitable for species in the future and measuring the distance of the “range shifts” species would have to make to reach these areas. Species’ traits could indicate their capacity to undergo range shifts. However, it is not clear how range‐shift capacity influences risk. We used traits from a recent evidence review to measure the relative potential of species to track changing climatic conditions.

Location

Europe.

Time period

Baseline period (1961–1990) and forecast period (2035–2064).

Major taxa studied

62 mammal species.

Methods

We modelled species distributions using two general circulation models and two representative concentration pathways (RCPs) to calculate three metrics of “exposure” to climate change: range area gained, range area lost and distance moved by the range margin. We identified traits that could inform species’ range‐shift capacity (i.e., potential to establish new populations and proliferate, and thus undertake range shifts), from a recent evidence‐based framework. The traits represent ecological generalization and reproductive strategy. We ranked species according to each metric of exposure and range‐shift capacity, calculating sensitivity to ranking methods, and synthesized both exposure and range‐shift capacity into “risk syndromes.”

Results

Many species studied whose survival depends on colonizing new areas were relatively unlikely to undergo range shifts. Under the worst‐case scenario, 62% of species studied were relatively highly exposed. 47% were highly exposed and had relatively low range‐shift capacity. Only 14% of species faced both low exposure and high range‐shift capacity. Both range‐shift and exposure metrics had a greater effect on risk assessments than climate models.

Main conclusions

The degree to which species’ potential ranges will be altered by climate change often does not correspond to species’ range‐shift capacities. Both exposure and range‐shift capacity should be considered when evaluating biodiversity risk from climate change.
  相似文献   

8.

Aim

Abiotic conditions are key components that determine the distribution of species. However, co‐occurring species can respond differently to the same factors, and determining which climate components are most predictive of geographic distributions is important for understanding community response to climate change. Here, we estimate and compare climate niches of ten subdominant, herbaceous forb species common in sagebrush steppe systems, asking how niches differ among co‐occurring species and whether more closely related species exhibit higher niche overlap.

Location

Western United States.

Methods

We used herbarium records and ecological niche modelling to estimate area of occupancy, niche breadth and overlap, and describe characteristics of suitable climate. We compared mean values and variability in summer precipitation and minimum temperatures at occurrence locations among species, plant families, and growth forms, and related estimated phylogenetic distances to niche overlap.

Results

Species varied in the size and spatial distribution of suitable climate and in niche breadth. Species also differed in the variables contributing to their suitable climate and in mean values, spatial variation and interannual variation in highly predictive climate variables. Only two of ten species shared comparable climate niches. We found family‐level differences associated with variation in summer precipitation and minimum temperatures, as well as in mean minimum temperatures. Growth forms differed in their association with variability in summer precipitation and minimum temperatures. We found no relationship between phylogenetic distance and niche overlap among our species.

Main conclusions

We identified contrasting climate niches for ten Great Basin understorey forbs, including differences in both mean values and climate variability. These estimates can guide species selection for restoration by identifying species with a high tolerance for climate variability and large climatic niches. They can also help conservationists to understand which species may be least tolerant of climate variability, and potentially most vulnerable to climate change.
  相似文献   

9.

Aim

Intraspecific variability in the migratory movements of seabirds is being revealed far more complex than hitherto recognized, and our lack of understanding undermines their effective protection. Our aim is to test whether the isotopic values of a single feather of two threatened seabirds, the Mediterranean (Puffinus yelkouan) and the Balearic (Puffinus mauretanicus) shearwaters allow the geographic assignment of birds to their non‐breeding areas.

Location

These two species are known to use three main non‐breeding areas: the NE Atlantic Ocean, the W Mediterranean and the Aegean‐Black seas.

Methods

We clustered in three groups the δ13C and δ15N values of the first primary feather (P1), inferred to be grown during the non‐breeding period, of 34 Mediterranean and 56 Balearic shearwaters accidentally caught by longliners. To link the isotopic values of P1 to its corresponding non‐breeding area, we performed a discriminant function analysis (DFA) based on the three clusters and applied this function to feathers of known origin: P1 from seven Mediterranean shearwaters from Hyères Archipelago (France) tracked with geolocators and body feathers from six chicks from Balearic shearwaters. To link the moulting patterns to the areas where the feathers were grown, we applied the DFA to a sequence of primary feathers of eight Balearic and five Mediterranean shearwaters (caught by longliners).

Results

Isotopic and tracking data indicate that none of the Mediterranean shearwaters migrated to the Atlantic. The cluster and discriminant function analyses revealed that 8% of Balearic and 54% of Mediterranean shearwater moulted P1 in the Mediterranean Sea. Migratory movements were reflected in the changing isotopic values of the primary sequences.

Main conclusions

Stable isotope analyses (SIA) are a powerful approach to reveal the intraspecific variability in the migratory patterns of seabirds that use distinct isotopic areas over their annual cycle. The assignment of birds to their non‐breeding areas by means of SIA is a simple and effective tool that can help to evaluate the impact of human activities in remote areas not only at population but also at individual level, which is an essential knowledge for the management and conservation of threatened species.
  相似文献   

10.

Aim

Springs in the Australian arid zone are distinct from other waterways because they house a large number of endemic species. We aimed to assess spatial patterns in endemic diversity at a basin‐wide scale and whether environmental features can help to explain them. In doing so, we take the opportunity to summarize the current state of conservation in the system.

Location

Great Artesian Basin (GAB), arid and semiarid regions of eastern Australia

Methods

We combine data regarding the location of springs with published GIS layers regarding environmental characteristics and a literature review of all species and subspecies documented in the published literature to be endemic to GAB springs.

Results

We found evidence of 96 species and subspecies of fishes, molluscs, crustaceans and plants endemic to these springs. The majority of endemic species are invertebrates with geographical distributions limited to a single spring complex (<61 km2). Endemic taxa are concentrated in 75 of the 326 spring complexes. Spring complexes with a large number of springs, high connectivity via drainage basins and low rainfall were more likely to contain endemic taxa, but environmental models were poor predictors of diversity. Only 24% spring complexes with high conservation value are within conservation reserves, and the majority of endemic species are unassessed under the IUCN and Australian conservation legislation, particularly the invertebrates.

Main conclusions

Diversity in this system is underestimated given the current rate of species discovery and prevailing data deficiency for many taxa. Historical processes and species‐specific environmental requirements may be more important for explaining why diversity is concentrated in particular complexes. Almost a decade after this system was listed as endangered, most complexes of high conservation value remain outside of conservation reserves, and the endangered species status of many taxa, and particularly the invertebrates, remain unassessed.
  相似文献   

11.

Aim

Climate is considered a major driver of species distributions. Long‐term climatic means are commonly used as predictors in correlative species distribution models (SDMs). However, this coarse temporal resolution does not reflect local conditions that populations experience, such as short‐term weather extremes, which may have a strong impact on population dynamics and local distributions. We here compare the performance of climate‐ and weather‐based predictors in regional SDMs and their influence on future predictions, which are increasingly used in conservation planning.

Location

South‐western Germany.

Methods

We built different SDMs for 20 Orthoptera species based on three predictor sets at a regional scale for current and future climate scenarios. We calculated standard bioclimatic variables and yearly and seasonal sets of climate change indicating variables of weather extremes. As the impact of extreme events may be stronger for habitat specialists than for generalists, we distinguished species’ degrees of specialization. We computed linear mixed‐effects models to identify significant effects of algorithm, predictor set and specialization on model performance and calculated correlations and geographical niche overlap between spatial predictions.

Results

Current predictions were rather similar among all predictor sets, but highly variable for future climate scenarios. Bioclimatic and seasonal weather predictors performed slightly better than yearly weather predictors, though performance differences were minor. We found no evidence that specialists are more sensitive to weather extremes than generalists.

Main conclusions

For future projections of species distributions, SDM predictor selection should not solely be based on current performances and predictions. As long‐term climate and short‐term weather predictors represent different environmental drivers of a species’ distribution, we argue to interpret diverging future projections as complements. Even if similar current performances and predictions might imply their equivalency, favouring one predictor set neglects important aspects of future distributions and might mislead conservation decisions based on them.
  相似文献   

12.

Aim

To assess how environmental, biotic and anthropogenic factors shape native–alien plant species richness relationships across a heterogeneous landscape.

Location

Banks Peninsula, New Zealand.

Methods

We integrated a comprehensive floristic survey of over 1200 systematically located 6 × 6 m plots, with corresponding climate, environmental and anthropogenic data. General linear models examined variation in native and alien plant species richness across the entire landscape, between native‐ and alien‐dominated plots, and within separate elevational bands.

Results

Across all plots, there was a significant negative correlation between native and alien species richness, but this relationship differed within subsets of the data: the correlation was positive in alien‐dominated plots but negative in native‐dominated plots. Within separate elevational bands, native and alien species richness were positively correlated at lower elevations, but negatively correlated at higher elevations. Alien species richness tended to be high across the elevation gradient but peaked in warmer, mid‐ to low‐elevation sites, while native species richness increased linearly with elevation. The negative relationship between native and alien species richness in native‐dominated communities reflected a land‐use gradient with low native and high alien richness in more heavily modified native‐dominated vegetation. In contrast, native and alien richness were positively correlated in very heavily modified alien‐dominated plots, most likely due to covariation along a gradient of management intensity.

Main conclusions

Both positive and negative native–alien richness relationships can occur across the same landscape, depending on the plant community and the underlying human and environmental gradients examined. Human habitat modification, which is often confounded with environmental variation, can result in high alien and low native species richness in areas still dominated by native species. In the most heavily human modified areas, dominated by alien species, both native and alien species may be responding to similar underlying gradients.
  相似文献   

13.

Aim

Spring wetlands in arid regions of Australia provide habitat for many highly endemic organisms, including fish, molluscs, crustaceans and plants, but these unique ecosystems have been under pressure since the arrival of Europeans about 250 years ago. Arguments over whether particular plant species are long‐term spring inhabitants or recent immigrants are confounding efforts to conserve spring flora. One such example is the swamp foxtail, Cenchrus purpurascens, a grass that is variably listed in the literature as being native to Australian wetlands or as being an introduced weedy species from Asia.

Location

Australia, China and Korea.

Methods

We use DNA sequences of the nuclear ITS and the chloroplast DNA regions trnL‐F and matK, complemented with newly designed simple sequence repeat (SSR) markers, to assess the native status of C. purpurascens in Australia and determine whether there is genetic differentiation among spring populations.

Results

We find that, although there has been gene flow between Asia and Australia in the geological past, the populations are now strongly differentiated: C. purpurascens has probably been present in Australia through the Pleistocene. In Australia, there is also strong genetic differentiation among populations from different springs, and between springs and non‐springs populations, indicating long‐term occupancy of some springs sites.

Main conclusions

Cenchrus purpurascens was present in Australia well before European colonization of the continent. The level of genetic differentiation among populations enhances the existing conservation values of Elizabeth Springs, Edgbaston, Doongmabulla and Carnarvon Gorge springs complexes within the Great Artesian Basin.
  相似文献   

14.

Aim

Urban floras are composed of species of different origin, both native and alien, and with various traits and niches. It is likely that these species will respond to the ongoing climate change in different ways, resulting in future species compositions with no analogues in current European cities. Our goal was to estimate potential shifts in plant species composition in European cities under different scenarios of climate change for the 21st century.

Location

Europe.

Methods

Potential changes in the distribution of 375 species currently growing in 60 large cities in Southern, Central and Western Europe were modelled using generalized linear models and four climate change projections for two future periods (2041–2060 and 2061–2080). These projections were based on two global climate models (CCSM4 and MIROC‐ESM) and two Representative Concentration Pathways (2.6 and 8.5).

Results

Results were similar across all climate projections, suggesting that the composition of urban plant communities will change considerably due to future climate change. However, even under the most severe climate change scenario, native and alien species will respond to climate change similarly. Many currently established species will decline and others, especially annuals currently restricted to Southern Europe, will spread to northern cities. In contrast, perennial herbs, woody plants and most species with temperate continental and oceanic distribution ranges will make up a smaller proportion of future European urban plant communities in comparison with the present communities.

Main conclusions

The projected 21st century climate change will lead to considerable changes in the species composition of urban floras. These changes will affect the structure and functioning of urban plant communities.
  相似文献   

15.

Aim

The genetics of organisms currently isolated in refugia has received little attention compared to post‐glacial expansions. We study the population history and connectivity of a rat endemic to montane habitat in Borneo to better understand the history and potential of populations in interglacial mountain refugia.

Location

Sabah, Borneo, Malaysia.

Methods

We performed a field survey of the summit rat (Rattus baluensis) on two mountains, Mt. Kinabalu and Mt. Tambuyukon, its entire known distribution. We sequenced mitogenomes and 27 introns (19 of which were polymorphic) in 49 individuals from both populations. We analysed their current genetic structure and diversity, and inferred their demographic history with approximate Bayesian computation.

Results

Summit rats were tightly associated with mountain mossy forest and scrubland above 2,000 m, facilitating the prediction of their past and future distributions. The genetic analysis supports a Holocene fragmentation of a larger population into smaller ones that are now isolated in interglacial refugia on mountaintops. These findings are consistent with climatic reconstructions and the retreat of upland forest to higher elevations after the Last Glacial Maximum (LGM), ~21 kya.

Main conclusions

The two isolated populations of summit rats formed through the upland shift of their habitat after the LGM. The current trend of global warming will likely lead to diminishing suitable upland habitat and result in the extinction of the population on Mt. Tambuyukon. The population on Mt. Kinabalu, the higher peak, could persist at higher elevations, highlighting the singular value of high tropical mountains as reservoirs of biodiversity during past and ongoing climate change.
  相似文献   

16.

Aim

Studies of species' range shifts have become increasingly relevant for understanding ecology and biogeography in the face of accelerated global change. The combination of limited mobility and imperilled status places some species at a potentially greater risk of range loss, extirpation or extinction due to climate change. To assess the ability of organisms with limited movement and dispersal capabilities to track shifts associated with climate change, we evaluated reproductive and dispersal traits of freshwater mussels (Unionida), sessile invertebrates that require species‐specific fish for larval dispersal.

Location

North American Atlantic Slope rivers.

Methods

To understand how unionid mussels may cope with and adapt to current and future warming trends, we identified mechanisms that facilitated their colonization of the northern Atlantic Slope river basins in North America after the Last Glacial Maximum. We compiled species occurrence and life history trait information for each of 55 species, and then selected life history traits for which ample data were available (larval brooding duration, host fish specificity, host infection strategy, and body size) and analysed whether the trait state for each was related to mussel distribution in Atlantic Slope rivers.

Results

Brooding duration (p < .01) and host fish specificity (p = .02) were significantly related to mussel species distribution. Long‐term brooders were more likely than short‐term brooders to colonize formerly glaciated rivers, as were host generalists compared to specialists. Body size and host infection strategy were not predictive of movement into formerly glaciated rivers (p > .10).

Main conclusions

Our results are potentially applicable to many species for which life history traits have not been well‐documented, because reproductive and dispersal traits in unionid mussels typically follow phylogenetic relationships. These findings may help resource managers prioritize species according to climate change vulnerability and predict which species might become further imperilled with climate warming. Finally, we suggest that similar trait‐based decision support frameworks may be applicable for other movement limited taxa.
  相似文献   

17.

Aim

To assess how habitat loss and climate change interact in affecting the range dynamics of species and to quantify how predicted range dynamics depend on demographic properties of species and the severity of environmental change.

Location

South African Cape Floristic Region.

Methods

We use data‐driven demographic models to assess the impacts of past habitat loss and future climate change on range size, range filing and abundances of eight species of woody plants (Proteaceae). The species‐specific models employ a hybrid approach that simulates population dynamics and long‐distance dispersal on top of expected spatio‐temporal dynamics of suitable habitat.

Results

Climate change was mainly predicted to reduce range size and range filling (because of a combination of strong habitat shifts with low migration ability). In contrast, habitat loss mostly decreased mean local abundance. For most species and response measures, the combination of habitat loss and climate change had the most severe effect. Yet, this combined effect was mostly smaller than expected from adding or multiplying effects of the individual environmental drivers. This seems to be because climate change shifts suitable habitats to regions less affected by habitat loss. Interspecific variation in range size responses depended mostly on the severity of environmental change, whereas responses in range filling and local abundance depended mostly on demographic properties of species. While most surviving populations concentrated in areas that remain climatically suitable, refugia for multiple species were overestimated by simply overlying habitat models and ignoring demography.

Main conclusions

Demographic models of range dynamics can simultaneously predict the response of range size, abundance and range filling to multiple drivers of environmental change. Demographic knowledge is particularly needed to predict abundance responses and to identify areas that can serve as biodiversity refugia under climate change. These findings highlight the need for data‐driven, demographic assessments in conservation biogeography.
  相似文献   

18.

Aim

To identify traits related to the severity and type of environmental impacts generated by alien bird species, in order to improve our ability to predict which species may have the most damaging impacts.

Location

Global.

Methods

Information on traits hypothesized to influence the severity and type of alien bird impacts was collated for 113 bird species. These data were analysed using mixed effects models accounting for phylogenetic non‐independence of species.

Results

The severity and type of impacts generated by alien bird species are not randomly distributed with respect to their traits. Alien range size and habitat breadth were strongly associated with impact severity. Predation impacts were strongly associated with dietary preference, but also with alien range size, relative brain size and residence time. Impacts mediated by interactions with other alien species were related to alien range size and diet breadth.

Main conclusions

Widely distributed generalist alien birds have the most severe environmental impacts. This may be because these species have greater opportunity to cause environmental impacts through their sheer number and ubiquity, but this could also be because they are more likely to be identified and studied. Our study found little evidence for an effect of per capita impact on impact severity.
  相似文献   

19.

Aim

Artificial coastal defence structures are proliferating in response to rising and stormier seas. These structures provide habitat for many species but generally support lower biodiversity than natural habitats. This is primarily due to the absence of environmental heterogeneity and water‐retaining features on artificial structures. We compared the epibiotic communities associated with artificial coastal defence structures and natural habitats to ask the following questions: (1) is species richness on emergent substrata greater in natural than artificial habitats and is the magnitude of this difference greater at mid than upper tidal levels; (2) is species richness greater in rock pools than emergent substrata and is the magnitude of this difference greater in artificial than natural habitats; and (3) in artificial habitats, is species richness in rock pools greater at mid than upper tidal levels?

Location

British Isles.

Methods

Standard non‐destructive random sampling compared the effect of habitat type and tidal height on epibiota on natural rocky shores and artificial coastal defence structures.

Results

Natural emergent substrata supported greater species richness than artificial substrata. Species richness was greater at mid than upper tidal levels, particularly in artificial habitats. Rock pools supported greater species richness than emergent substrata, and this difference was more pronounced in artificial than natural habitats. Rock pools in artificial habitats supported greater species richness at mid than upper tidal levels.

Main conclusions

Artificial structures support lower biodiversity than natural habitats. This is primarily due to the lack of habitat heterogeneity in artificial habitats. Artificial structures can be modified to provide rock pools that promote biodiversity. The effect of rock pool creation will be more pronounced at mid than upper tidal levels. The challenge now is to establish at what tidal height the effect of pools becomes negligible and to determine the rock pool dimensions for optimum habitat enhancement.
  相似文献   

20.

Aim

Many alien species experience a lag phase between arriving in a region and becoming invasive, which can provide a valuable window of opportunity for management. Our ability to predict which species are experiencing lags has major implications for management decisions that are worth billions of dollars and that may determine the survival of some native species. To date, timing and causes of lag and release have been identified post hoc, based on historical narratives.

Location

Global.

Methods

We use a simple but realistic simulation of population spread over a fragmented landscape. To break the invasion lag, we introduce a sudden, discrete change in dispersal.

Results

We show that the ability to predict invasion lags is minimal even under controlled circumstances. We also show a non‐negligible risk of falsely attributing lag breaks to mechanisms based on invasion trajectories and coincidences in timing.

Main conclusions

We suggest that post hoc narratives may lead us to erroneously believe we can predict lags and that a precautionary approach is the only sound management practice for most alien species.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号