首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Climate change threatens coral reefs across the world. Intense bleaching has caused dramatic coral mortality in many tropical regions in recent decades, but less obvious chronic effects of temperature and other stressors can be equally threatening to the long‐term persistence of diverse coral‐dominated reef systems. Coral reefs persist if coral recovery rates equal or exceed average rates of mortality. While mortality from acute destructive events is often obvious and easy to measure, estimating recovery rates and investigating the factors that influence them requires long‐term commitment. Coastal development is increasing in many regions, and sea surface temperatures are also rising. The resulting chronic stresses have predictable, adverse effects on coral recovery, but the lack of consistent long‐term data sets has prevented measurement of how much coral recovery rates are actually changing. Using long‐term monitoring data from 47 reefs spread over 10 degrees of latitude on Australia's Great Barrier Reef (GBR), we used a modified Gompertz equation to estimate coral recovery rates following disturbance. We compared coral recovery rates in two periods: 7 years before and 7 years after an acute and widespread heat stress event on the GBR in 2002. From 2003 to 2009, there were few acute disturbances in the region, allowing us to attribute the observed shortfall in coral recovery rates to residual effects of acute heat stress plus other chronic stressors. Compared with the period before 2002, the recovery of fast‐growing Acroporidae and of “Other” slower growing hard corals slowed after 2002, doubling the time taken for modest levels of recovery. If this persists, recovery times will be increasing at a time when acute disturbances are predicted to become more frequent and intense. Our study supports the need for management actions to protect reefs from locally generated stresses, as well as urgent global action to mitigate climate change.  相似文献   

4.
A form of active restoration for coral assemblages involves culturing coral nubbins at nursery sites before transplantation to recipient reefs. Incidental grazing and/or directed predation by local fish assemblages are major sources of dislodgement and mortality for coral nubbins in nurseries. However, the rate of coral nubbin detachment, how this varies across fish taxa, and whether nubbin size affects rates of detachment warrant further investigation. We used field and aquaria experiments to examine the effect of incidental grazing and predation on the detachment of Porites cylindrica nubbins of different sizes (0.5, 1, 2, 3, 4, and 5 cm height). Short‐term (6 hours) exposure of nubbins to local fish assemblages at Lucero Reef, northwestern Philippines, caused higher detachment (1.93% ± 0.53 SE) compared to caged controls (0.16% ± 0.16 SE), with no detectable effect of nubbin size. To identify the impact of individual fish species, nubbins were exposed to one of four locally abundant herbivorous and corallivorous fish species in aquaria for 8 hours. Nubbin detachment was greater when exposed to Chlorurus spilurus (1.20–36.2%) and Siganus fuscescens (0.00–15.0%) than Chaetodon lunulatus (0.00–4.00%) and Chaetodon kleinii (0.00–1.20%), with the smallest nubbins (0.5 cm) being the most vulnerable. Our results suggest that incidental grazing by herbivorous fishes, especially parrotfishes, may potentially be an important source of detachment and likely mortality of nubbins. Optimizing coral nursery protocols should consider potential trade‐offs between excluding grazing fishes and the accumulation of algal material on caging structures to minimize nubbin mortality and improve coral restoration success.  相似文献   

5.
Hydrozoans of the genus Zanclea have been acknowledged only recently as a fundamental component of the highly diverse fauna associated with reef‐building scleractinian corals. Although widely distributed in coral reefs and demonstrated to be important in protecting corals from predation and diseases, the biodiversity of these hydrozoans remains enigmatic due to the paucity of available morphological characters, incomplete morphological characterisations and the possible existence of cryptic species. Recently, molecular techniques have revealed the existence of multiple hidden genetic lineages not yet supported by diagnostic morphological characters. In this work, we further explore the morpho‐diversity of three genetic lineages, namely Zanclea associated with the coral genera Goniastrea (clade I), Porites (clade II) and Pavona (clade VI). Aside from providing a complete classical characterisation of the polyp and medusa stage of each clade, we searched for new potential taxonomic indicators either on symbiotic hydroids or on host corals. On the hydroids, statistical analyses on almost 7,000 nematocyst capsules revealed a significant difference in terms of nematocyst size among the three Zanclea clades investigated. On each host coral genus, we identified peculiar skeletal modifications related to the presence of Zanclea symbionts. Lastly, we discussed the potential diagnostic value of these footprints in the characterisation of Zanclea–scleractinian associations.  相似文献   

6.
The study of coral diseases requires an integrated approach that includes a combination of field and laboratory methods. By combining and building upon information available from multiple disciplines, within both field and laboratory applications, we have been successful in characterizing a number of coral diseases. To illustrate the utility of the integrative approach two very different coral diseases, black band disease and plague, are discussed in detail. Comparison of our ongoing characterization of each disease demonstrates that, within the integrative approach, different combinations of microbiological, microsensor, molecular, and physiologic techniques are required. The pathobiology of black band disease, which consists of a complicated, synergistic microbial consortium functioning around a dynamic sulfur cycle, is slowly being unraveled using a combination of methods. Our study of plague, on the other hand, has progressed in a very different manner that is controlled by the fact that this disease has, to date, emerged in three forms on reefs of the Florida Keys. The study of plague types I, II, and III will be detailed to illustrate the difficulty of characterizing a disease that rapidly evolves in the natural environment of the reef. Our ongoing study of additional (also very different) coral diseases will be summarized from the perspective of combined methodologies to illustrate the range and magnitude of questions that must be addressed and answered in order to understand coral disease pathogenesis and thus coral disease etiology.  相似文献   

7.
As coral reefs continue to degrade at an alarming rate, coral restoration efforts are increasing worldwide in an attempt to keep up with the global challenge of preserving these iconic ecosystems and the many services they provide. Coral gardening, the farming and outplanting of coral fragments, is a commonly applied practice; however, regional validation is required before upscaling can be considered. This study follows up from the successful farming of fragments in mid-water rope nurseries, by reporting on the successive outplanting of these corals. Specifically, 60 Pocillopora verrucosa colonies were outplanted to a degraded reef at different depths (1–12 m), applying three arrangement patterns (equal, clustered, random). After 1 year, 72% were considered successfully outplanted (alive and still attached), with detachment being the main challenge at wave-impacted shallow depths, while loose coral rubble caused more partial mortality at depth. Outplanting stress was observed at 1–6 m depth, but had no impact on survival or growth. Drupella sp. predation was most common at 3 m and 79% of colonies hosted mutualistic fauna after 1 year. Outplanting significantly benefitted the reef environment with a higher fish abundance and diversity along with a higher increase in natural coral cover (H = 2.7; 6.2% increase) in comparison with the control sites. These are promising results, considering that the restoration site has shown little natural recovery in the last few years (coral cover <4%). We hope that our findings provide useful initial insights and help to guide effective restoration practices in the Maldives.  相似文献   

8.
Coral reef degradation is often associated with regime shifts from coral‐ to macroalgal‐dominated reefs. These shifts demonstrate that under certain conditions (e.g. coral mortality, decrease in herbivory, increased nutrients supply) some macroalgae may overgrow corals. The outcome of the competition is dependent on algal aggressiveness and the coral susceptibility. In undisturbed reefs, herbivore grazing is regulating macroalgal cover, thus preventing the latter from overgrowing corals. However, some macroalgae have evolved strategies not only to outcompete corals but also to escape herbivory to some extent, allowing overgrowth of some coral species in undisturbed reefs. Epizoism represents one of those successful strategies, and has been previously documented with red algae, cyanobacteria and Lobophora variegata (Dictyotales, Phaeophyceae). Here we report a new case of epizoism leading to coral mortality, involving a recently described species of Lobophora, L. hederacea, overgrowing the coral Seriatopora caliendrum (Pocilloporidae) in undisturbed reefs in New Caledonia.  相似文献   

9.
珊瑚礁生态修复研究进展   总被引:4,自引:2,他引:2  
李元超  黄晖  董志军  练健生  周国伟 《生态学报》2008,28(10):5047-5054
珊瑚礁生态系统有着很高的生物多样性和重要的生态功能。20世纪80年代以后全球范围内珊瑚礁的大面积退化引起了人们广泛的关注。简述了世界珊瑚礁资源现状,破坏原因,生态修复方法以及我国的珊瑚礁资源现状和修复策略等。国际上通用的生态修复策略主要是根据珊瑚的两种繁殖方式进行的,此外再配合人为的适度干扰,增加珊瑚的成活率。方法主要有:珊瑚移植、Gardening、人工渔礁、底质稳固、幼体附着等以及对相关利益者的宣传,海岸带的保护等。我国珊瑚礁退化严重,但是由于缺乏相关的科技资料报道和技术支持,缺乏系统的研究,使得珊瑚礁的生态修复成绩甚微,今后应在该领域开展更多的工作。  相似文献   

10.
福建东山石珊瑚伴生物种多样性   总被引:12,自引:0,他引:12  
本文记录了福建东山锯齿刺星珊瑚(Cyphastrea serrailia)、标准菊花珊瑚(Favia speciosa)和盾形陀螺珊瑚(Turbinaria peltata)等6种造礁石珊瑚。石珊瑚的立体生境中,栖息着埋栖、穴栖、缝栖、附着和游动等5种栖息习性的154种伴生物种。埋栖的连贵藤壶和穴栖的羽膜石蛏、珊瑚绒贻贝等是造礁石珊瑚伴生物种的表征。  相似文献   

11.
We aimed to evaluate the efficacy of the gastropod grazer Trochus niloticus in controlling epilithic algae and enhancing coral recruitment on artificial substrata on coral reefs where the biomass of herbivorous fishes was low due to heavy fishing pressure. Hatchery‐reared, subadult trochus were stocked onto pallet balls (small artificial reefs composed of concrete and limestone aggregate) at a density of approximately four individuals per square meter (external surface area). This density was re‐established with releases of new trochus each month for 6 months. At the end of the experiment, there were no significant differences in algal biomass, cover and community composition, or the density of coral recruits on substrata with and without trochus. High monthly attrition of stocked trochus on the pallet balls, apparently due mainly to predation by octopus, did not allow the evaluation of the efficiency of the trochus enhancement, at the desired density, as a restoration tool. However, at the lower trochus densities (circa 1 m?2), which occurred as a result of predation in this study, no apparent enhancement of algal grazing or coral recruitment were observed. The surprisingly high predation of stocked trochus in a heavily fished and gleaned reef site stresses the importance of understanding all the factors affecting the survival of stocked animals. To help mitigate predation of trochus, artificial habitat with refuge spaces that allow the grazers to escape predation could be provided and individuals of a larger size could be released.  相似文献   

12.
Transplantation of coral fragments is seen as a potential method to rapidly restore coral cover to areas of degraded reef; however, considerable research is still needed to assess the effectiveness of coral transplantation as a viable reef restoration tool. Initially, during restoration efforts, coral transplants are attached artificially. Self‐attachment (i.e., growth of coral tissue onto the substrate) provides a more secure and lasting bond, thus knowledge about self‐attachment times for corals is of importance to reef restoration. While it is known that coral fragments may generate new tissue and bond to substrata within a few weeks of transplantation, surprisingly little is known about the speed of self‐attachment for most species. Two independent experiments were carried out to examine the self‐attachment times of 12 scleractinian and one non‐scleractinian coral species to a natural calcium carbonate substrate. The first experiment examined times to self‐attachment in 11 species of differing morphologies from seven families over approximately 7 months, whereas the second experiment examined three fast‐attaching Acropora species over approximately 1 month. In the first experiment, the branching species Acropora muricata had a significantly faster self‐attachment time compared to all other species, while Echinopora lamellosa had the slowest self‐attachment time. For the second experiment, A. muricata was significantly slower to self‐attach than Acropora hyacinthus (tabular) and Acropora digitifera (corymbose‐digitate). The results suggest that a combination of factors including growth rates, growth form and life history may determine how quickly fragments of coral species self‐attach after fragmentation and transplantation.  相似文献   

13.
珊瑚人工繁育技术研究进展   总被引:1,自引:1,他引:0  
在气候变化、环境污染以及人工采集等因素致使珊瑚野生资源不断衰退的背景下,开展珊瑚的人工繁育是修复珊瑚生态系统、保护生物多样性、减少野生珊瑚采集的主要出路之一.本文对国内外珊瑚人工繁育技术和研究进展进行综述,探讨了珊瑚有性和无性繁殖技术以及原地和异地繁育技术的特点与不足;重点从光照、水流、营养盐、微量元素、非自养珊瑚品种的饵料,以及适宜的微生物环境等方面总结了循环海水系统繁育珊瑚的研究进展,并对我国珊瑚研究现状进行了总结.光照是珊瑚水族箱养殖或异地繁殖的关键因素之一,不同种类的珊瑚对光照强度和色温有不同的需求,珊瑚照明创新技术的发展及其能耗对于珊瑚异地繁育非常重要.此外,珊瑚对铵氮、硝氮、亚硝氮及磷酸盐等营养盐的变化非常敏感,各类机械、化学和生物的技术被应用于降低培养体系中营养盐的含量.尽管珊瑚循环海水养殖系统在照明、水流和营养盐控制方面已经有了长足的进步,珊瑚人工繁育仍然任重道远.将来的突破方向在于有性繁殖、性状改造与疾病防治技术等方面.  相似文献   

14.
  1. The deep reef refugia hypothesis (DRRH) predicts that deep reef ecosystems may act as refugium for the biota of disturbed shallow waters. Because deep reefs are among the most understudied habitats on Earth, formal tests of the DRRH remain scarce. If the DRRH is valid at the community level, the diversity of species, functions, and lineages of fish communities of shallow reefs should be encapsulated in deep reefs.
  2. We tested the DRRH by assessing the taxonomic, functional, and phylogenetic diversity of 22 Brazilian fish communities between 2 and 62 m depth. We partitioned the gamma diversity of shallow (<30 m) and deep reefs (>30 m) into independent alpha and beta components, accounted for species’ abundance, and assessed whether beta patterns were mostly driven by spatial turnover or nestedness.
  3. We recorded 3,821 fishes belonging to 85 species and 36 families. Contrary to DRRH expectations, only 48% of the species occurred in both shallow and deep reefs. Alpha diversity of rare species was higher in deep reefs as expected, but alpha diversity of typical and dominant species did not vary with depth. Alpha functional diversity was higher in deep reefs only for rare and typical species, but not for dominant species. Alpha phylogenetic diversity was consistently higher in deep reefs, supporting DRRH expectations.
  4. Profiles of taxonomic, functional, and phylogenetic beta diversity indicated that deep reefs were not more heterogeneous than shallow reefs, contradicting expectations of biotic homogenization near sea surface. Furthermore, pairwise beta‐diversity analyses revealed that the patterns were mostly driven by spatial turnover rather than nestedness at any depth.
  5. Conclusions. Although some results support the DRRH, most indicate that the shallow‐water reef fish diversity is not fully encapsulated in deep reefs. Every reef contributes significantly to the regional diversity and must be managed and protected accordingly.
  相似文献   

15.
Previous studies have demonstrated that coral and algal calcification is tightly regulated by the calcium carbonate saturation state of seawater. This parameter is likely to decrease in response to the increase of dissolved CO2 resulting from the global increase of the partial pressure of atmospheric CO2. We have investigated the response of a coral reef community dominated by scleractinian corals, but also including other calcifying organisms such as calcareous algae, crustaceans, gastropods and echinoderms, and kept in an open‐top mesocosm. Seawater pCO2 was modified by manipulating the pCO2 of air used to bubble the mesocosm. The aragonite saturation state (Ωarag) of the seawater in the mesocosm varied between 1.3 and 5.4. Community calcification decreased as a function of increasing pCO2 and decreasing Ωarag. This result is in agreement with previous data collected on scleractinian corals, coralline algae and in a reef mesocosm, even though some of these studies did not manipulate CO2 directly. Our data suggest that the rate of calcification during the last glacial maximum might have been 114% of the preindustrial rate. Moreover, using the average emission scenario (IS92a) of the Intergovernmental Panel on Climate Change, we predict that the calcification rate of scleractinian‐dominated communities may decrease by 21% between the pre‐industrial period (year 1880) and the time at which pCO2 will double (year 2065).  相似文献   

16.
The recovery of bleached corals is crucial in ensuring the persistence of the coral reef ecosystem function. This study investigated whether relocating bleached Platygyra sinensis colonies was a viable measure to accelerate their recovery. During a mild bleaching event in 2014, eight bleached colonies of P. sinensis were relocated from an affected reef at Sultan Shoal, Singapore, to a reef at Kusu that was less impacted. Another eight colonies at Sultan Shoal were tagged as controls. After five months, 88% of relocated bleached colonies at Kusu showed full recovery whereas only 25% of the control bleached colonies at Sultan Shoal had recovered. The differential coral recovery among the two sites was most likely due to lower seawater temperatures and faster water flow at Kusu, which helped to mitigate the effects of thermal stress on the bleached corals. This relocation study demonstrated that relocating bleached P. sinensis to sites with more favourable environmental conditions is a viable approach to reduce bleaching impacts for this species.  相似文献   

17.
The Caribbean staghorn coral, Acropora cervicornis, was once a dominant habitat creating coral, but its populations have declined dramatically in recent decades. Numerous restoration efforts now utilize coral gardening techniques to cultivate this species, growing colonies on fixed structures or from line/suspended nurseries. Line nurseries have become increasingly popular because of their small footprint and ease of use, replacing fixed structures in many nurseries. To evaluate the efficacy of the line technique, this study evaluated growth, condition, and survivorship of A. cervicornis nursery colonies of three distinct genotypes grown via two line nursery techniques (suspended and direct line attachment [vertical]). Direct line attachment of nursery colonies resulted in poor survival (43%) and growth (9.5 ± 1.33 cm/year), whereas suspended culture had 100% survival and increased growth (61.1 ± 4.19 cm/year). Suspended culture had significantly reduced disease prevalence and prevented colony predation. Suspended coral growth was also comparable to a neighboring fixed structure nursery (55.2 ± 7.86 cm/year), and found to be as effective in propagating corals as fixed structures.  相似文献   

18.
Using the same methodology and identical sites, we repeat a study dating from 1973 and quantify cover of hard coral species, soft corals, sponges, hard substratum and soft substratum, and density of a commercially important reef fish species, the graysby Cephalopholis cruentata, along a depth-gradient of 3–36 m on the coral reefs of Curaçao. The objective was to determine the multi-decade change in benthic coral reef cover and structural complexity, and their effect on densities of an associated reef fish species. Total hard coral cover decreased on average from 52% in 1973 to 22% in 2003, representing a relative decline of 58%. During this time span, the cover of hard substratum increased considerably (from 11 to 58%), as did that of soft corals (from 0.1 to 2.2%), whereas the cover of sponges showed no significant change. Relative decline of hard coral cover and of reef complexity was greatest in shallow waters (near the coast), which is indicative of a combination of anthropogenic influences from shore and recent storm damage. Cover of main reef builder coral species (Agaricia spp., Siderastrea siderea, Montastrea annularis) decreased more than that of other species, and resulted in a significant decrease in reef complexity. Although density of C. cruentata was highly correlated to cover of Montastrea and Agaricia in 1973, the loss of coral cover did not show any effect on the total density of C. cruentata in 2003. However, C. cruentata showed a clear shift in density distribution from shallow water in 1973 to deep water in 2003. It can be concluded that the reefs of Curaçao have degraded considerably in the last three decades, but that this has had no major effect on the population size of one commercially important coral-associated fish species.  相似文献   

19.
Significant differences were found in the extent to which massive coral species at Enewetak are excavated by boring organisms: Goniastrea retiformis, 7.9%; Porites lutea, 2.5%; and Favia pallida, 1.2%. While polychaetes constituted the most abundant and diverse group of coral associates, clionid sponges accounted for approximately 70–80% of skeletal damage. Clionid boring rates are initially very high but burrowing ceases when a particular burrow size (˜0.6 cm) or distance from the surface (≦2 cm) is reached. Most coral skeletal excavation occurs within 2 cm of a dead surface. Therefore, bioerosional damage to corals depends primarily on the amount of skeletal surface not covered by live coral tissue. Damage to skeletons is inversely correlated with colony size but is not correlated with coral growth rates or water depth. Massive corals have a potential escape in size from catastrophic bioerosion. Models relating 1) coral growth forms to skeletal density and stability in currents, 2) resistance of coral skeletons to breakage by water movement and suspended rubble, and 3) dead surface area on coral heads to bioerosional damage and consequent probability of detachment from the substrate, are proposed.  相似文献   

20.
Recently, we showed that mechanical stress on scleractinian (stony) corals caused a rapid release of antibacterial material (referred to as coral antibacterial activity, or CAA), which killed various bacterial species, including the coral pathogen Vibrio coralliilyticus . We now report on studies on the regulation of CAA release from stressed scleractinian corals. Corals can repeatedly release highly active CAA as a result of sequential stress inductions. Coral fragments were transferred 19 times from one beaker into another with a stress induction each time after 10 min. There was a decrease in the level of antibacterial activity released during the first four to five transfers. After the fifth transfer, the corals kept releasing CAA for the rest of the experiment with no significant decrease. Apparently, the release of CAA is downregulated by feedback inhibition, depending on the concentration of CAA in the surrounding water. By separating CAA-treated V. coralliilyticus from the surrounding water, it was shown that CAA was bound irreversibly to bacterial cells in a stoichiometric manner. Approximately 4 × 102 bacterial cells were sufficient to bind 1 U of CAA. Resident coral bacteria were more resistant to CAA than bacteria isolated from seawater, suggesting an ecological role for CAA. CAA release was obtained from corals after removal of the mucus layer, and the mucus itself contained antibacterial activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号