共查询到20条相似文献,搜索用时 0 毫秒
1.
小麦的比较基因组学和功能基因组学 总被引:11,自引:1,他引:11
小麦是异源多倍体植物,具有大的染色体组,并且基因组中重复序列所占比例较高,这些特征限制了小麦基因组研究的进展。比较基因组学方法为运用模式植物进行小麦基因组学研究提供了一个操作平台。功能基因组学的研究集中于基因组中转录表达的部分,基因功能的确定是功能基因组学研究的主要内容。对比较基因组学在小麦基因组研究中的应用和小麦功能基因组学的研究内容和方法进行了综述。 相似文献
2.
3.
Peirong Li Shujiang Zhang Shifan Zhang Fei Li Hui Zhang Feng Cheng Jian Wu Xiaowu Wang Rifei Sun 《BMC genomics》2015,16(1)
Background
Carotenoids are isoprenoid compounds synthesized by all photosynthetic organisms. Despite much research on carotenoid biosynthesis in the model plant Arabidopsis thaliana, there is a lack of information on the carotenoid pathway in Brassica rapa. To better understand its carotenoid biosynthetic pathway, we performed a systematic analysis of carotenoid biosynthetic genes at the genome level in B. rapa.Results
We identified 67 carotenoid biosynthetic genes in B. rapa, which were orthologs of the 47 carotenoid genes in A. thaliana. A high level of synteny was observed for carotenoid biosynthetic genes between A. thaliana and B. rapa. Out of 47 carotenoid biosynthetic genes in A. thaliana, 46 were successfully mapped to the 10 B. rapa chromosomes, and most of the genes retained more than one copy in B. rapa. The gene expansion was caused by the whole-genome triplication (WGT) event experienced by Brassica species. An expression analysis of the carotenoid biosynthetic genes suggested that their expression levels differed in root, stem, leaf, flower, callus, and silique tissues. Additionally, the paralogs of each carotenoid biosynthetic gene, which were generated from the WGT in B. rapa, showed significantly different expression levels among tissues, suggesting differentiated functions for these multi-copy genes in the carotenoid pathway.Conclusions
This first systematic study of carotenoid biosynthetic genes in B. rapa provides insights into the carotenoid metabolic mechanisms of Brassica crops. In addition, a better understanding of carotenoid biosynthetic genes in B. rapa will contribute to the development of conventional and transgenic B. rapa cultivars with enriched carotenoid levels in the future.Electronic supplementary material
The online version of this article (doi:10.1186/s12864-015-1655-5) contains supplementary material, which is available to authorized users. 相似文献4.
表面等离子体共振(surface plasmon resonance,SPR)依据光学—介质相互作用原理建立,属于实时和非标记的测试方法。SPR方法在研究分子间相互作用方面具有其独特的优势,其非标记和实时检测以及可以进行动力学分析的特点,给研究生物大分子的相互作用提供了诱人的解决方案。近来,随着SPR成像技术和SPR芯片制备技术的进展,将为功能基因组学和蛋白质组学研究提供重要的新的技术平台。 相似文献
5.
Functional genomics has revolutionised the way that scientists approach biological questions, allowing for the comprehensive characterisation of the function of related proteins encoded in a genome. The sequencing of the genome of the model system Arabidopsis thaliana has enabled the beginning of functional genomics and the study of protein kinase families in plants. The large family of genes encoding protein kinases is a primary target of functional genomics studies in plants due to their importance in diverse physiological processes. This paper describes the functional genomics tools used to study the families of protein kinases in Arabidopsis, as well as progress in uncovering the functions of these proteins. 相似文献
6.
Shuen‐Fang Lo Ien‐Chie Wen Yi‐Lun Liu Ku‐Ting Chen Mirng‐Jier Jiang Ming‐Kuang Lin Meng‐Yen Rao Lin‐Chih Yu Tuan‐Hua David Ho Su‐May Yu 《Plant, cell & environment》2016,39(5):998-1013
Rice is an important crop and major model plant for monocot functional genomics studies. With the establishment of various genetic resources for rice genomics, the next challenge is to systematically assign functions to predicted genes in the rice genome. Compared with the robustness of genome sequencing and bioinformatics techniques, progress in understanding the function of rice genes has lagged, hampering the utilization of rice genes for cereal crop improvement. The use of transfer DNA (T‐DNA) insertional mutagenesis offers the advantage of uniform distribution throughout the rice genome, but preferentially in gene‐rich regions, resulting in direct gene knockout or activation of genes within 20–30 kb up‐ and downstream of the T‐DNA insertion site and high gene tagging efficiency. Here, we summarize the recent progress in functional genomics using the T‐DNA‐tagged rice mutant population. We also discuss important features of T‐DNA activation‐ and knockout‐tagging and promoter‐trapping of the rice genome in relation to mutant and candidate gene characterizations and how to more efficiently utilize rice mutant populations and datasets for high‐throughput functional genomics and phenomics studies by forward and reverse genetics approaches. These studies may facilitate the translation of rice functional genomics research to improvements of rice and other cereal crops. 相似文献
7.
High-throughput RNAi in Caenorhabditis elegans: genome-wide screens and functional genomics 总被引:6,自引:0,他引:6
Sugimoto A 《Differentiation; research in biological diversity》2004,72(2-3):81-91
The phenomenon of RNA-mediated interference (RNAi) was first discovered in the nematode Caenorhabditis elegans, in which introduction of double-stranded RNA causes specific inactivation of genes with corresponding sequences. Technical advances in RNAi methodology and the availability of the complete genome sequence have enabled the high-throughput, genome-wide RNAi analysis of this organism. Several groups have used large-scale RNAi to systematically examine every C. elegans gene for knock-down phenotypes, providing basal information to be mined in more detailed studies. Now, in addition to functional genomic RNAi analyses, high-throughput RNAi is also routinely used for rapid, genome-wide screens for genes involved in specific biological processes. The integration of high-throughput RNAi experiments with other large-scale data, such as DNA microarrays and protein-protein interaction maps, enhances the speed and reliability of such screens. The accumulation of RNAi phenotype data dramatically accelerates our understanding of this organism at the genetic level. 相似文献
8.
9.
Integration of structural and functional genomics 总被引:3,自引:0,他引:3
This paper introduces a special issue of Animal Genetics , which is devoted to the recent symposium held at Iowa State University entitled 'Integration of Structural and Functional Genomics'. We describe issues and needs that confront the animal genomics community, and describe how this symposium was structured to address these issues by improving communication and collaboration across species and disciplines. The session topics and oral presentations are briefly described for all invited speakers. 相似文献
10.
11.
近十年来,生理学与基因组学达到了空前的融合。尽管生理基因组学还是一个非常年轻的研究领域,系统生物学概念的引入必将推进生理基因组学达到全新的水平。本文概要地叙述了这个令人振奋的生理科学的新时代给生理学家带来的机遇和挑战,并以我们自己近十年来的经验为例,讨论了怎样通过扩展和延伸生理学与基因组学的结合,从而对生物学得到系统的理解。 相似文献
12.
13.
近年来,随着许多植物基因组测序和可利用序列的增加,相继建立了一些基于靶基因诱变的“反向”遗传学研究策略,如T—DNA诱变、基因敲除、基因沉默和超表达分析等。同时,DNA微阵列和基因芯片技术的发展使得快速、定量检测植物发育不同时期和不同组织器官的基因转录时空变化成为现实。作图技术的改进和来自不同物种基因组信息的整合也正在加速图谱克隆程序的简化和发展。因此,随着生物基因组测序工作日益增多,整合不同类群植物基因组的信息和资源,在植物功能基因组学研究中的重要性日趋显著。 相似文献
14.
嗜热四膜虫——具有发展潜力的功能基因组学研究模型 总被引:2,自引:0,他引:2
在真核生物的分子生物学和遗传学研究方面,纤毛类原生动物嗜热四膜虫(Tetrahymenathermophila)已经被证明是一种有价值的生物学模型。通过对它的研究,人们发现并且掌握了核酶的分子机制、RNA的自我拼接、端粒的结构和功能、DNA序列重组等机理。这种原生动物的基因组功能分别由两个细胞核执行,即二倍体的小核与生殖过程有关,而多倍体的大核决定细胞的基因转录,并为转化基因的表达提供了强有力的手段。 相似文献
15.
In the field of functional genomics increasing effort is being undertaken to analyze the function of orphan genes using metabolome data. Improved analytical equipment allows screening simultaneously for a high number of metabolites. Such metabolite profiles are analyzed using multivariate data analysis techniques and changes in the genotype will in many cases lead to different metabolite profiles. Here, a theoretical framework that may be applied to identify the function of orphan genes is presented. The approach is based on a combination of metabolome analysis combined with in silico pathway analysis. Pathway analysis may be carried out using convex analysis and a change in the active pathway structure of deletion mutants expressed in a different metabolite profile may disclose the function or the functional class of an orphan gene. The concept is illustrated using a simplified model for growth of Saccharomyces cerevisiae. 相似文献
16.
Jonathan Astin Alyce Merry Jeena Rajan Patricia E Kuwabara 《Briefings in Functional Genomics and Prot》2004,3(1):26-34
The nematode Caenorhabditis elegans is widely used as a model organism for studying many fundamental aspects of development and cell biology, including processes underlying human disease. The genome of C. elegans encodes over 19,000 protein-coding genes and hundreds of non-coding RNAs. The availability of whole genome sequence has facilitated the development of high throughput techniques for elucidating the function of individual genes and gene products. Furthermore, attempts can now be made to integrate these substantial functional genomics data collections and to understand at a global level how the flow of genomic information that is at the core of the central dogma leads to the development of a multicellular organism. 相似文献
17.
Wiemann S Bechtel S Bannasch D Pepperkok R Poustka A;German cDNA Network 《Journal of structural and functional genomics》2003,4(2-3):87-96
Among the greatest challenges facing biology today is the exploitation of huge amounts of genomic data, and their conversion into functional information about the proteins encoded. For example, the large-scale cDNA sequencing project of the German cDNA Consortium is providing vast numbers of open reading frames (ORFs) encoding novel proteins of completely unknown function. As a first step towards their characterization we have tagged over 500 of these with the green fluorescent protein (GFP), and examined the subcellular localizations of these fusion proteins in living cells. These data have allowed us to classify the proteins into subcellular groups which determines the next step towards a detailed functional characterization. To make further use of these GFP-tagged constructs, a series of functional assays have been designed and implemented to assess the effect of these novel proteins on processes such as cell growth, cell death, and protein transport.Functional assays with such a large set of molecules is only possible by automation. Therefore, we have developed, and adapted, functional assays for use by robotic liquid handling stations and reading stations. A transport assay allows to identify proteins which localize to distinct organelles of the secretory pathway and have the potential to be new regulators in protein transport, a proliferation assay helps identifying proteins that stimulate or repress mitosis. Further assays to monitor the effects of the proteins in apoptosis and signal transduction pathways are in progress. Integrating the functional information that is generated in the assays with data from expression profiling and further functional genomics and proteomics approaches, will ultimately allow us to identify functional networks of proteins in a morphological context, and will greatly contribute to our understanding of cell function. 相似文献
18.
黑腹果蝇Drosophila melanogaster是生物科学研究中重要的模式动物之一。2000年,黑腹果蝇全基因组测序完成,随后基因组序列质量不断完善,对其功能基因进行深入研究,为其他高等动物基因组和功能基因的研究提供了巨大帮助。本文综述了近年来基因组功能元件、比较基因组学等方面的最新研究成果,着重介绍了功能基因在Hh信号通路、细胞凋亡方面的研究进展,并对最新的功能基因研究技术进行了简要概述。 相似文献
19.
20.
The potential genetic and economic advantage of marker-assisted selection for enhanced production in dairy cattle has provided an impetus to conduct numerous genome scans in order to identify associations between DNA markers and future productive potential. One area of focus has been a quantitative trait locus on bovine chromosome 6 (BTA6) found to be associated with milk yield, milk protein and fat percentage, which has been subsequently fine-mapped to six positional candidate genes. Subsequent investigations have yet to resolve which of the potential positional candidate genes is responsible for the observed associations with productive performance. In this study, we analysed candidate gene expression and the effects of gene knockdown on expression of β- and κ-casein mRNA in a small interfering RNA transfected bovine in vitro mammosphere model. From our expression studies in vivo , we observed that four of the six candidates ( ABCG2 , SPP1 , PKD2 and LAP3 ) exhibited differential expression in bovine mammary tissue over the lactation cycle, but in vitro functional studies indicate that inhibition of only one gene, SPP1 , had a significant impact on milk protein gene expression. These data suggest that the gene product of SPP1 (also known as osteopontin) has a significant role in the modulation of milk protein gene expression. While these findings do not exclude other positional candidates from influencing lactation, they support the hypothesis that the gene product of SPP1 is a significant lactational regulatory molecule. 相似文献